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Abstract: Ionic liquids (ILs) have gained considerable attention due to their versatile and designable
properties. ILs show great potential as antibacterial agents, but understanding the mechanism of
attack on bacterial cells is essential to ensure the optimal design of IL-based biocides. The final aim is
to achieve maximum efficacy while minimising toxicity and preventing resistance development in
target organisms. In this study, we examined a dose–response analysis of ILs’ antimicrobial activity
against two pathogenic bacteria with different Gram types in terms of molecular responses on a
cellular level using Fourier-transform infrared (FTIR) spectroscopy. In total, 18 ILs with different
antimicrobial active motifs were evaluated on the Gram-negative enteropathogenic Escherichia coli
(EPEC) and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA). The results showed
that most ILs impact bacterial proteins with increasing concentration but have a minimal effect
on cellular membranes. Dose–response spectral analysis revealed a distinct ante-mortem response
against certain ILs for MRSA but not for EPEC. We found that at sub-lethal concentrations, MRSA
actively changed their membrane composition to counteract the damaging effect induced by the ILs.
This suggests a new adaptive mechanism of Gram-positive bacteria against ILs and demonstrates the
need for a better understanding before using such substances as novel antimicrobials.

Keywords: ionic liquids; antimicrobials; Escherichia coli; Staphylococcus aureus; FTIR

1. Introduction

Since their first introduction as novel “green” solvents and enhanced reaction media,
ionic liquids (ILs) have found their way into many different applications covering the
entire spectrum of the natural sciences. The increasing number of IL applications and
their industrialisation, particularly in organic synthesis, catalysis, extraction processes,
electrochemistry and active pharmaceutical ingredients [1–7], has prompted investigation
of their hazard potential in different biological test systems. Their environmental fate has
been studied in terms of persistence in air, water and soil, as well as (bio)degradation and
bioaccumulation in aquatic or terrestrial organisms. Further, their (eco)toxicity has been
investigated, which for ILs depends on their specific structure, such as the head group or
the side chain of the cation or the anion [8–14]. While significant biological activity might
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be unfavourable in cases where ILs are utilised as solvents or catalysts, their toxicity can
be considered valuable for pharmaceutical and medical uses. In specific contexts, the an-
timicrobial attributes of ILs can be harnessed, and their efficacy against antibiotic-resistant
pathogens has already been demonstrated [2,5,15–19]. The combinatorial modification
of the cation–anion composition and additional modification of the chemical structure of
each ion allow adjustments to the expected toxicity of ILs towards a particular pathogen.
This specific feature of ILs could offer a significant benefit given the observed bacterial
resistance to antibiotics [11,18,20,21].

Currently, most IL toxicity studies are based on determining toxicity values, such
as minimal inhibitory concentrations (MICs) or half effective concentrations (EC50) for
structurally similar ILs, with the final goal of developing a “quantitative structure–activity
relationship” (QSAR) model [9–11,22–25]. Studies were performed at almost all trophic
levels, and bacteria are still mainly used because of their extensive environmental, ecological
and industrial relevance, short generation times and rapid growth [1,26]. Initially, it has
been proposed that the primary mode of action of ILs, particularly those with elongated
alkyl side chains, involves disrupting cell membrane function or even compromising cell
integrity. However, it has been demonstrated that ILs can also engage with essential
cellular elements such as proteins and DNA, inducing oxidative stress and disrupting
metabolic functions [18]. Recent applications of ILs as “active” antimicrobials, disinfectants
or pharmaceutical ingredients have also intensified the need for reliable “structure–activity
relationships” (SARs) such as the well-known cationic alkyl side-chain effect, the number
of alkyl side chains, and fluorinated anions or chaotropic anions [12–14,26–28].

One way to study how antimicrobials work is to perform molecular response analysis
using Fourier-transform infrared (FTIR) spectroscopy. The approach entails identifying
bacterial molecular patterns that mirror the general makeup of essential cellular biochemical
components, observed as overlapping absorption bands. This method necessitates brief
acquisition times and is cost-effective to operate, making it well suited as a high-throughput
molecular fingerprinting technique [29–31]. Due to its substantial discriminatory capability,
this approach has been effectively employed for identifying and differentiating species. It is
a valuable tool for tracking phenotypic changes arising from environmental and biological
disturbances [32–34]. Using FTIR molecular response spectroscopy, it has become possible
to identify different modes of action [35–38] as well as ante-mortem responses of bacteria
against antimicrobials, highlighting the adaptive diversity of bacterial stress responses [39].
Moreover, we found experimental evidence contrary to the previously predominant belief
that the alkyl side-chain effect could be solely explained by an increasing disturbance
of cell membrane function (and thus increasing toxicity) with increasing IL side-chain
length [40,41].

