Title (eng)
Challenges and Lessons Learned from a Field Trial on the Understanding of the Porcine Respiratory Disease Complex
Author
Elisa Crisci
Author
Andrew R. Kick
Author
Lizette Cortes
Author
John J. Byrne
Author
Amanda F. Amaral
Author
Kim Love
Author
Hao Tong
Author
Jianqiang Zhang
Author
Phillip Gauger
Author
Jeremy S. Pittman
Abstract (eng)
Background/Objectives: The porcine respiratory disease complex (PRDC) is a multifaceted, polymicrobial syndrome resulting from a combination of environmental stressors, primary infections (e.g., PRRSV) and secondary infectious agents (viruses and bacteria). PRDC causes severe lung pathology, leading to reduced performance, increased mortality rates, and higher production costs in the global pig industry. Our goal was to conduct a comprehensive study correlating both the anti-PRRSV immune response and 21 secondary infectious agents with PRDC severity. Methods: To this end, PRRSV-negative weaners were vaccinated with a PRRSV-2 MLV and put into a farm with a history of PRDC. Subsequently, anti-PRRSV cellular and antibody responses were monitored pre-vaccination, at 28 days post vaccination (dpv) and during PRDC outbreak (49 dpv). NanoString was used to quantify 21 pathogens within the bronchoalveolar lavage (BAL) at the time of necropsy (51 dpv). PRRSV-2 was present in 53 out of 55 pigs, and the other five pathogens (PCMV, PPIV, B. bronchiseptica, G. parasuis, and M. hyorhinis) were detected in BAL samples. Results: Although the uncontrolled settings of field trials complicated data interpretation, multivariate correlation analyses highlighted valuable lessons: (i) high weaning weight predicted animal resilience to disease and high weight gains correlated with the control of the PRRSV-2 field strain; (ii) most pigs cleared MLV strain within 7 weeks, and the field PRRSV-2 strain was the most prevalent lung pathogen during PRDC; (iii) all pigs developed a systemic PRRSV IgG antibody response which correlated with IgG and IgA levels in BAL; (iv) the induction of anti-field strain-neutralizing antibodies by MLV PRRSV-2 vaccination was both late and limited; (v) cellular immune responses were variable but included strong systemic IFN-γ production against the PRRSV-2 field strain; (vi) the most detected lung pathogens correlated with PRRSV-2 viremia or lung loads; (vii) within the six detected pathogens, two viruses, PRRSV-2 and PCMV, significantly correlated with the severity of the clinical outcome. Conclusions: While a simple and conclusive answer to the multifaceted nature of PRDC remains elusive, the key lessons derived from this unique study provide a valuable framework for future research on porcine respiratory diseases.
Keywords (eng)
PRDCPRRSV-2ImmunityNanoString
Type (eng)
Language
[eng]
Is in series
Title (eng)
Vaccines
Volume
13
Issue
7
ISSN
2076-393X
Issued
2025
Number of pages
23
Publication
MDPI
Date issued
2025
Access rights (eng)
Rights statement (eng)
© 2025 by the authors