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Abstract: One of the main mechanisms of inducing an antiviral response depends on 2′-5′-oligoadeny-
late synthetases (OAS), which sense double-stranded RNA in the cytoplasm and activate RNase L.
Mutations leading to the loss of functional OAS1 and OAS2 genes have been identified as important
modifiers of the human immune response against severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). Here, we performed comparative genomics to search for inactivating mutations of
OAS genes in other species of mammals and to establish a model for the diversifying evolution of
the OAS gene family. We found that a recombination of the OAS and OAS-like (OASL) loci has led to
the loss of OAS2 in camelids, which also lack OAS3. Both paralogs of OASL and OAS3 are absent in
Asian pangolins. An evolutionarily ancient OAS paralog, which we tentatively name OAS4, has been
lost in pangolins, bats and humans. A previously unknown OAS gene, tentatively named OAS5, is
present in Yangochiroptera, a suborder of bats. These differences in the OAS gene repertoire may
affect innate immune responses to coronaviruses and other RNA viruses.

Keywords: oligoadenylate synthetase; innate immunity; evolution; zoonoses; SARS-CoV-2; camel;
bat; gene loss; gene duplication; gene family

1. Introduction

Mammalian cells have different mechanisms to sense viral infections and initiate an
innate immune response. One of the main approaches is the binding of specific sensor
proteins to nucleic acids with infection-associated features, such as cytoplasmic localization
of DNA, presence of double-stranded RNA or presence of Z-nucleic acid structures [1–3].
These sensors trigger signaling cascades that lead to reactions of the infected cell, the tissue
and the immune system aimed at stopping the replication and spread of viruses. 2′-5′

oligoadenylate synthetases (OASs) bind double-stranded (ds) RNA in the cytoplasm and
subsequently catalyze the oligomerization of ATP to 2′-5′-oligoadenylate. This oligomer
activates RNase L, which subsequently degrades viral RNA to suppress the replication of
the virus [1]. RNA degradation also generates small self-RNA, which amplifies antiviral
innate immunity by binding to other receptors [4]. Humans have three OAS proteins
comprising either one, two or three repeats of a nucleotidyl-transferase (NT) and an
OAS1 C-terminal (OAS1C) domain. Besides catalytically active OAS enzymes, an OAS-
like (OASL) protein contributes to the control of signaling in response to dsRNA in the
cytoplasm. OASL activates retinoic acid inducible gene I (RIG-I), a sensor of cytoplasmic
dsRNA [5,6], and suppresses cyclic GMP-AMP synthase (cGAS), a sensor of cytoplasmic
DNA, leading to reduced replication of RNA viruses and enhanced replication of DNA
viruses [7] (Figure 1).
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Figure 1. Domain organization and mechanism of antiviral activity of OAS family proteins. Proteins 
of the 2’-5’-oligoadenylate synthetase (OAS) family are depicted schematically. Domains are color-
coded as described at the bottom of the figure. OAS proteins are characterized by the presence of 
one or more nucleotidyl-transferase (cd05400: NT_2-5OAS_ClassI-CCAase) and OAS1 C-terminal 
(pfam10421: OAS1_C) [8] domains. The location of the catalytically active site is indicated by a star. 
OASL proteins contain a ubiquitin-like domain at the carboxy-terminus and lack catalytic activity. 
Upon binding to double-stranded RNA (dsRNA), OAS proteins catalyze the oligomerization of ATP 
to 2’-5’-oligoadenylate, which activates RNase L and thereby induces the degradation of dsRNA 
and single-stranded RNA (ssRNA) to suppress virus replication. OASL activates RIG-I, a sensor of 
cytoplasmic dsRNA, and suppresses cGAS, a sensor of cytoplasmic DNA. OAS4 (marked with an 
asterisk) is the tentative name of an OAS paralog that was identified by Wang and colleagues who 
described the corresponding gene as “OAS1 in the ERAP2 (endoplasmic reticulum amino peptidase 
2)-RIOK2 (RIO kinase 2) region (E-R region)” [9]. 