In this study, a total of 18 different ILs covering three different antimicrobial active
motifs were tested based on a previous study. The motifs of interest included ILs with
a singular elongated alkyl side chain, the presence of multiple elongated side chains
and fluorinated anions, as these had shown promising results in overcoming bacterial
biocidal resistance [1,16,18,42]. In the case of ILs with elongated or multiple side chains,
membrane disruption is the suggested mode of action, while fluorinated ILs are reported
to also interact with and destabilise the cell wall [18]. For 18 different ILs, dose–response
experiments and FTIR-based molecular response analysis for two human pathogens of high
relevance, namely the Gram-negative enteropathogenic E. coli (EPEC) and Gram-positive
methicillin-resistant Staphylococcus aureus (MRSA), were performed.

2. Results and Discussion
2.1. Determination of Ionic Liquid Minimal Bactericidal Concentrations

The present study evaluated the antimicrobial activity of 18 different ILs on two
bacterial pathogens. The MBC (99.9% CFU reduction within one hour of exposure) values
for each IL and bacterial strain are listed in Table 1. The individual mortality for each
concentration of each IL can be found in Supplemental Tables S1–S6.
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Table 1. Minimal bactericidal concentration and molecular response indices of 18 ILs for EPEC and
MRSA.

Staphylococcus aureus (MRSA) Escherichia coli (EPEC)

MBC [mg/mL] d-Values for
2935–2915 cm−1

d-Values for
1690–1620 cm−1 MBC [mg/mL] d-Values for

2935–2915 cm−1
d-Values for

1690–1620 cm−1

[C2mim][Cl] >1000 0.21 0.32 >1000 0.05 0.11
[C4mim][Cl] >1000 1.26 2.93 >1000 0.08 2.14
[C6mim][Cl] 125 1.30 3.54 250 0.11 4.97
[C8mim][Cl] 5 1.00 2.24 50 0.15 2.94
[C10mim][Cl] 0.5 0.82 1.16 5 0.11 2.51

[TMA][Cl] >1000 2.25 0.15 1000 1.83 3.32
[TMC4A][Cl] >1000 4.35 0.39 750 0.06 3.87
[TMC8A][Cl] 25 1.08 1.74 50 0.09 1.55
[TMC10A][Cl] 5 0.40 2.57 5 0.29 1.65
[TMC12A][Cl] 5 0.55 2.68 5 0.06 1.25
[TMC16A][Cl] 5 0.94 0.92 1 0.44 0.73
[TC8MA][Cl] 0.1 0.98 1.27 0.1 1.17 1.76

[DC8DMA][Cl] 1 0.97 1.23 1.25 0.39 0.65
[C4mim][BF4] 125 1.76 2.54 125 0.08 2.32
[C4mim][HFB] 250 0.65 4.11 250 0.05 2.92
[C4mim][PF6] 750 0.74 2.98 500 0.14 1.15
[C4mim][TFA] 1000 0.92 3.95 500 0.13 2.32

[C2mim][Triflat] 750 0.69 7.58 750 0.19 9.02

For cations with long alkyl side chains, the antimicrobial activity (MBC) increased with
increasing side chain length, known as the cationic alkyl side chain effect [14]. Also, cations
with two [DC8DMA][Cl] or three [TC8MA][Cl] side chains showed high antimicrobial
activity against both bacterial species, which is in accordance with previously published
results [8,16]. In the case of ILs with a relatively non-toxic cation but antimicrobial active
anion, a set of fluorinated anions was chosen due to previous reports of antimicrobial
activity [8,27]. All those ILs showed antimicrobial activity within the experimental setup
of a one-hour exposure, with [BF4]− the being most effective with an MBC of 125 mM for
both bacterial species, EPEC and MRSA.

Overall, the results of the antimicrobial activity testing are in good accordance with
published trends. For 14 of the 18 evaluated ILs, dose–response spectra reaching the MBC
could be collected and further analysed, while for four ILs, the MBC was not reached at the
highest tested concentration.

