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Micronutritional deficiencies are common in atopic children suffering from

atopic dermatitis, food allergy, rhinitis, and asthma. A lack of iron, in

particular, may impact immune activation with prolonged deficiencies of

iron, zinc, vitamin A, and vitamin D associated with a Th2 signature,

maturation of macrophages and dendritic cells (DCs), and the generation of

IgE antibodies. In contrast, the sufficiency of these micronutrients establishes

immune resilience, promotion of regulatory cells, and tolerance induction. As

micronutritional deficiencies mimic an infection, the body’s innate response

is to limit access to these nutrients and also impede their dietary uptake.

Here, we summarize our current understanding of the physiological function

of iron, zinc, and vitamins A and D in relation to immune cells and the

clinical consequences of deficiencies in these important nutrients, especially

in the perinatal period. Improved dietary uptake of iron is achieved by vitamin

C, vitamin A, and whey compounds, whereas zinc bioavailability improves

through citrates and proteins. The addition of oil is essential for the dietary

uptake of beta-carotene and vitamin D. As for vitamin D, the major source

comes via sun exposure and only a small amount is consumed via diet,

which should be factored into clinical nutritional studies. We summarize

the prevalence of micronutritional deficiencies of iron, zinc, and vitamins in

the pediatric population as well as nutritional intervention studies on atopic

diseases with whole food, food components, and micronutrients. Dietary

uptake via the lymphatic route seems promising and is associated with a

lower atopy risk and symptom amelioration. This review provides useful

information for clinical studies and concludes/emphasizes that a healthy,

varied diet containing dairy products, fish, nuts, fruits, and vegetables as well

as supplementing foods or supplementation with micronutrients as needed is

essential to combat the atopic march.
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1. Introduction

Micronutrients are minerals and vitamins, which are vital in
very small amounts for the body’s health. Deficiencies here can
cause severe and even life-threatening conditions, but can also
lead to clinically less noticeable impairments in energy levels,
mental clarity, and overall performance, as well as an increased
risk for other diseases, particularly, immune-mediated ones.

There is an intricate network between nutrients and our
immune system as humans (and vertebrates, in general) have
developed numerous strategies termed nutritional immunity
(1) to starve invading pathogens by withholding and depriving
them of micronutrients. However, for proper growth and
function, the immune cells need micronutrients (e.g., iron, zinc,
selenium, copper, folate, and vitamins A/D/C) (2).

Indeed, a lack of these micronutrients may signal danger
to the immune system and leads to their priming/activation
which, if mild, can even reduce the risk of infections: mild
iron deficiency appears to be protective against the development
of parasitic infection (e.g., Plasmodium falciparum) (3–5)
(ISRCTN32849447). In contrast, when the host’s strategies to
withhold and deprive these pathogens of micronutrients fails,
these pathogens, together with the defense strategies to withhold
and block micronutrient uptake, may aggravate the situation
and lead to anemia and chronic inflammation.

An adequate nutritional balance is, thus, of utmost
importance when growing up with the nutritional status already
passed at birth from the mother to the child. Especially, during
the first months of life, nutrition via breast milk is considered
superior to milk formulas as it includes nutrients and essential
immune factors for the growth and development of infants until
1 year. However, 5 months after birth, the nutrient level in breast
milk starts to diminish in minerals, proteins, and vitamins and
so the introduction of food should commence in conjunction
with breastfeeding (6), as breast milk alone is no longer sufficient
to meet the nutritional requirements in terms of energy and
micronutrients (iron and zinc) after 6 months of life.

Moreover, the nutritional quality of breast milk differs
significantly with undernourishment, reducing the levels of
several micronutrients including vitamin A and all B vitamins
except folate, iodine, and selenium (7). The consumption of
a limited range of food or avoiding allergenic food, which
is usually rich in micronutrients, can further diminish the
micronutritional content. In addition, in atopic mothers, the
presence of low-grade inflammation further hampers the
normal dietary uptake of these essential micronutrients.

In a Danish study on atopic mothers (8), the breast milk of
atopic women was found to contain lower amounts of vitamin
D (9) and vitamin C (10) and have a modified oligosaccharide
(11) and fatty acid profile (12–17), with the lipidic composition
being closely associated with the diet and time of sampling.
Although not assessed so far, it can be assumed that the
breast milk of atopic women contains lower levels of vitamin

A (retinol), iron, B vitamins, iodine, and selenium (18–21)
(NCT00164736, NCT00164762).

Infants with atopic diseases are also likely to be affected
by dietary restriction which further emphasizes the increased
risk of nutritional inadequacies that may contribute to the
development of allergic diseases.

Although this review focuses on micronutritional
deficiencies of iron, zinc, as well as vitamins A and D as
the predominant driver of atopic diseases, it is important to
note that an excess amount of these micronutrients will also
cause inflammation though via different mechanisms and may,
thereby, also contribute to the pathogenesis of atopic diseases
(22–25) (NCT00168597, NCT01779180).

In this review, special attention will be given to the
micronutrients of iron, zinc, vitamin A, and vitamin D
as key elements and modulators of immune cells. The
main characteristics of these micronutrients and the basic
mechanisms of nutrient uptake in healthy and inflamed
conditions will be discussed, and evidence will be provided
on the effects on immune cells. Clinical evidence for
micronutritional deficiencies in atopic children and the impact
of the diet and dietary elements on the disease course are
discussed. Importantly, many of these deficiencies can be
prevented through nutritional education and the consumption
of a healthy, varied diet, as well as by fortifying and
supplementing foods or direct supplementation as needed.
The review also provides useful information for ensuring
the bioavailability of these precious micronutrients, when
deficiencies and inflammation are already present.

2. Micronutrients

2.1. Iron

Iron deficiency is the most widespread nutritional disorder
worldwide and is a public health problem in both industrialized
and non-industrialized countries. The assessment of iron
deficiency is complicated by the fact that iron parameters
such as ferritin, transferrin saturation, and zinc protoporphyrin
are affected in any infectious or inflammatory process, with
the presence of (low-grade) inflammation leading to an
underestimation of iron deficiency.

Iron deficiency is the result of a long-term negative iron
balance; in its more severe manifestations, iron deficiency leads
to anemia, which indeed represents an extreme form and is
defined as a low hemoglobin concentration in the blood. The
hemoglobin thresholds that indicate anemia vary according to
physiological status (e.g., age and sex) and have been established
by WHO for different population groups (26), e.g., in children,
the threshold is <110 g/L for the age of 6–59 months.

Iron deficiency can also be “functional” in its nature,
in which ferritin levels are usually within normal limits.
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Here, the iron supply and incorporation into erythroid
precursors are insufficient, despite the presence of apparently
adequate body iron stores. In this case, iron is present,
but metabolically inactive, i.e., meaning it is stored within
ferritin, in reticuloendothelial cells, which consist primarily of
monocytes and macrophages, and is unavailable for immediate
use (27) (H15-00721). This “functional iron deficiency,”
blocking metabolic active iron, is seen in subjects with
infectious, inflammatory, and malignant diseases, and is a
major component of the anemia of chronic disease. However,
functional iron deficiency also occurs in high-performance
athletes due to exercise-induced inflammation (28) and in obese
people because of the presence of low-grade inflammation.