The OAS-RNase L pathway is involved in the defense against many viruses, some of 
which have evolved counteractive strategies [10–13]. Recent research has demonstrated 
that this pathway is also involved in the human immune response against severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) [14]. Specifically, mutations 
inactivating OAS1, OAS2 or RNase L impair the normal immune response and lead to 
SARS-CoV-2–related multisystem inflammatory syndrome in children [14]. OAS1 was 
reported to inhibit SARS-CoV-2 through its prenylated isoform [15]. Interestingly, the 
antiviral activity of OAS1 differs among primates due to mutations of its amino acid 
sequence, suggesting that a reduction in or loss of OAS1 catalytic activity may have had 
advantages in evolution [16]. Another report linked the decay of OAS1 mRNAs with the 
risk of COVID-19 hospitalization [17]. 

OAS genes are evolutionarily ancient [9,18]. Species from the major phylogenetic 
metazoan clades contain different sets of OAS genes, and even within tetrapods, 
significant variation has been reported [9,19]. For instance, OAS1 has undergone 
duplications in rodents and cattle [15,20]. In contrast to humans, some other placental 
mammals and marsupials have two copies of OASL [18], indicating that two OASL genes 
were also present in the genome of evolutionary ancestors of humans, and one of these 
copies was lost in the lineage leading to humans. Recently, a new OAS paralog, hereafter 
referred to as OAS4, was reported to be present in some amphibian, sauropsid and 
mammalian species [9]. Phylogenetic analysis suggested that this paralog emerged earlier 
in evolution than OAS1, OAS2 and OAS3 and that it was lost in rodents and primates [9]. 
Likewise, OAS3 has been lost in cetartiodactyls and in the tree shrew [20,21]. 

Comparative genomic studies have revealed a high diversity of innate immune genes 
in mammals with striking cases of gene degeneration in bats and pangolins [22–26]. Genes 
involved in the sensing of cytoplasmic DNA, such as CGAS and STING1, and cytoplasmic 
RNA, such as IFIH1/MDA5 and ZBP1, have been lost during the evolution of pangolins 
[23,24]. As bats are considered a likely source of SARS-CoV-2 and pangolins possibly were 

Figure 1. Domain organization and mechanism of antiviral activity of OAS family proteins. Proteins
of the 2′-5′-oligoadenylate synthetase (OAS) family are depicted schematically. Domains are color-
coded as described at the bottom of the figure. OAS proteins are characterized by the presence of
one or more nucleotidyl-transferase (cd05400: NT_2-5OAS_ClassI-CCAase) and OAS1 C-terminal
(pfam10421: OAS1_C) [8] domains. The location of the catalytically active site is indicated by a
star. OASL proteins contain a ubiquitin-like domain at the carboxy-terminus and lack catalytic
activity. Upon binding to double-stranded RNA (dsRNA), OAS proteins catalyze the oligomerization
of ATP to 2′-5′-oligoadenylate, which activates RNase L and thereby induces the degradation of
dsRNA and single-stranded RNA (ssRNA) to suppress virus replication. OASL activates RIG-I, a
sensor of cytoplasmic dsRNA, and suppresses cGAS, a sensor of cytoplasmic DNA *, OAS4 is the
tentative name of an OAS paralog that was identified by Wang and colleagues who described the
corresponding gene as “OAS1 in the ERAP2 (endoplasmic reticulum amino peptidase 2)-RIOK2 (RIO
kinase 2) region (E-R region)” [9].