2.2. Molecular Response Analysis for EPEC

Molecular response values for all 18 tested ionic liquids for the protein and lipid
spectral region at the lowest concentration, killing 99.9% of E. coli cells, are listed in Table 2.
Despite the structural differences and the significant antimicrobial activity (ranging from
0.1 mM to >1000 mM) for each of the 18 ILs, a significantly higher molecular response was
found in the protein region compared to the lipid region. While broad spectral regions were
chosen for response analysis in previous studies performed by Corte et al. as well as our
group [39,41], in this study, the most distinct concentration-dependent changes could be
narrowed down to two spectral windows, namely 2935–2915 cm−1 for the lipid region and
1690–1620 cm−1 for the protein region (Tables 1 and 2). All molecular response values for
each IL, bacteria and additional spectral regions are listed in Supplemental Tables S1–S6.

In the case of ILs with one elongated side chain ([Cnmim]Cl and [TMCnA]Cl with
n: 1–16), there is a clear correlation between the toxicity of the respective IL and the
molecular response value in the protein region, while only a minimal molecular response
can be observed in the lipid spectral region. Contrary to previous hypotheses, no correlation
between cell mortality and changes in cellular membranes for ILs with alkyl side chains
shorter than 16 was found, indicating that disruption of cell membranes is not the mode of
action of these ILs. Even for [TMC16A][Cl] at the MBC, the dominant molecular responses
are in the protein spectral region, while only at concentrations above the MBC is this trend
switched, with a strong correlation between increasing toxicity and increasing molecular
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response value in the lipid region and only a weak response in the protein region. These
findings are confirmed by the analysis of the present results, exemplarily shown in Figure 1
for EPEC and listed in detail in Tables S4–S6.

Table 2. Assignment of bands of FTIR spectra mentioned in this publication.

Frequency (cm−1) Assignment References

3000–2800
Fatty acid region; dominated by stretching vibrations of
functional groups usually present in the fatty acid
components of the bacterial membrane

[43]

~2923 C-H str (asym) of CH2 functional groups in fatty acids [30,44]

~2852 C-H str (sym) of CH2 functional groups in fatty acids [30,44]

1800–1500 Amide region; dominated by the amide bands of
proteins and peptides [43]

~1638 Amide I of β-pleated sheet [30]

~1630–1620 Changes in β-pleated sheet conformation caused by
misfolding and/or protein aggregation [45,46]

sym, symmetrical; asym, asymmetrical.
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Figure 1. Molecular response indices of EPEC cells subjected to the action of [C6mim][Cl] (A),
[C10mim][Cl] (B), [TMC10A][Cl] (C) and [TMC16A][Cl] (D). a.u. stands for “arbitrary units”; the grey
line represents the spectral region of 1690–1620 cm−1 (Amide I), and the black line 2935–2915 cm−1

(fatty acids); the dashed red line represents mortality.

In this study, we also systematically analysed ILs with either two or three elongated
side chains as well as ILs with fluorinated anions having antimicrobial activity. Due to the
overall similarity of results, exemplary results are depicted in Figure 2, while the detailed
results are listed in Supplemental Tables S4–S6. Similar to the results obtained for ILs with
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one elongated alkyl side chain, most molecular responses were observed in the protein
region, while the lipid region showed either a significantly smaller effect or no effect at all.
These results indicate that such ILs primarily act on the protein region of the bacterial cell
and not on the lipid region of the membrane. Overall, we could show that in the case of
EPEC, only very few ILs showed any influence on the lipid spectral region, even at higher
concentrations. Only in the case of [TC8MA][Cl] and [C4mim][HFB] could a significant
molecular response be detected in the lipid region. However, it was still lower compared
to the protein region and occurred only at concentrations above the respective MBC. It
is thus unclear if this response could be considered a mode of action of the respective
IL’s antimicrobial activity. To the best of our knowledge, only one other study so far has
investigated the mechanism of action of ILs against E. coli. In this study, Ibsen et al. found
a disruption of the lipid bilayer of choline-based ILs using flow cytometry [47]. However,
the investigated substances were fundamentally different from the ILs included in this
study, and thus, it is unclear if this contradicts or confirms the findings of this study. These
results highlight again the need for further studies to improve the experimental knowledge
regarding the mode of action of ILs. This information is crucial for assisting and improving
current toxicity calculation approaches (QSAR), enhancing the development of ILs with
active pharmaceutical ingredient motifs (API-IL) or utilising ILs as powerful antimicrobials.
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Figure 2. Molecular response indices of EPEC cells subjected to the action of [DC8DMA][Cl] (A),
[TC8MA][Cl] (B), [C4mim][BF4] (C) and [C4mim][HFB] (D). a.u. stands for “arbitrary units”; the grey
line represents the spectral region of 1690–1620 cm−1 (Amide I), and the black line 2935–2915 cm−1

(fatty acids); the dashed red line represents mortality.

