Title
A comprehensive multi-domain dataset for mitotic figure detection
Language
English
Description (en)
The prognostic value of mitotic figures in tumor tissue is well-established for many tumor types and automating this task is of high research interest. However, especially deep learning-based methods face performance deterioration in the presence of domain shifts, which may arise from different tumor types, slide preparation and digitization devices. We introduce the MIDOG++ dataset, an extension of the MIDOG 2021 and 2022 challenge datasets. We provide region of interest images from 503 histological specimens of seven different tumor types with variable morphology with in total labels for 11,937 mitotic figures: breast carcinoma, lung carcinoma, lymphosarcoma, neuroendocrine tumor, cutaneous mast cell tumor, cutaneous melanoma, and (sub)cutaneous soft tissue sarcoma. The specimens were processed in several laboratories utilizing diverse scanners. We evaluated the extent of the domain shift by using state-of-the-art approaches, observing notable differences in single-domain training. In a leave-one-domain-out setting, generalizability improved considerably. This mitotic figure dataset is the first that incorporates a wide domain shift based on different tumor types, laboratories, whole slide image scanners, and species.
Keywords (en)
Breast-Cancer; Classification; System; Stage; Count
DOI
10.1038/s41597-023-02327-4
Author of the digital object
Marc  Aubreville  (Technische Hochschule Ingolstadt)
Christof A.  Bertram  (University of Veterinary Medicine Vienna)
Robert  Klopfleisch  (Freie Universität Berlin)
Paul J.  van Diest  (Friedrich-Alexander-Universität Erlangen-Nürnberg)
Jonas  Ammeling  (Technische Hochschule Ingolstadt)
Jonathan  Ganz  (Technische Hochschule Ingolstadt)
Mitko  Veta  (Eindhoven University of Technology)
Samir  Jabari  (Friedrich-Alexander-Universität Erlangen-Nürnberg)
Taryn A.  Donovan  (Schwarzman Animal Medical Center)
Katharina  Breininger  (Friedrich-Alexander-Universität Erlangen-Nürnberg)
Frauke  Wilm  (Friedrich-Alexander-Universität Erlangen-Nürnberg)
Nikolas  Stathonikos  (University Medical Center Utrecht)
Format
application/pdf
Size
1.3 MB
Licence Selected
CC BY 4.0 International
Type of publication
Article
Name of Publication (en)
Scientific Data
Pages or Volume
12
Volume
10
Number
1
Publisher
Nature Portfolio
Publication Date
2023
Content
Details
Object type
PDFDocument
Format
application/pdf
Created
31.10.2023 12:01:43
This object is in collection
Metadata
Veterinärmedizinische Universität Wien (Vetmeduni) | Veterinärplatz 1 | 1210 Wien - Österreich | T +43 1 25077-0 | Web: vetmeduni.ac.at