It is, therefore, essential not to interchange the terms
“iron deficiency” and “iron-deficiency anemia” as they describe
different conditions.

2.1.1. Iron uptake under inflammation: A real
problem

The discovery of the iron regulatory peptide, hepcidin, a
25-amino acid peptide synthesized in the liver, in regulating
iron homeostasis in 2001 completely revolutionized our
understanding of iron disorders (29). Hepcidin is upregulated
in the setting of inflammation and cancer, resulting in its
increased synthesis in the liver stimulated by cytokines of which
interleukin 6 is the most important. By degrading ferroportin,
which enables exporting iron into circulation, hepcidin
decreases iron absorption from the gastrointestinal tract and
decreases the accessibility of iron stored in macrophages. The
blocking of iron absorption and mobilization is a critical
clinical finding, which is associated with a worsened prognosis
and outcome in chronic diseases such as congestive heart
failure (30, 31), chronic kidney diseases (32–34) (NCT03029208,
NCT02940860, and NCT01864161), autoimmune diseases (35–
39), inflammatory bowel disease (40, 41), cancer (42–44),
atopic diseases (45, 46) (NCT03815981 and NCT03816800),
and even in obesity (47–50) (NCT00030238). Importantly, in
iron-deficient children who are not anemic, inflammation is a
common finding (51).

There are multiple dietary iron uptake mechanisms: uptake
of heme iron (meat and fish) is receptor-mediated and about
five times more efficient than the uptake of none-heme iron
(plants, grains, and legumes), which must be reduced to
ferrous iron before uptake and is facilitated by vitamin C
(27) (Figure 1). In children, iron deficiency is particularly
important as it can affect not only growth but also the lung
(52, 53) (IRB No. 2017-04-049), and also the small intestinal
function is impaired. Iron-deficient children also have poorer
performance rates and its association with impaired cognitive
development (attention, sensory perception, emotions, and
intelligence) is well recognized. Importantly, functional iron
deficiency is present in obese children, which impedes iron
absorption, despite similar dietary iron intake (54). As normal

iron uptake is impaired in situations of inflammation, newer
oral iron formulations such as ferrous iron encapsulated in
a phospholipid bilayer (55) or liposomal iron and ferric iron
in starchlike vesicles (56) have been developed to circumvent
hepcidin-mediated blockage of iron absorption by using the
lymphatic route for iron uptake (57).

2.1.2. Prevalence of iron deficiency in atopic
children

Epidemiological studies conducted in the US (58)
and Korea (59) have attested that children with atopic
diseases such as atopic dermatitis (60), wheeze, and allergic
rhinitis/conjunctivitis are up to 8 times more likely to be
anemic compared to children without any allergies. In addition,
smaller studies have reported a high prevalence of iron and zinc
deficiencies in children with atopic dermatitis (61), with low
serum iron associated with lower lung function (52).

Contributing factors listed for greater anemic risk, apart
from food avoidance, were chronic inflammation and the
use of systemic immunosuppressive medications. Indeed, an
inadequate iron intake in the weaning period, when the child’s
micronutrient needs can no longer be met by breast milk
alone, has been reported in infants with atopic dermatitis (6),
emphasizing that food introduction after 6 months is essential
for proper growth, as the nutrient levels of iron in breast
milk start to decrease after 5 months (62) (NCT01444261,
NCT00841061, and NCT00760890). Similar lower iron intake
has been described in children with atopic dermatitis (63, 64).

Also, a greater prevalence of helminth and protozoa
infections has been reported in children with atopic dermatitis
and wheeze (65–69) (ISRCTN41239086), which was associated
with symptoms (66, 70–72). In these cases, it was shown that
deworming strategies decreased the risk of asthma (73) but not
of other atopic diseases.

Conversely, also children with anemic diseases such as
sickle cell disease (74, 75) or beta-thalassemia major (76–
79) (CGMF- 201801200B0) are more likely to have atopic
diseases and suffer from asthma (80, 81), indicating that iron
itself is involved in the etiology of atopic diseases. Adults
and children diagnosed with atopic dermatitis are also at
greater risk of developing associated autoimmune diseases
such as Crohn’s disease, pernicious anemia, autoimmune
hypothyroidism, rheumatoid and psoriatic arthritis, vitiligo, and
alopecia areata (82). Similarly, also other allergic diseases such as
rhinitis/conjunctivitis and asthma are associated with a greater
incidence of autoimmune diseases (83), emphasizing the close
link between iron and our immune system.

As the nutritional state of the mother is passed to the
child, also maternal iron status impacts the risk of allergies in
children. The Avon Longitudinal Study of Parents and Children
associated reduced umbilical cord iron levels with childhood
wheeze and eczema (84), whereas several studies associated
a reduced maternal iron status during pregnancy adversely
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with childhood wheeze, lung function, and atopic sensitization
(85–88) (NCT03408275, NCT03408275, NCT01647399, and
NCT01308112). In the same line but vice versa, the study by
Fortes et al. reported that the children of women who were
supplemented with iron and folic acid during pregnancy had a
fourfold reduced risk of developing atopic dermatitis (89).

To summarize, there is compelling evidence that
children suffering from atopic diseases lack iron with all
its detrimental implications.

2.1.3. Macrophages: Immune sentinels and the
central hub for iron distribution

To understand why the lack of iron, in particular,
is associated with atopic diseases, one must delve into
iron physiology, described in detail elsewhere (27), and its
association with our immune system.

Briefly, about 1–2 mg of iron is absorbed daily through the
intestine, while 20–30 mg of iron is recycled predominantly by
splenic macrophages from senescent red blood cells (90). This
means that the primary cells dealing and distributing iron in our
body are macrophages, and any change in the iron levels and
status will thus directly affect these cells.

Macrophages are crucial for their surveillance role in
pathogen recognition and for their homeostatic function of
clearing the surroundings from apoptotic and senescent cells via
phagocytosis. In recent years, another function of macrophages
has been well recognized, namely, that of acting both as a sensor
for the nutrient demand of the surrounding tissues and as a
supplier of iron (91).

Although there is a broad range of macrophage subtypes,
the prototypical pro-inflammatory and anti-inflammatory
macrophages can be distinguished by their iron-handling
features. Pro-inflammatory M1 macrophages neither partake in
iron sequestration nor export, and intracellularly their labile
and metabolic active iron levels are low, as the available
iron is entrapped within ferritin, making it inaccessible for
pathogens, but also nutritional supply (92). In contrast, anti-
inflammatory M2 macrophages that usually display a high
expression of CD163, the hemoglobin/haptoglobin receptor
essential for heme iron import, possess a large labile iron pool,
which represents the metabolic active iron within the cell, and
only a small amount of iron is stored within ferritin.

