Title (en)
Pan-tumor CAnine cuTaneous Cancer Histology (CATCH) dataset
Language
English
Description (en)
Due to morphological similarities, the differentiation of histologic sections of cutaneous tumors into individual subtypes can be challenging. Recently, deep learning-based approaches have proven their potential for supporting pathologists in this regard. However, many of these supervised algorithms require a large amount of annotated data for robust development. We present a publicly available dataset of 350 whole slide images of seven different canine cutaneous tumors complemented by 12,424 polygon annotations for 13 histologic classes, including seven cutaneous tumor subtypes. In inter-rater experiments, we show a high consistency of the provided labels, especially for tumor annotations. We further validate the dataset by training a deep neural network for the task of tissue segmentation and tumor subtype classification. We achieve a class-averaged Jaccard coefficient of 0.7047, and 0.9044 for tumor in particular. For classification, we achieve a slide-level accuracy of 0.9857. Since canine cutaneous tumors possess various histologic homologies to human tumors the added value of this dataset is not limited to veterinary pathology but extends to more general fields of application.
Keywords (en)
Algorithms; Animals; Dogs; Humans; Neural Networks, Computer; Skin Neoplasmspathologyveterinary
DOI
10.1038/s41597-022-01692-w
Author of the digital object
Frauke Wilm  (Friedrich-Alexander-Universität Erlangen-Nürnberg)
Marc Aubreville  (Technische Hochschule Ingolstadt)
Katharina Breininger  (Friedrich-Alexander-Universität Erlangen-Nürnberg)
Andreas Maier  (Friedrich-Alexander-Universität Erlangen-Nürnberg)
Robert Klopfleisch  (Freie Universität Berlin)
Christof A. Bertram  (University of Veterinary Medicine Vienna)
Laura Diehl  (Freie Universität Berlin)
Chloé Puget  (Freie Universität Berlin)
Jingna Qiu  (Friedrich-Alexander-Universität Erlangen-Nürnberg)
Marco Fragoso  (Freie Universität Berlin)
Christian Marzahl  (Friedrich-Alexander-Universität Erlangen-Nürnberg)
Format
application/pdf
Size
1.1 MB
Licence Selected
Type of publication
Article
Name of Publication (en)
Scientific Data
Pages or Volume
13
Volume
9
Number
1
Publisher
Nature Portfolio
Publication Date
2022