Title (en)
Differential Loss of OAS Genes Indicates Diversification of Antiviral Immunity in Mammals
Language
English
Description (en)
One of the main mechanisms of inducing an antiviral response depends on 2'-5'-oligoadenylate synthetases (OAS), which sense double-stranded RNA in the cytoplasm and activate RNase L. Mutations leading to the loss of functional OAS1 and OAS2 genes have been identified as important modifiers of the human immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we performed comparative genomics to search for inactivating mutations of OAS genes in other species of mammals and to establish a model for the diversifying evolution of the OAS gene family. We found that a recombination of the OAS and OAS-like (OASL) loci has led to the loss of OAS2 in camelids, which also lack OAS3. Both paralogs of OASL and OAS3 are absent in Asian pangolins. An evolutionarily ancient OAS paralog, which we tentatively name OAS4, has been lost in pangolins, bats and humans. A previously unknown OAS gene, tentatively named OAS5, is present in Yangochiroptera, a suborder of bats. These differences in the OAS gene repertoire may affect innate immune responses to coronaviruses and other RNA viruses.
Keywords (en)
oligoadenylate synthetase; innate immunity; evolution; zoonoses; SARS-CoV-2; camel; bat; gene loss; gene duplication; gene family
DOI
10.3390/vaccines11020419
Author of the digital object
Leopold Eckhart (Medical University of Vienna)
Wolfgang Sipos (University of Veterinary Medicine, Vienna)
Format
application/pdf
Size
3.4 MB
Licence Selected
Type of publication
Article
Name of Publication (en)
Vaccines
Pages or Volume
11
Volume
11
Number
2
Publisher
MDPI
Publication Date
2023
- Citable links
Persistent identifier
DOI
https://phaidra.vetmeduni.ac.at/o:1385
https://doi.org/10.3390/vaccines11020419 - Content
- DetailsObject typePDFDocumentFormatapplication/pdfCreated08.03.2023 12:14:42 UTC
- Usage statistics--
- This object is in collection
- Metadata
- Export formats