Importantly, the by-default anti-inflammatory phenotype
of macrophages changes under iron-deficient conditions. In
the absence of iron, less iron is supplied to the macrophage,
which means that iron turnover is lower, resulting in a
decline of metabolically active iron. Consequently, the classical
characteristics of the anti-inflammatory macrophage with a
large labile iron pool and a high turnover rate are changed
toward a more pro-inflammatory phenotype (27).

Nutritional iron deficiency has been implicated in low-
grade inflammation (93) (NCT01088958), with a more pro-
inflammatory state of the monocytic cells being reported in
children (94) and infants (95) with iron deficiency (Figure 1).

2.1.4. Iron deficiency in B cells, T cells, and
mast cells

Iron deficiency per se also has a profound impact on other
immune cells, which, in children in the first stage, is associated
with Th1-associated cytokines such as IL6, TNFα, and IFN-γ
inflammation (96) and, in later stages of more severe cases of
iron-deficient anemia, this is associated with the Th2-associated
cytokine IL4 (96–98). The reason for this shift of Th1-associated
cytokines toward a Th2 milieu is the fact that Th1 cells are
particularly sensitive to iron deprivation (99), with the result
that under iron-deficient conditions, only Th2 cells are left.

Moreover, the antibody-producing B cells, though quite
resistant to iron-deprived conditions, are primed. Under iron-
deficient conditions, the activation-induced cytidine deaminase
(AID), an enzyme responsible for class-switch and affinity
maturation, is not repressed by ferrous iron and becomes
activated (100). Thus, iron deficiency is linked to C-reactive
protein (CRP) and elevated IgE levels (53, 101) irrespective
of the cause (86, 102–104). Interestingly, iron fortification
strategies, but not deworming, have been shown to reduce IgE
levels and improve iron status in Vietnamese children (105)
(NCT01665378, NCT00116493).

Furthermore, mast cells degranulate concentration-
dependently upon incubating with the iron chelator desferal
(desferrioxamine) in vitro (106) and in the human skin (107,
108). Moreover, restricting the iron supply of mast cells by
desferal activated mast cells releases inflammatory cytokines
(109). Conversely, supplying mast cells with iron-saturated
transferrin, lactoferrin, and beta-lactoglobulin (holoBLG)
prevents mast cell degranulation (110–114) (Figure 2).

To summarize, immune cells are primed under iron-
deficient conditions, which renders them hyperactive, but it also
impedes iron absorption in the absence of an infection.

2.2. Zinc

Zinc is the third most abundant trace element and an
essential component for a large number of enzymes and, as such,
is crucial, particularly, in tissues that have a rapid differentiation
and turnover such as the immune system, the skin, and the
gastrointestinal tract.

Although important, the prevalence of zinc deficiency is
uncertain due to the lack of reliable and widely accepted markers
to assess zinc status. Plasma, serum, and hair zinc concentration,
as well as zinc-erythrocytes, are only able to detect severe
deficiencies. The WHO estimates that about 20% of the world’s
population could be at risk of zinc deficiency (115), which is
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FIGURE 1

Iron homeostasis in steady state and inflammatory conditions. Only 2 mg of dietary iron is absorbed via the gut daily, with the bioavailability of
heme iron being about 5 × greater than non-heme iron. In contrast, 20–30 mg of iron is recycled iron from senescent red blood cells by
splenic macrophages, which are characterized by a high iron turnover rate with a large labile iron pool (LIP) and low ferritin levels (FERR). Under
iron-deficient conditions, less iron is absorbed via the gut and macrophages shift toward a more activated status, as iron through-put and thus
metabolically active iron is low (low LIP), while FERR is also low. Under inflammatory conditions, hepcidin is excreted which degrades
ferroportin, with the result that dietary iron uptake is hampered. Likewise, macrophages stop further iron acquisition and export and store the
available iron into FERR, with the result that inflammatory macrophages have a low LIP, while FERR is increased.

strongly associated with iron deficiency as both are linked to
the same food sources (meat, poultry, and fish) and, in both
cases, absorption is inhibited by phytates. However, in contrast
to iron, zinc is not affected by blood loss and absorption is
not improved by vitamin C. Bioavailability of zinc is dependent
on the dietary composition with zinc sulfate and zinc acetate
allowing absorption (116), while zinc oxide and zinc carbonate
are insoluble and result in poorer absorption. Reported zinc
bioavailability ranges from 15 to 92% (117) with phytates and
dietary calcium inhibiting its bioavailability (but not phenolic
compounds as with iron), while protein and citrate improve
it (118). Competitive interactions can occur between zinc and
other trace elements such as iron and copper, but only when
present in large amounts.

The main regulatory mechanisms for zinc homeostasis in
humans are absorption and excretion, with zinc being absorbed
in the duodenum and jejunum (118) and mainly excreted via the
stool (116).

Total zinc content in the human body is about 2–4 g, with
59% of all zinc contained in the muscles, 29% in the bones, 6%
in the skin, 5% in the liver, 1.5% in the brain, 0.7% in the kidneys,
0.4% in the heart, and 0.1% in the hair as well as plasma.

Clinical manifestations of zinc deficiency are largely
unspecific, but severe deficiencies are associated with
symptoms of dermatitis, lymphopenia, retarded growth,
mental disturbances, and recurrent infections (115).

2.2.1. Zinc under inflammatory conditions
Similarly, as with iron, serum zinc levels decline during

inflammation as a response to nutritional immunity and
uptake in the liver (119), with hepcidin also blocking dietary
zinc uptake via ferroportin-independent mechanisms that lead
to downregulation of the zinc-exporter ZnT1 (120). In the
circulation, 70% of zinc is bound by albumin, which is a
negative acute phase protein and thus also decreases under
inflammatory conditions. Importantly, and similar to iron, zinc
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FIGURE 2

Immune cells under deficient and sufficient conditions of iron, zinc, and vitamins A and D. As part of nutritional immunity, depletion of iron,
zinc, vitamin A, and vitamin D leads to immune activation and may result in a strong Th1/Th17 dominated immune response and B-cell
maturation to plasma cells. When these deficiencies persist, a Th2 milieu is generated due to the higher resistance of these cells to survive
under nutrient-deprived conditions. Locally, iron depletion is sufficient for mast cell priming and to evoke degranulation. In contrast, the
sufficiency of iron, zinc, and vitamins A and D is known to promote regulatory T cells and keep dendritic cells, B cells, and macrophages in an
immature state. All these factors have been reported to lead to mast cell stabilization, thus reducing mast cell degranulation.

supplementation during the acute phase or an infection may be
harmful and even aggravate inflammation (24).