The OAS-RNase L pathway is involved in the defense against many viruses, some of
which have evolved counteractive strategies [10–13]. Recent research has demonstrated
that this pathway is also involved in the human immune response against severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) [14]. Specifically, mutations inactivating
OAS1, OAS2 or RNase L impair the normal immune response and lead to SARS-CoV-2–
related multisystem inflammatory syndrome in children [14]. OAS1 was reported to inhibit
SARS-CoV-2 through its prenylated isoform [15]. Interestingly, the antiviral activity of
OAS1 differs among primates due to mutations of its amino acid sequence, suggesting
that a reduction in or loss of OAS1 catalytic activity may have had advantages in evolu-
tion [16]. Another report linked the decay of OAS1 mRNAs with the risk of COVID-19
hospitalization [17].

OAS genes are evolutionarily ancient [9,18]. Species from the major phylogenetic
metazoan clades contain different sets of OAS genes, and even within tetrapods, significant
variation has been reported [9,19]. For instance, OAS1 has undergone duplications in
rodents and cattle [15,20]. In contrast to humans, some other placental mammals and
marsupials have two copies of OASL [18], indicating that two OASL genes were also
present in the genome of evolutionary ancestors of humans, and one of these copies was
lost in the lineage leading to humans. Recently, a new OAS paralog, hereafter referred
to as OAS4, was reported to be present in some amphibian, sauropsid and mammalian
species [9]. Phylogenetic analysis suggested that this paralog emerged earlier in evolution
than OAS1, OAS2 and OAS3 and that it was lost in rodents and primates [9]. Likewise,
OAS3 has been lost in cetartiodactyls and in the tree shrew [20,21].

Comparative genomic studies have revealed a high diversity of innate immune genes
in mammals with striking cases of gene degeneration in bats and pangolins [22–26].
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Genes involved in the sensing of cytoplasmic DNA, such as CGAS and STING1, and
cytoplasmic RNA, such as IFIH1/MDA5 and ZBP1, have been lost during the evolution
of pangolins [23,24]. As bats are considered a likely source of SARS-CoV-2 and pangolins
possibly were intermediate hosts of this virus [27,28], we put forward the hypothesis
that alterations in antiviral innate immunity may contribute to the differential persis-
tence of viruses in populations of such species with the risk of virus spillover potentially
causing pandemics.

Here, we extended the concept of gene loss as a driver of inter-species variation in
innate immunity and screened a selected group of mammalian species for cases of gene
loss in the OAS gene family. The results of this study have implications for comparative
immunology, and the selection of animal models for studying host–virus interactions.

2. Materials and Methods

Comparative genomics was performed according to an approach reported previ-
ously [23,29]. Nucleotide and amino acid sequences were downloaded from GenBank.
Accession numbers are indicated in the text. Genes were identified in the genome sequences
of Homo sapiens, assembly: GRCh38.p14 (GCF_000001405.40); Camelus bactrianus, assembly:
Ca_bactrianus_MBC_1.0 (GCF_000767855.1); Camelus dromedarius, assembly: CamDro3
(GCF_000803125.2); Vicugna pacos, assembly: VicPac3.1 (GCF_000164845.3); Canis familiaris,
assembly: ROS_Cfam_1.0 (GCF_014441545.1); Manis javanica, assembly: YNU_ManJav_2.0
(GCF_014570535.1); Manis pentadactyla, assembly: YNU_ManPten_2.0 (GCF_014570555.1);
Rhinolophus sinicus, assembly: ASM188883v1 (GCF_001888835.1); Molossus molossus, assem-
bly: mMolMol1.p (GCF_014108415.1); Myotis myotis, assembly: mMyoMyo1.p (GCF_0141-
08235.1); and Artibeus jamaicensis, assembly: WHU_Ajam_v2 (GCF_014825515.1).

The Basic Local Alignment Search Tool (BLAST) [30] was used to determine sequence
similarities. Sequence alignments were made with Multalin (http://multalin.toulouse.
inra.fr/multalin/, accessed on 30 December 2022) and MUSCLE (https://www.ebi.ac.uk/
Tools/msa/muscle/, accessed on 30 December 2022). Protein domains were identified with
the NCBI Conserved Domain search tool [31]. Phylogenetic relationships and divergence
times of phylogenetic lineages were obtained from the Timetree website (www.timetree.org,
accessed on 30 December 2022) [32].