2.3. Molecular Response Analysis for MRSA

Table 1 shows the molecular response values for all tested 18 ILs for the protein and
lipid spectral region at the lowest concentration killing 99.9% S. aureus cells. Contrary to the
results obtained for EPEC, molecular responses were found in both the protein and the lipid
spectral regions for MRSA. These results indicate that the tested ionic liquids would act on
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cytoplasmic and cell-envelope-associated proteins and the lipids of the cellular membrane
of S. aureus. However, a more detailed look at the dose–response spectra reveals a more
complicated picture.

In the case of [Cnmim][Cl]-based ILs as well as [C4mim][HFB] and [C4mim][TFA],
the results are very similar to the ones for E. coli. For each of the five ILs, the molecular
response at or above the MBC is dominated by changes to the protein region that correlate
well with the observed toxicity, while the lipid spectral region is less affected (Figure 3;
Tables S1–S3).
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the case of several ILs, we could detect a significant ante-mortem response at sub-lethal 
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sponse in the spectral region containing fatty acids for MRSA exposed to sub-lethal con-
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and [C2mim][Triflat]. The response is not only more pronounced but also higher than the 
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Figure 3. Molecular response indices of MRSA cells subjected to the action of [C6mim]][Cl] (A),
[C10mim]][Cl] (B), [C4mim][TFA] (C) and [C4mim][HFB] (D). a.u. stands for “arbitrary units”;
the grey line represents the spectral region of 1690–1620 cm−1 (Amide I), and the black line
2935–2915 cm−1 (fatty acids); the dashed red line represents mortality.

In case of the [TMCnA][Cl]-based ILs as well as [C4mim][BF4], [C4mim][PF6] and
[C2mim][Triflat], we also observe a clear correlation between toxicity and the molecular
responses in the protein spectral region (see Supplementary Material Tables S2–S4), which
also indicates a similar mode of action to that previously described [40,41]. However,
in the case of several ILs, we could detect a significant ante-mortem response at sub-
lethal concentrations of ILs. To our big surprise, our data revealed a significant molecular
response in the spectral region containing fatty acids for MRSA exposed to sub-lethal
concentrations of most of the ammonium-based ILs as well as [C4mim][BF4], [C4mim][PF6]
and [C2mim][Triflat]. The response is not only more pronounced but also higher than the
molecular response to even higher IL concentrations (Figure 4).
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Spectral analysis revealed that the strong ante-mortem response is connected to a
decreasing frequency in the asymmetric νas(CH2) (near 2923 cm−1) and symmetric νs(CH2)
(near 2852 cm−1) stretching mode of CH2 functional groups in fatty acids. The effects on
both stretching modes were identical, although the decrease in frequency was more pro-
nounced for all four ILs in the asymmetric νas(CH2) stretching mode (Figures 5 and 6 and
Table S7). Changes in the frequency of the conformation-sensitive νs(CH2) and νas(CH2)
bands have been utilised to monitor the fluidity of biological membranes [48]. Studies
using bacteria demonstrated that an elevation in the peak frequency of the νs(CH2) and
νas(CH2) bands serves as an indicator of the fluidity of the membrane. Conversely, a
decrease in the peak frequency suggests a decrease in membrane fluidity [49,50]. Thus,
we assume that the reduction in peak frequency before bacterial death is related to a shift
from disordered (“fluid”) to ordered (“rigid”) acyl chain conformations in phospholipid
bilayers. However, the overall membrane disruption due to increasing IL concentrations
leads to the opposite change in the lipid bilayer, showing an increase in membrane fluidity
due to cell death. In S. Typhimurium and S. enteritidis, a drop in peak frequency and an
associated decrease in membrane fluidity due to increased growth temperature and acidifi-
cation were also detected [35,49]. This initial response to sub-lethal concentrations seems
reasonable, as it would shield the bacteria from harmful environmental influences with a
“protective coating”.
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It is known that Gram-positive bacteria, such as MRSA, modify their membrane com-
position to cope with challenging environmental conditions, such as quaternary ammonium
compounds [39], which are structurally similar to some of the antimicrobial active ILs.
Thus, it is tempting to speculate that MRSA modify their cell membrane structure to defend
against the stress exerted by the ILs.