2.2.2. Zinc immune function
On the molecular level, some functions of zinc have

been linked to its role as a second messenger in immune
cells with changes in the intracellular-free zinc concentration
induced by the binding of various ligands to their respective
receptors, e.g., Toll-like receptor 4 (TLR-4), or crosslinked
immunoglobulin E bound on the high-affinity immunoglobulin
E-receptor (FcεRI) (121, 122). T-cell maturation depends
on zinc since zinc alone is able to promote regulatory T
cells and Th1 responses in vitro (123, 124). In antigen-
presenting cells, stimulation by lipopolysaccharide (LPS)
leads to intracellular zinc mobilization from lysosomes (125)
and export, which is associated with the generation of
pro-inflammatory cytokines in monocytes (126) and the
upregulation of major histocompatibility complex (MHC) class
II molecules (127), formation of neutrophil extracellular traps
by neutrophil granulocytes (33), or proliferation of T cells
(34). Therefore, zinc deficiency has been associated with
abrogating oral tolerance and fostering mucosal inflammation
(128) (Figure 2).

2.2.3. Zinc in atopy
In studies assessing trace elements, zinc deficiency is not

associated with atopy in children (129–132) (NCT03408275,

NCT03407391, NCT03269253, and ACTRN12606000281594)
nor does maternal zinc intake reduce the risk of wheeze and
eczema in the offspring (133). However, maternal intake of
zinc during pregnancy is associated with better lung function
in the offspring (134) (NCT03408275, NCT03407391, and
NCT03269253) and lower odds ratio for wheezing during
childhood, but not with atopic diseases or asthma (135).
In a Polish study (NCT01861548), higher zinc and copper
concentrations in cord blood were associated with an increased
likelihood of wheezing in 1-year-old children affected by
second-hand smoking, but not in others. No associations were
determined with the levels of vitamins A and E (131, 136,
137) (NCT01861548). Still, low levels of zinc in serum, hair,
and erythrocytes are consistently reported in subjects affected
by atopic dermatitis (138, 139) (RMC 14193/14 and HREC
473/2017), with zinc transporter (140) and zinc-dependent
enzymes being decreased in atopic lesions (141). However, zinc
levels do not change with the severity of the disease (142).
Also, in patients suffering from atopic asthma, low zinc levels
are associated with total IgE levels (143), and a meta-analysis
associated decreased zinc and selenium levels with an increased
risk of asthma (144).

Taken together, zinc is a very important trace element,
the bioavailability of which is limited under inflammatory
conditions. Although not directly associated with the onset
of allergies, its availability declines in atopic individuals
presumably due to low-grade inflammation.

Frontiers in Nutrition 06 frontiersin.org

https://doi.org/10.3389/fnut.2022.1032481
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1032481 January 5, 2023 Time: 6:24 # 7

Peroni et al. 10.3389/fnut.2022.1032481

2.3. Vitamin A

Vitamin A is a fat-soluble vitamin, which includes retinol,
retinal, retinoic acid, and several provitamin A carotenoids.
Via diet, preformed vitamin A (retinol) in animal food sources
presents the best source as it can readily be used by the body,
while provitamin A carotenoids derived from vegetables and
fruits have to be converted into retinol by tissues such as
the intestinal mucosa and the liver. The conversion rate of
β-carotene to retinol is approximately 12:1, which is better
than for other provitamin A carotenoids with a conversion
rate of 24:1 (115, 145, 146) (Figure 3). The addition of oil
can, however, improve the absorption of food carotenoids as
well as food processing such as cooking and grinding (147).
Vitamin A supplements often use synthetic β-carotene in oil
with a conversion rate of 2:1 to retinol, and the synthetic
forms of β-carotene in fortified foods have a conversion rate
of 6:1. (93). Uptake of retinoids and provitamins begins in the
intestinal lumen, which is converted into retinyl esters and is
transported to the liver via the lymphatic system. In contrast,
retinol transport is thought to occur predominantly through the
bloodstream before delivery to target tissues, such as the retina
(148, 149) (Figure 3).

Retinol is the predominant circulating form of vitamin A
in the blood. In response to tissue demand, it is released from
the liver in a 1:1 ratio with its carrier protein, retinol-binding
protein. There, this complex can combine with transthyretin
(150). Specific receptors on target cell surfaces or nuclei bind
this complex or its active metabolites, thereby regulating many
critical functions in the body, including vision, epithelial tissue
integrity, and immunity (Figure 3). As zinc is required for the
synthesis of retinol-binding protein, zinc deficiency reduces the
amount of circulating retinol, causing a functional vitamin A
deficiency, even when liver stores may be sufficient.

Vitamin A is essential for regulating embryo development
and growth and for chromophore synthesis in the eyes and is an
equally important nutrient for the immune system (151, 152).
Vitamin A distribution takes place mainly in two ways within
the body: the extrinsic pathway transports dietary vitamin A
in lipoproteins via chylomicrons from intestinal enterocytes to
tissues, while the intrinsic pathway distributes vitamin A from
hepatic stores bound to the serum retinol-binding protein (RBP)
(153) (Figure 3).

Vitamin A deficiency can manifest in clinical ocular signs
such as night blindness and xerophthalmia, but otherwise is
largely non-specific (115). The WHO estimates that about 250
million preschool-aged children throughout the world have
subclinical or clinically relevant low serum vitamin A levels, and
vitamin A supplementation likely reduced all-cause mortality
(154, 155).

Subclinical vitamin A deficiency is linked to a worsened
outcome and disease course and is closely linked to iron
deficiency and to inflammation (156–158). Retinol is mobilized

from the liver by an iron-dependent enzyme (159), with iron-
deficient conditions hindering the mobilization of this vitamin.
Importantly, retinol supplementation during infancy did not
increase the risk of atopy at age 7 (160) (NCT00168597
and NCT00168584). In contrast, retinol deficiency aggravates
asthma (161), allergic rhinitis (162), and atopic dermatitis (163).

Retinol is also closely linked to the immune system. In
the case of any infection or inflammatory process, serum
retinol declines (164, 165), and this decline is associated
with an increase in CRP (166). Therefore, in the presence
of inflammation, this can result in an overestimation of
vitamin A deficiency.

2.3.1. Impact of vitamin A deficiency on an
immune cellular level

It has been reported that vitamin A deficiency leads to
a shift toward Th1, giving rise to the production of IFNγ

(167, 168) and negatively affecting the antibody response.
In line, vitamin A deficiency also hindered the conversion
of inflammatory monocytes into tissue-resident macrophages.
Thereby, the resolution of type 2 inflammation as well as
the removal of the infectious agent was hindered which led
to increased mortality in vivo (169). Similarly, the study by
Rühl et al. demonstrated that a retinoic acid-deficient diet
promotes the Th2-associated IL4 as well as IFNγ in a mouse
model (170) and led to elevated IgE antibody production (171).
Another study showed that oral tolerance was impaired in
retinoic acid-deficient mice (172) and that oral supplementation
with carotenoids inhibited oral sensitization and food allergy
(173, 174).

Retinoic acid can antagonize the development of innate
lymphoid cell (ILC)2s while promoting the expansion of ILC3s
and imprinting DCs with the ability to produce retinoic acid,
thereby inducing naïve T cells to differentiate into T-regulatory
cells (175). In addition, inhibition of NF-κB signaling by retinoic
acid in macrophages has been described. Retinoic acid is able
to suppress the differentiation of Th1 and Th17 cells, enhance
regulatory T cells, and inhibit proliferation and differentiation
of B cells, and reduced mediator release from mast cells was
reported after retinoic acid treatment in vivo (151, 176, 177)
(Figure 2).