3. Results
3.1. Comparative Genomics Reveals Loss of OAS Genes during the Evolution of Humans
and Camelids

We performed comparative genomics to determine the presence or absence of OAS
genes in a selected subset of mammalian species. This study was focused on humans and
clades of mammals (camelids, pangolins and bats), which were suspected or confirmed
as reservoirs of coronaviruses with zoonotic potential [27,33–35]. An overview of the
distribution of OAS family genes in the various species is provided in Table 1. The GenBank
accession numbers of proteins encoded by these genes are listed in Table S1, and the
corresponding amino acid sequences are documented in Figure S1. Together with the
knowledge of phylogenetic relationships of mammals [32], the distribution of OAS paralogs
in the various species allowed us to infer which genes were lost or gained during the
evolutionary history of particular species or clades.

The gene loci of the OAS family share the same neighboring genes (synteny) in many
but not all species. Comparative analysis indicated that chromosomal positions 12q24.13,
12q24.31 and 5q15 in the human genome correspond to the evolutionarily ancestral loci of
OAS gene paralogs. The conservation of OAS4 in cetartiodactyls (Figure 2), African elephant
and mouse lemur (Figure S1), and the absence of an OAS4 gene at human chromosome
5q15 indicated that, in agreement with a recent report [9], OAS4 was lost in the human
lineage (Figure 2). Likewise, one of two ancestral OASL genes was lost during the evolution
of humans (Figure 2).

http://multalin.toulouse.inra.fr/multalin/
http://multalin.toulouse.inra.fr/multalin/
https://www.ebi.ac.uk/Tools/msa/muscle/
https://www.ebi.ac.uk/Tools/msa/muscle/
www.timetree.org
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Table 1. Conservation of OAS genes in mammalian species investigated in this study.

Species Binomial Name OAS1 OAS2 OAS3 OAS4 OAS5 OASL OASL2

Human Homo sapiens + + + – – + –
Bactrian camel Camelus bactrianus + – – + – + –
Arabian camel Camelus dromedarius + – – + – + –

Alpaca Vicugna pacos + – – + – + –
Dog Canis familiaris + + + + – + +

Malayan pangolin Manis javanica + * + – – – – –
Chinese pangolin Manis pentadactyla + + – – – – –

Chinese rufous
horseshoe bat Rhinolophus sinicus + + + – – + +

Pallas’s mastiff bat Molossus molossus + * + + – + + –
Greater mouse-eared bat Myotis myotis + + + – + + –

Jamaican fruit bat Artibeus jamaicensis + + * + – + + –

Notes: +, presence of gene; –, absence of gene; *, frame shift or premature stop codon.
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Figure 2. Evolution of OAS gene loci in camelids in comparison to humans based on comparative 
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genes that are not conserved among species have been omitted. The arrangement of genes in 
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Figure 2. Evolution of OAS gene loci in camelids in comparison to humans based on comparative
genomics. Gene loci are schematically depicted. Genes are represented by rightwards and leftwards
finger-post arrow symbols pointing in the direction of transcription. Note that, for simplification,
genes that are not conserved among species have been omitted. The arrangement of genes in ancestors
is inferred from shared patterns of gene arrangement (synteny) in extant species. Inheritance of genes
is indicated by upwards and downwards arrows. Red Xs indicate gene loss. The scientific names of
the species and accession numbers of proteins encoded by OAS family genes are provided in Table S1.
Chromosomal loci of the human OAS gene family are shown at the top of the figure.