The presented results also confirm previous differences between Gram-positive and
Gram-negative bacteria, which have been previously reported solely based on toxicity
data [8,51]. As such changes at sub-lethal concentrations are not observed for EPEC, it is
likely that they can activate different stress response mechanisms such as LPS modifications,
efflux pumps or SOS responses. In contrast, NRSA can quickly change their membrane
to improve its permeability and increase their tolerance against ILs [52]. However, the
following limitations should be considered for the interpretation of the study and addressed
in future research. The investigations of membrane fluidity using FTIR spectroscopy are
well documented; however, since many factors can influence membrane substructures,
further investigations are necessary to identify the mechanisms of bacterial adaptations
to ILs. This could include the analysis of knock-out mutants of known bacterial efflux
pumps and SOS regulators, as well as using other methods for investigating membrane
fluidity and permeabilisation (e.g., microscopic visualisation of fluorescent membrane
dyes) [53]. Moreover, the study results refer to only one species/strain per Gram type, and
although they are frequently studied pathogens, they are linked to species- or subtype-
specific adaptations to ILs. Thus, the hypothesis that Gram-positive bacteria rapidly adapt
their membrane to resist ILs must be investigated further to see if this generally applies
to all Gram-positive bacteria by testing additional relevant species. It would also be very
interesting to examine the speed of the observed adaptations as well as if bacteria would
demonstrate a co-tolerance against other antimicrobials. Currently, it is also unclear why
the effect was not observed for all ILs, and a more diverse set should be investigated to
examine this point. Remarkably, such changes could be actually observed directly by FTIR
spectroscopy, which once again demonstrates the advantage of this method in following
the overall biochemical composition on a cellular level. Finally, a better understanding of
the mode of action of ILs could benefit public health in combating various pathogens by
providing alternative strategies against bacterial resistance. ILs could potentially target
resistant pathogens in medical and industrial environments, e.g., by being used in surface
coatings to develop anti-biofilm materials that combat bacterial growth on medical devices
or in food production. In addition, ILs can act as counterions for pharmaceuticals as
API-ILs introducing a secondary mode of action to create synergistic and complementary
effects against bacteria. Therefore, it is crucial to understand cellular changes induced
by specific IL motifs such as changed membrane composition or fluidity as they could
alter the effectivity of antibiotics. Future research should also expand to investigating the
environmental fate and biodegradability of any potential antimicrobial IL used as a biocide
or as a part of API-ILs.

3. Materials and Methods
3.1. Ionic Liquids

A total of 18 different ILs covering three different antimicrobial active motifs were
tested (Figure 7). The ILs containing one elongated cationic alkyl side chain were
based on either 1-alkyl-3-methylimidazolium chloride ([Cnmim][Cl] (n = 2, 4, 6, 8
and 10)) or trimethylalkylammonium chloride ([TMCnA][Cl] (n = 1, 4, 8, 10, 12 and
16)). In addition, two ILs with multiple elongated alkyl side chains were investigated,
namely dioctyldimethylammonium chloride ([DC8DMA][Cl]) and trioctylmethylam-
monium chloride ([TC8MA][Cl]). As representatives of antimicrobial active ILs with
fluorinated anions, a set of five ILs with non-toxic cations were included; 1-butyl-3-
methylimidazolium tetrafluoroborate ([C4mim][BF4]), 1-butyl-3-methylimidazolium
heptafluorobutonate ([C4mim][HFB]), 1-butyl-3-methylimidazolium hexafluorophos-
phate ([C4mim][PF6]), 1-butyl-3-methylimidazolium trifluoroacetate ([C4mim][TFA]) and
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1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([C2mim][Triflat]). Fourteen of
the eighteen ILs were provided by Proionic GmbH (Grambach, Austria) with a nominal
purity higher than 95%, while [TMCnA][Cl] (n = 8, 10, 12 and 16) were synthesised using
the CBILS® route [54,55]. The precursor ILs used for synthesis ([TMCnA][MC] with n = 8,
10, 12 and 16) were provided by Proionic GmbH (Grambach, Austria). Hydrochloric acid
was obtained from Merck KGaA (Darmstadt, Germany).
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3.2. Bacterial Strains and Growth Conditions

The eae-positive enteropathogenic E. coli O8:H14 strain (EPEC) obtained from AGES
(Vienna, Austria) and community-associated methicillin-resistant S. aureus (CA-MRSA)
strain NRS384 (also known as USA300-0114) obtained from the Network on Antimicrobial
Resistance in Staphylococcus aureus (NARSA) collection were maintained at −80 ◦C using
MicroBankTM technology (Pro-Lab Diagnostics, Richmont Hill, ON, Canada). All bacterial
strains were grown overnight in tryptone soya broth with 0.6% (w/v) yeast extract (TSB-Y;
Oxoid, Basingstoke, Hampshire, UK) at 37 ◦C.