2.4. Vitamin D

Vitamin D is a fat-soluble vitamin and a key regulator
for calcium and phosphorus homeostasis. It regulates cell
differentiation and hormones such as parathyroid hormone and
insulin. About 80% of vitamin D (calciferol) is synthesized in the
skin of most animals, including humans, from its precursor, 7-
dehydrocholesterol, by ultraviolet light exposure from sunlight
(Figure 4). This produces a naturally occurring form of the
vitamin known as vitamin D3. Vitamin D is naturally present
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FIGURE 3

Carotenoids and retinoids metabolism. Total vitamin A intake consists of many dietary forms including free retinol, retinyl esters from animal
sources, and plant-derived α- and β- carotenes, which have a lower bioavailability. The conversion rate of carotenes to retinol is in brackets. The
various ingested forms of vitamin A are then processed, stored in the liver, and can be released into the systemic circulation on demand. Retinol
is the major form present in the blood, which is transported by retinol-binding proteins (RBP) to the target tissue. In the circulation, RBP binds to
transthyretin, probably to evade loss by glomerular filtration. Retinol is converted into retinal and retinoic acid, respectively. Retinoic acid is
responsible for most of the activity of vitamin A, except for visual pigment effects that require retinal.

in relatively few foods; thus, a small fraction of the daily
requirements for the vitamin is supplied through diet. Salt-water
fish, such as herring, salmon, sardines, and fish liver oil, is a
rich source of vitamin D3, whereas plant analogs are known as
vitamin D2, which has, however, about a third of the activity of
vitamin D3 (178, 179). Small quantities of vitamin D are found
in other animal products (e.g., beef, butter), and if hens are fed
a vitamin D diet, eggs can provide substantial amounts of the
vitamin (115).

Several studies have shown that the effects of poor vitamin
D status are exacerbated by low calcium intakes, also in children
(180) (NCT00949832).

Metabolic processing of vitamins D3 and D2 is similar, with
the first metabolization step occurring in the liver to 25-hydroxy
vitamin D (25-OH-D3, also termed calcifediol). Calcifediol
is the major form present in blood and its concentration
determines how much will be transported to the kidney and
metabolized into 1,25-dihydroxy vitamin D [1,25-(OH)2-D3,
also called calcitriol]. Calcitriol is the biologically active form of
the vitamin and only this form can act via the vitamin D receptor
(VDR) expressed on different tissues. Upon calcitriol-binding,
the VDR enters the nucleus in the cell and forms heterodimers
with the retinoid X receptor/RXR for DNA binding and

activation of transcription of the calcitriol-responsive genes
(181). Transport of vitamin D3 and its metabolites to the kidney
and target organs occurs via plasma vitamin D binding protein
(DBP) (179) (Figure 4). It has to be emphasized that the retinoid
X receptor is essential for the transcription of vitamin D3-
responsive genes, but is also a transcription factor for retinoic
acid. Therefore, vitamin A can be a regulatory element in the
biological action of vitamin D.

Calcitriol, the active form of vitamin D, is controlled by its
production, by the parathyroid hormone, which stimulates the
renal production of calcitriol; fetal growth factor 23; and serum
levels of calcium and phosphate (179) (Figure 4).

Severe vitamin D deficiency results in a bone disease called
rickets in infants and children, and osteomalacia in adults, which
are characterized by the failure of the organic bone matrix to
calcify. The lesions are reversible after the correction of vitamin
D deficiency. The global prevalence of vitamin D deficiency is
uncertain, but it is greater in those living at high latitudes where
daylight hours are limited in the winter months, in those with
darker skin due to reduced capacity to produce vitamin D and
where clothing inhibits UV radiation from the sunlight (182).

As vitamin D greatly influences bone homeostasis, which is
also a major and essential site of immune cells, deficiencies of
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FIGURE 4

Vitamin D metabolism. Vitamin D3 is synthesized mainly in the skin by UV radiation, but a small fraction can also be obtained via diet as vitamin
D3 or vitamin D2. In the liver, both forms are metabolized to calcifediol (by CYP27A1), which is the major form present in the blood but is not
biologically active. Only upon further hydroxylation in the kidney, calcifediol is turned into its active form termed calcitriol. Calcitriol synthesis is
known to depend on calcitriol itself, the parathyroid hormone, serum calcium concentrations, serum phosphor concentrations, and fetal
growth factor 23. The active form then subsequently binds to the vitamin D receptor (VDR) expressed in different tissues, which then enters the
nucleus to form heterodimers with the retinoid X receptor/RXR and activates the transcription of calcitriol target genes.

this important vitamin greatly impact our immune system (151,
152). Also here, deficiencies are associated with inflammation
and disease severity (183, 184) in several immune-driven
diseases with chronic inflammation (185, 186).

Vitamin D can also suppress hepcidin and, therefore,
promote dietary iron uptake (187), but vitamin D deficiencies
also facilitate iron deficiency.

2.4.1. Impact of vitamin D deficiency on an
immune cellular level

Calcitriol is reported to enhance chemotaxis and
antimicrobial peptide synthesis in monocytes and macrophages
and is involved in the activation of type 3 innate lymphoid cells
(ILC3s). Vitamin D3 inhibits the maturation of DCs, thereby
leading to a tolerogenic state with low antigen presentation and
increased IL-10 production. It also regulates and suppresses
IL2-production in activated T and B cells (188, 189). Moreover,
the differentiation of Th1 and Th17 cells is hindered, whereas
regulatory T-cell generation is promoted and the proliferation

and differentiation of B cells are inhibited. It has been reported
that vitamin D3 contributes to stabilizing mast cells and
reducing mediator release from effector cells after retinoic acid
or vitamin D3 treatment in vivo (151, 176, 177) (Figure 2).

2.5. Prevalence of vitamin A and
vitamin D deficiency in children with
atopic diseases

Atopic diseases in children include atopic dermatitis,
rhinitis, asthma, and food allergy (190). As allergic diseases
can be influenced by micronutrients such as vitamins A and
D, many studies have looked at serum vitamin levels in the
allergic pediatric group and investigated the effects of vitamin
supplementation (191, 192).

In this respect, two recent studies showed lower serum
vitamin D and retinol levels in children affected by atopic
dermatitis compared to healthy controls (193, 194). In addition,
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the retinoid-mediated signaling in the skin seemed impaired.
Increased severity of atopic dermatitis was associated with
significantly lower levels of serum vitamin D, which was also
reported by others (195, 196) (CRD42017068773). Children
with asthma have lower circulating vitamin A levels (197),
which could be ameliorated by dietary means (198). Besides, the
intake of carotenoids, beta-cryptoxanthin, and alpha-carotene
was inversely associated with allergic skin sensitization (199).
Vitamin A deficiency in infancy and early childhood was also
associated with the subsequent development of allergies (200).