Camelids, which are a subclade of cetartiodactyls, have lost OASL2 but retained OAS4
(Figure 2). In line with a previous report on artiodactyls [20], OAS3 is absent in camels
and alpaca (Figure 2). Camelids are unique within terrestrial cetartiodactyls because they
lack OAS2 (Figure 2). The unusual tandem arrangement of OAS1 and OASL in camels and
alpacas indicates that a recombination event occurred in a common ancestor of camelids,
and OAS2 was probably lost in the course of this chromosomal rearrangement.
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3.2. Pangolins have Lost Multiple OAS Genes

Next, we investigated pangolins, which are carriers of SARS-CoV-2-like viruses [28]
and have a degenerated set of innate immune genes [23–25]. Pangolins constitute the clade
Pholidota, which is most closely related to Carnivora (dog-like and cat-like mammals).
Therefore, we compared the genomes of the Malayan pangolin (Manis javanica), Chinese
pangolin (Manis pentadactyla) and the dog. In contrast to the dog, which has the full set of
ancestral OAS genes, the Asian pangolins lack OAS3, OAS4, and both OASL1 and OASL2
(Figures 3 and S2). At present, gene annotations are not available for African pangolins.
Due to the loss of four ancestral genes, the OAS gene family is massively degenerated in
Malayan and Chinese pangolins (Figure 3).
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3.3. The Evolution of Bats Was Associated with the Diversification of OAS Paralogs

Bats, comprising the phylogenetic clade Chiroptera, have special adaptations of the
immune system that allow them to act as reservoirs of many viruses [36–39], most likely
including the virus from which SARS-CoV-2 evolved [27]. We performed an exploratory
analysis of OAS genes in a subset of bats and found that OAS2, OAS3 and at least one
OASL gene are conserved in bats (Figure 4). OAS1 is also present in all species investigated;
however, the OAS1 ortholog of Molossus molossus contains inactivating mutations. OAS3 of
the same species is predicted to contain an extended number of domains (Figure S3). The
sequence modifications and their impact on the gene function remain to be investigated
because sequence confirmations and analyses of gene transcripts were not within the scope
of the present study. OAS4 was absent in all bats investigated, suggesting that this gene
has been lost (Figure 4). Unexpectedly, we identified an as-yet-uncharacterized paralog,
tentatively named OAS5, by sequence similarity searches in the genomes of species of the
suborder Yangochiroptera [40]. OAS5 is located between the TBCK and NPNT genes, a
locus that does not contain an OAS paralog in any species investigated except those of the
clade Yangochiroptera. OAS5 genes encode proteins with high sequence similarity to OAS1
(Figure 5). In contrast to all other known OAS paralogs, OAS5 does not have introns, so the
open reading frame is entirely contained in a single exon, suggesting that OAS5 has arisen
by reverse transcription of an OAS1 mRNA followed by insertion of the complementary
DNA into the genome of a germ cell in an ancestor of Yangochiroptera (Figure 4).
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Figure 4. Evolution of OAS gene loci in bats. Gene loci of the OAS family are schematically depicted
with symbols described in the legend of Figure 2. For simplification, genes that are not conserved
among species have been omitted. The arrangement of genes in ancestors is inferred from shared
patterns of gene arrangement (synteny) in extant species. The open reading frame OAS1 of Molossus
molossus is disrupted by point mutations. OAS3 of Molossus molossus (green symbol with a white
asterisk) contains more exons than its orthologs in other species and is predicted to encode a protein
with 6 repeats of the NT and OAS1C domains (Figure S3). The gene tentatively named OAS5 consists
of only one exon, suggesting that it originated by retroposition [41]. GenBank accession numbers
of OAS5 genes: LOC118635736 (Molossus molossus), LOC118673356 (Myotis myotis), LOC119056133
(Artibeus jamaicensis). Species: Chinese rufous horseshoe bat (Rhinolophus sinicus), Pallas’s mastiff bat
(Molossus molossus), greater mouse-eared bat (Myotis myotis), Jamaican fruit bat (Artibeus jamaicensis).
Accession numbers of proteins encoded by OAS family genes are provided in Table S1.