3.3. FTIR Spectroscopy Procedure

For FTIR measurements, bacterial cells were centrifuged (5 min at 8000× g), washed
two times with PBS buffer and resuspended in 1 mL of the respective test solution with a
final optical density of OD610 = 5. Non-treatment control cells were resuspended directly in
PBS. All tests were performed in triplicate in three independent experiments on different
days, including non-treatment controls. The resuspended cells were incubated for one hour
at 30 ◦C in a shaking incubator set at 250 rpm. Afterward, each sample was centrifuged
(5 min at 8000× g), washed twice with 1 mL PBS to remove the remaining ionic liquid and
resuspended in 100 µL PBS to obtain a final OD610 = 50 [39,40]. From the same sample, three
independent FTIR measurements with 30 µL each and biocidal activity determination were
performed. FTIR spectroscopy was conducted utilising a TENSOR 27 FTIR spectrometer
equipped with an HTS-XT accessory for rapid automation of the analysis (BRUKER Optics
GmbH, Ettlingen, Germany), and measurements were performed in transmission mode.
All spectra were recorded in the range between 4000 and 500 cm−1 using the following
parameters: 6 cm−1 spectral resolution, zero-filling factor 4, Blackmann–Harris 3-term
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apodisation and 32 interferograms averaged with background subtraction (blank control)
for each spectrum [33].

3.4. Spectral Pre-Processing and Molecular Response Analysis

OPUS software version 7.2 (BRUKER Optics GmbH, Ettlingen, Germany) was used
for spectral evaluation and pre-processing, including the calculation of second derivatives
of the original spectra with a 9-point Savitzky–Golay filter and subsequent vector normali-
sation [33,56]. The spectral regions that offered the information for the following classes
of cellular macromolecules were examined: fatty acids (3000 to 2800 cm−1) and proteins
(1800 to 1500 cm−1). For the analysis of the 18 different ILs on two bacterial pathogens,
molecular response values for selected spectral regions were determined by calculating the
spectral distances (d-value) using OPUS software version 7.2 [57]. The d-value represents
the area of difference between two spectral curves being compared [43]. The greater the
variance between two spectra within the tested frequency ranges, the higher the spectral
distance. In this approach, each FTIR spectrum of bacterial cells exposed to an IL at a given
concentration was compared against the respective non-treatment control of the respective
experiment, and the molecular differences were quantitatively described by the d-value.
Technical triplicates were averaged per experiment, and the respective means of at least two
experiments for each IL concentration were calculated to analyse concentration-dependent
relationships. We calculated the respective d-values for four distinct spectral regions
(Table 2), which have been demonstrated to be primarily impacted by ILs in our previous
studies [30,40,41,44–46,58].

3.5. Biocidal Activity Test

The biocidal activity tests were performed in parallel with the FTIR spectroscopy-
based bioassay to compare metabolomic damages with loss of viability. From each cell
suspension prepared for FTIR analysis, 10 µL was serially diluted onto TSA+Y plates to
determine viable cell counts. The biocidal effect of the tested ILs at different concentrations
was calculated as the mortality rate (%) compared to the CFU number in the phosphate-
buffered saline (PBS; NaCl [137 mM], KCl [2.7 mM], Na2HPO4 [10 mM] and KH2PO4
adjusted to pH 7.4) control sample.

4. Conclusions

In this study, we evaluated the potential of FTIR spectroscopy as a high-throughput
method for monitoring the response of bacterial cells treated with ILs. Dose–response
investigations of 18 structurally different ILs revealed insights into the mode of action
of their antimicrobial activity as well as ante-mortem stress responses of two important
bacterial pathogens. Our results indicate that the effect of ILs on biological membranes can
only be attributed to alkyl side chains > 12, whereas ILs with shorter side chains, multiple
side chains and highly fluorinated anions interact with the proteins of the bacterial cells.
Furthermore, our study provides evidence for an ante-mortem response of MRSA against
certain ILs, indicated by the adaptive response before death. Contrary to the molecular
response at cell death (MBC), the ante-mortem response is solely observed in the lipid
region of the bacterial cell. This indicates a change in the overall lipid composition of the
membrane in order to reduce the permeability towards the ILs. Interestingly, as the effect
was not observable for all investigated active ILs, structurally optimised antimicrobial ILs
that do not trigger an ante-mortem response can be envisioned.
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