For food allergy, the number of studies on vitamin A
is limited, while vitamin D is more prominent in recent
investigations. A case–control study revealed that children with
food allergy had lower vitamin D levels compared to healthy
controls and were more likely to suffer from multiple food
allergies (201). Another study showed that micronutrient intake
of this precious nutrient was lower in children affected with
food allergies (202). In a large retrospective study including
children with food allergy and other atopic conditions, vitamin
D deficiency was detected in one-third of all children, and
an association of food allergy to lower iron and transferrin
saturation levels and a higher eosinophil percentage were
described (203). The role of vitamin D in food allergy is still
controversial as other studies have shown no association of
vitamin D in the development of food allergy (204). However,
since genetic variation concerning vitamin DBP could also
influence serum vitamin D levels in food allergy (205) as well
as in atopic dermatitis (206), this should be further explored.

A recent case–control study in Chinese children with stable
asthma reported significantly decreased serum vitamin A and
D levels in the asthmatic group, with a positive correlation
of vitamin levels to good pulmonary function and quality of
life (207). The findings of reduced serum vitamin A and D
levels in asthmatic children compared to healthy controls have
been known for some time (208) and are supported by recent
studies. Andino et al. demonstrated it for serum vitamin A in
a small cross-sectional case–control study, and Omole et al.
demonstrated it in a larger comparative cross-sectional study for
serum vitamin D (209, 210). In addition, low serum vitamin D
levels (<20 ng/ml) in asthmatic children seem to be associated
with a higher serum eosinophil count and total IgE, thereby
correlating with the severity of childhood asthma (211, 212).

Other birth-cohort studies correlate maternal intake of
vitamins A and D to asthma or allergy risk in the offspring.
Maternal vitamin D sufficiency throughout pregnancy
attenuated the risk of recurrent wheezing or asthma in the
offspring up to 6 years of age and especially in children
with asthmatic mothers (213). In a randomized placebo-
controlled trial, high-dose vitamin D supplementation in
mothers significantly decreased the risk of allergic rhinitis and
allergic sensitization in the offspring at 6 years of age (214)
(NCT00920621), but not the risk of developing asthma (215)
(NCT00920621). Parr et al. reported an increased asthma risk

of 7-year-old children after excess maternal dietary intake of
vitamin A, while vitamin D intake close to recommendations
reduced the childhood asthma risk (216) (NCT03197233).

In summary, vitamin A and D deficiencies are common
in children affected by atopic diseases. However, data on
prenatal and childhood vitamin A and D supplementation
demonstrate the difficulty in correlating dietary/supplementary
vitamin intake with allergic diseases and the need for further
observational and intervention studies, especially for vitamin A,
in consideration of dosage, timing, and type of supplementation.
Nevertheless, vitamins A and D and their metabolites are
essential, key components for the development and homeostasis
of the immune system, and as important nutrients in the
human diet, they influence oxidative stress and inflammation,
two central factors in the clinical manifestation of allergic
diseases (208).

3. Dietary intervention for disease
prevention and amelioration of the
disease course

3.1. Whole food to ameliorate atopy

Regarding atopic diseases, it is clear that diet can prevent
the disease course. Consumption of fruits and vegetables is
known to improve asthma control and the risk of exacerbation
in adults (217) (ACTRN012606000286549). Although this could
not be reproduced by the same study group in children
(218) (ACTRN12615000851561), another study observed a
beneficial effect (219) (ACTRN12615000851561). A meta-
analysis confirmed that the consumption of vitamins A, D, and
E; zinc; fruits and vegetables; and a Mediterranean diet protected
against asthma (220).

Maternal intake of foods commonly considered allergenic
(peanut and milk) was associated with a decrease in allergy
and asthma in the offspring of a pre-birth US cohort
(221). Similarly, maternal fish and apple consumption were
found to be protective against the onset of asthma (222).
Furthermore, a large Danish National Birth Cohort associated
the ingestion of peanuts, tree nuts (223), and/or fish (224)
during pregnancy with a decreased risk of asthma. However,
epidemiological studies and randomized controlled trials
(RCTs) on maternal intake of fish oil (not fish) did not
reduce atopy in children aged 6 years (225), whereas long-
chain polyunsaturated fatty acids supplementation during
pregnancy showed no significant impact on atopy (226,
227) (ACTRN12605000569606, ACTRN12610000735055, and
ACTRN12615000498594) and only a small effect on the risk of
asthma (228) (NCT01353807). A systematic review by Venter
et al. associated the maternal consumption of vegetables and
yogurt with the prevention of any allergy (229). Furthermore,
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lower maternal egg intake was associated with higher serum
total IgE and peripheral eosinophilia in children with atopic
dermatitis (230).

Whereas maternal intake already has an impact on the
development of allergic diseases, studies consistently highlight
the impact of a healthy diet in children.

In the Spanish ISAAC phase III with over 20,000
schoolchildren, the consumption of cow’s milk, butter, and nuts
was found to reduce the risk of atopic dermatitis (231), and
also in the GABRIELA cohort, raw cow’s milk consumption
was found to protect against asthma and atopy, with the whey
protein levels being inversely associated with asthma (232). It
must be stressed that foods that are considered allergenic seem
to protect against the development of allergies. This dichotomy
is partly explained by the fact that major allergens can bind to
minerals such as iron (110, 233–235) and zinc (236), but also
vitamins such as vitamins A (227) and D (27, 237, 238). Indeed,
studies carried out in the last decade suggest that this feature is
an important aspect of atopy preventive effects. In this respect,
it has been demonstrated that proteins carrying micronutrients
provide those via the lymph to the immune system and promote
tolerance. In contrast, when the same proteins did not carry
these micronutrients, they turned into allergens (110, 114, 233–
235, 237, 239–242).

Moreover, in a small study of children with atopic asthma,
consumption of a whey-based oral supplement for a month
reduced IgE antibodies and improved lung function (243). It is
important to note that the beneficial impact of milk to prevent
atopic diseases correlates with the whey protein levels and is
lost in cooked milk (232, 244–246). In an RCT from Brazil,
it was found that milk beverages fortified with micronutrients
and prebiotics for 6 months decreased the risk of allergic
manifestations by 36% (NCT01431469) (247).

In another clinical trial, whey spiked with micronutrients
was packed in a lozenge to exploit specifically beta-lactoglobulin
as a carrier for iron, vitamin A, and zinc, in order to bring
these micronutrients via the lymph system to the immune cells.
Consumption of this holoBLG lozenge for 3 months led to
an amelioration of allergic symptoms in patients with allergic
rhinitis to house dust mites, reducing total nasal symptoms
by 60%, and they reported greater perceived wellbeing
measurable even up to 8 months after cessation of holoBLG
supplementation (248, 249) (NCT04477382, NCT04872868, and
NCT05455749). Similarly, also in a double-blind, placebo-
controlled pilot trial, 6-month supplementation with this holo-
BLG lozenge significantly ameliorated symptoms by about 40%
over placebo in grass and birch pollen allergic women (45)
(NCT03816800). In line with the beneficial impact of dietary
intake of heat-sensitive whey proteins, in a human pilot study,
it was found that drinking raw milk is tolerated better in allergic
children than highly processed shop milk (250) (Bo/06/2009).