Taken together, these data show that the OAS gene family underwent lineage-specific
changes leading to significant differences in the repertoire of OAS paralogs in major clades
of extant mammals (Figure 6).
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4. Discussion

The OAS–RNase L pathway is one of the central mechanisms of antiviral defense. A
large body of literature exists on the roles of OAS genes in human cells and cells of model
organisms [2,42–44]. It was noted early on that the OAS gene complement differs between
humans and rodents as the latter have an amplification of OAS1 genes [45]. Studies of
other species, including many domestic and wild mammals, revealed further inter-species
differences [18,20,21,46]. The present study extends the comparative analysis of the OAS
family to a set of species implicated in the spread of coronaviruses and reveals previously
unknown taxon-specific compositions of the OAS gene family.

Our results show that the OAS gene family is larger than the set of OAS1, OAS2, OAS3
and OASL genes in humans. Two copies of OASL genes have previously been identified
in other species, and an as-yet-uncharacterized OAS paralog, which we name OAS4, was
reported previously [9]. The present study identified another paralog, tentatively named
OAS5, in a subgroup of bats. It will be important to investigate OAS4 and OAS5 proteins
with regard to RNA-binding properties, catalytic activities and functions in antiviral defense
and other processes.

Importantly, peculiar features of the OAS gene sets were found in camelids, pangolins
and bats, which have been implicated in the origin of viral zoonoses [27,33,34]. These
findings provide a basis for studying the impact of particular OAS gene combinations on
the induction of anti-viral defense in follow-up studies. For a comprehensive evaluation of
the significance of OAS genes in zoonoses, reports on other hosts of coronaviruses [27,47,48]
and zoonoses involving other viruses should also be considered [35,49–52].

Vaccines play key roles in the fight against viral pathogens in human and veterinary
medicine. Therefore, it is of special clinical interest to transfer basic immunological knowl-
edge into the development of highly effective vaccines. OAS proteins are involved in early
immune responses against RNA viruses and perhaps also against modified-live RNA virus
vaccines [10,53]. Yellow fever vaccination induced upregulation of OAS1 among other
innate antiviral molecules and also a strong acquired serological and cellular immune
response [54]. A drawback in the development of vaccines directed against RNA viruses
is their generally high rate of sequence mutations, as exemplified by one of the economi-
cally most important RNA viruses in veterinary medicine, the porcine reproductive and
respiratory syndrome virus (PRRSV) [55,56]. Despite its high mutation rate, it is possible to
design effective vaccines [57]. The PRRSV is an ssRNA virus, but dsRNA intermediates are
formed during intracellular replication. Thus, veterinary species such as pigs could serve
as models for investigating the role of OAS gene family members and other components of
innate immunity in modulating the efficacy of vaccines.

This study has limitations that need to be considered in the interpretation of the data.
First, most genes were predicted by automated computational analysis, which is used by
GenBank to annotate genes of non-model species [58]. Although these predictions are
useful for compiling orthologous genes, structural details of the predicted genes need to be
corrected in some cases [59,60]. Second, the structure of the predicted mRNAs and proteins
has not been experimentally confirmed yet. However, the mapping of RNA-seq reads onto
the GenBank genome sequences confirms that the predicted exons are indeed present in
mature mRNAs of many species investigated (Figure S3A). Finally, the proteins encoded by
the predicted OAS family genes remain to be characterized with regard to their biochemical
features and their roles in intracellular signaling in response to viral infections.

The differences in the conservation of established OAS family members, OAS1, OAS2,
OAS3, OASL and OASL2, and possibly also the presence or absence of OAS4 and OAS5,
may contribute to differences in responses to viral dsRNA in mammalian species. Studies
are warranted to determine the impact of specific OAS gene sets on the control of viruses
in phylogenetically diverse mammals [39,49,61,62].
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