Taken together, the consumption of food that is particularly
considered allergenic early in life such as milk, whey products,

fish, nuts, fruits, and vegetables, is beneficial to prevent and
ameliorate atopic diseases.

3.2. Iron to ameliorate atopy

Although iron deficiency is highly prevalent in atopic
diseases, and there are national strategies in place to combat iron
deficiency and anemia by dietary means, very few studies have
analyzed the impact of iron supplementation in atopic diseases
and the few available foci on the perinatal period. In the EDEN
cohort, based on a food questionnaire, a high maternal intake of
red meat (more than three to four times per week) in the year
preceding pregnancy was associated with a risk of wheezing,
whereas no association was found during pregnancy (251). In
the study by Fortes et al. (89), maternal supplementation of
iron and folic acid during pregnancy decreased the likelihood
of their offspring developing atopic dermatitis by 80%. In
a follow-up study of a population-based, multicenter, RCT,
maternal iron supplementation regardless of hemoglobin levels,
was also associated with a reduction in the risk of asthma
in the offspring by 42% and nearly 70% in the offspring of
asthmatic mothers (252). In a double-blind, placebo-controlled
pilot trial conducted in birch and grass pollen allergic in women,
in which the immune cells were supplemented with iron, a 40%
amelioration of symptoms was reported (45).

No intervention study with iron supplements or fortified
foods has analyzed the outcome of atopic diseases and asthma
in children so far.

As many studies are reporting a protective impact of fish as
well as vegetable and fruit intake, in preventing atopy, the right
form and quantity of iron intake may be an important aspect.
Fish is a rich source of iron, but also omega-3 fatty acids and
an adequate intake of vitamin C (ascorbic acid) from fruits and
vegetables facilitate iron uptake, which leads to consideration of
the protective impact of iron via these food sources. As many
children not only are iron-deficient but also lack vitamin A, their
iron status can also be ameliorated by incorporating vitamin
A into their diet. Indeed, it has been demonstrated that in
adolescent girls, co-supplementation of oral iron with vitamin
A improved the uptake and efficacy of iron supplementation in
the presence of low-grade inflammation (253) (NCT 01198574).

3.3. Zinc to ameliorate atopy

In line with the uncertainty of zinc in the onset of
atopy, no association of maternal zinc intake with atopy
has been established (131). However, as zinc deficiency is a
common finding in children affected by atopic diseases, zinc
supplementation for 8 weeks in zinc-deficient children with
moderate asthma and on inhaled steroids significantly improved
their clinical symptoms and lung function but not total IgE levels
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(254). Conflicting results have been obtained on children with
atopic dermatitis. While in children with atopic dermatitis, 8-
week oral supplementation with zinc improved eczema severity
and hair zinc levels compared to a non-supplemented control
group (255), but another placebo-controlled trial did not
observe any beneficial effect (256).

3.4. Vitamin A to ameliorate atopy

Only a few studies have been carried out on vitamin A
showing that dietary intake of beta-carotene is associated with
a reduced risk of allergic sensitization and lower IgE levels, in 5-
and 8-year-old children (257) and women (132) (NCT03408275,
NCT03407391, NCT03269253, and ACTRN12606000281594).
However, in one study, ß-carotene intake was associated with an
increased risk of hay fever in adults (258) (SRCTN72673620).
Another study showed that high-dose supplementation of
vitamin A in infants in Guinea-Bissau, an endemic vitamin
A deficient region in West Africa, did not increase the risk
of atopy (160) (NCT00168597 and NCT01779180). Neonatal
high-dose vitamin A supplementation did not increase the
overall risk of atopy; however, the female gender was at greater
risk of atopy and wheezing (23) (NCT01779180). It should be
pointed out that in this study, the infants were given 50,000
IU of highly bioavailable retinyl palmitate, and adverse effects
of hypervitaminosis A were reported, occurring with intakes as
low as 1,500 IU/kg in vulnerable groups such as children (259).
In this respect, one might wonder whether the given dose tended
to be too high for female infants who tend to be smaller in height
and weigh less than boys of the same age.

In another study conducted in an area with chronic vitamin
A deficiency, vitamin A supplementation was not associated
with an increased prevalence of asthma (260). Dietary intake of
vitamin A was evaluated in 7-year-old children in a population-
based birth cohort in the UK together with lung function and
asthma risk and revealed that high dietary preformed vitamin
A, but not ß-carotene intake, was associated with higher lung
function and lower incident asthma risk (261) (NCT03408275).

Interestingly, an earlier prospective birth cohort study found
that supplementation of children in the first year of life with
vitamins A and D in the water-soluble form increased the risk of
food allergy and asthma twofold at the age of 4 years, compared
to children receiving the same formulation in oil suspension
(262). In this respect, it must be noted that the difference in
vitamin adsorption in the intestine depends on the vitamin
formulation, as lipid-soluble vitamins A and D are incorporated
into chylomicrons together with other lipid metabolites and
enter the general circulation mainly via the lymphatic pathway
(263, 264), whereas vitamins A and D in water-soluble form do
not seem to take the lymphatic pathway.

In the Korean version of the International Study of
Asthma and Allergies in Childhood (ISAAC), a reduced atopic

dermatitis risk was associated with elevated serum retinol
levels (60).

In a meta-analysis, oral supplementation with vitamin D,
combined vitamins D and E, combined vitamins A, D, and E,
and topical vitamin B12 was associated with a significantly lower
severity score for atopic dermatitis (265).

Therefore, although there is evidence that food containing
vitamin A seems to prevent atopic diseases, the form of vitamin
A seems to be essential for bioavailability and very likely explains
the conflicting results obtained in the different studies.

3.5. Vitamin D to ameliorate atopy

Since vitamin D is predominantly produced via the skin,
analyzing dietary vitamin D intervention studies is quite
challenging as sun radiation should be taken into consideration.
Indeed, sun exposure has also been linked to protection
from and reduced asthma prevalence in schoolchildren (266).
Moreover, in a randomized, controlled trial, vitamin D
supplementation improved winter-related atopic dermatitis in
Mongolian children (267) (NCT00879424).

A systematic review of cohort, case–control, and cross-
sectional studies concluded that maternal dietary intake of
vitamins D and E is associated with a lower risk of wheezing
illnesses in children, with another concluding that prenatal
vitamin D supplementation may reduce the risk of asthma
in the offspring (268). However, higher rates of cow’s milk
allergy, but not respiratory allergies, were observed in a Finnish
intervention study in infants who were given 1,200 IU of vitamin
D daily compared to 400 IU for 1 year, which was associated
with higher blood vitamin D3 levels (NCT01723852) (269)
and highlights that only deficiencies should be treated as an
excess of these micronutrients may also cause inflammation and
thereby promote sensitization. As calcium is essential for the
conversion of vitamin D3 into calcitriol, the question arises as to
whether the diet of these children contained enough calcium for
conversion, particularly, as cow’s milk, which is rich in calcium,
was likely excluded from their diet.

Maternal vitamin D supplementation in standard vs.
high dose during pregnancy could not confirm nor rule
out a protective effect (270, 271) (NCT00856947 and
NCT00920621), whereas a combination of the two trials
reported a 25% reduction of the risk of asthma/recurrent
wheeze (272, 273). However, perinatal supplementation was
not sufficient to influence the 6-year incidence of asthma and
recurrent wheeze among children who were at risk of asthma
(215) (NCT00920621).

In a randomized placebo-controlled trial, high-dose vitamin
D supplementation in mothers significantly decreased the risk
of allergic rhinitis and allergic sensitization in the offspring
at 6 years of age (214) (NCT00920621), but not the risk of
developing asthma (215) (NCT00920621). Parr et al. reported
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an increased asthma risk of 7-year-old children after excess
maternal dietary intake of vitamin A, while vitamin D intake
close to the recommended dose reduced the childhood asthma
risk (216) (NCT03197233).

The results of vitamin D supplementation during childhood
up to 18 years differed in the latter studies: in both studies,
vitamin D supplement was given for 3 months in a similar
dosage, leading to reduced atopic dermatitis symptoms in
the pre-post interventional study by Imoto et al. (195)
(CRD42017068773), while no change in severity compared to
placebo was found in the randomized-controlled trial by Lara-
Corrales et al. (196).

To sum up, there are conflicting data on prenatal and
childhood vitamin D supplementation that demonstrate the
difficulty of correlating dietary/supplementary vitamin intake
with allergic diseases, and further studies are needed that
take dosage, timing, type of supplementation, as well as sun
exposure into consideration. Nevertheless, D vitamins and their
metabolites are key players in immune homeostasis and are
important nutrients in the human diet that could influence
oxidative stress and inflammation, two central factors in the
clinical manifestation of allergic diseases (208).

4. Discussion

Micronutrients are pivotal and, as such, many of these
deficiencies can be prevented through nutritional education, the
consumption of a healthy, varied diet, as well as by fortifying and
supplementing foods as needed.

In particular, a diet that is low in animal-source foods
typically results in low intakes of bioavailable iron and zinc,
calcium, retinol, vitamin B2 (riboflavin), vitamin B6, and
vitamin B12 (274). Poor quality diets often lack fresh fruits
and vegetables resulting in insufficient intakes of essential
micronutrients such as vitamin C (ascorbic acid), carotene
(provitamin A), and folate. Another important aspect is that
the milling of cereals also removes several nutrients, notably,
iron and zinc, various B vitamins (i.e., thiamine, riboflavin, and
niacin), and folate (275).

Moreover, the quality of breast milk differs greatly. The
breast milk of undernourished lactating women, who have an
underlying low-grade inflammation present and/or consume
a limited range of foods and are thus affected by multiple
micronutrient deficiencies, is most likely to have low levels of
vitamin A (retinol), iron, the B vitamins, iodine, and selenium
(18–21). An important issue is also that breast milk alone is no
longer sufficient to meet the nutritional requirements in terms
of energy and micronutrients (iron and zinc) after 6 months
of age. The European Food Safety Authority concluded in a
2019 systematic literature search that as long as foods have
an age-appropriate texture, no adverse effects on health are
associated with complementary feeding. The majority of infants

need complementary food from around 6 months of age, and
children at risk of iron depletion, in particular, may benefit
from an earlier introduction of complementary food (276). As
several studies suggest that milk from atopic mothers differs in
its composition and nutrient content, complementary feeding
and a diverse diet for the mother should be encouraged.

Micronutrients are essential not only for proper growth but
also for a healthy immune system. Indeed, studies consistently
reveal that children with atopic diseases are strongly affected by
micronutritional deficiencies which are due, on the one hand, to
an inadequate intake of these micronutrients and, on the other
hand, due to inflammation that further impairs specifically iron
and zinc uptake.

Clinicians and nutritionists should be more aware of the fact
that first, functional iron deficiency in people with underlying
inflammatory diseases will negatively affect the disease course,
and second, the normal absorption of these important trace
elements is inhibited or impeded so that alternative strategies
for meeting the demands are necessary. Some studies have
reported a relatively high prevalence of parasitemia in children
with allergic diseases. As there is some evidence that these may
aggravate the disease course (65, 277–279), patient management
should include deworming strategies when required.

Deficiencies in iron, vitamin A, and vitamin D facilitate
inflammation as they render the immune system hyperactive,

TABLE 1 Important aspects for clinical nutritional studies.

General

• Blood analysis after fasting
• Strong circadian rhythm known for iron, Vitamin A and D
• Micronutrient-levels decline under inflammatory conditions
• Parasitic infections should be excluded

Iron

• Assessment of iron parameters
• Measurements of inflammatory markers
• Improved bioavailability with Vitamin C and Vitamin A
• Improved bioavailability by addition of whey and Vitamin A under

inflammatory conditions

Zinc

• Assessment of zinc parameters
• Measurements of inflammatory markers
• Decreased under inflammatory conditions
• Improved bioavailability by co-supplementation with albumin proteins

and citrate

Vitamin A

• Assessment of Vitamin A
• Measurements of inflammatory marker
• Decreased under inflammatory conditions, affected by

zinc-deficiency
• Conversion rate of beta-carotenes is low without the addition of oil

Vitamin D

• Assessment of Vitamin D metabolites
• Sun exposure has to be factored in to assess the efficacy of nutritional

Vitamin D supplementation studies, which should be conducted
preferably during winter-time

• Measurements of inflammatory markers along Vitamin D
• Calcium-rich diet along Vitamin D supplementation
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which is prominently displayed in the case of anemia of
inflammation. In atopic diseases, the overdrive of the immune
system poses a particular problem, as there is usually no
infectious agent present. Yet the absorption of iron and zinc
and likely also of vitamins from the diet is hampered. We
highlight these very important aspects in Table 1, which should
be considered when conducting nutritional clinical studies.

The different cohorts as well as the form of food or
supplementation may explain the discrepancies observed in
some of the studies, particularly with vitamins. Therefore, the
consumption of whole food items rather than purified food
components should be encouraged as well as combining the
different food sources to adequately meet the micronutrient
requirements in children. Increasing dietary diversity, therefore,
ensures that both the quantity as well as the range of
micronutrient-rich foods are consumed (280) in a manner that
ensures uptake and improves allergy outcomes. Similarly, the
early introduction of “allergenic foods” such as dairy products,
fish, vegetables, and fruits should be encouraged as breastmilk
alone is not sufficient to meet the micronutritional demands of
growing infants after 6 months.

For children suffering from atopic diseases, strategies to
circumvent the mucosal block by combining different food
sources and including dietary food items with a protective
impact should be implemented.

In conclusion, adequate assessment and dietary
management are pivotal for children with underlying
chronic diseases and special attention should be given to
micronutritional deficiencies as drivers of inflammation.
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