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Abstract
Genetic polymorphism in key metabolic genes plays a pivotal role in shaping phenotypes 
and adapting to varying environments. Polymorphism in the metabolic gene 6-phospho-
gluconate dehydrogenase (6Pgdh) in bulb mites, Rhizoglyphus robini is characterized by 
two alleles, S and F, that differ by a single amino acid substitution and correlate with male 
reproductive fitness. The S-bearing males demonstrate a reproductive advantage. Although 
the S allele rapidly fixes in laboratory settings, the persistence of polymorphic popula-
tions in the wild is noteworthy. This study examines the prevalence and stability of 6Pgdh 
polymorphism in natural populations across Poland, investigating potential environmental 
influences and seasonal variations. We found widespread 6Pgdh polymorphism in natu-
ral populations, with allele frequencies varying across locations and sampling dates but 
without clear geographical or seasonal clines. This widespread polymorphism and spatio-
temporal variability may be attributed to population demography and gene flow between 
local populations. We found some correlation between soil properties, particularly cation 
content (Na, K, Ca, and Mg) and 6Pgdh allele frequencies, showcasing the connection 
between mite physiology and soil characteristics and highlighting the presence of environ-
ment-dependent balancing selection. We conducted experimental fitness assays to deter-
mine whether the allele providing the advantage in male–male competition has antagonis-
tic effects on life-history traits and if these effects are temperature-dependent. We found 
that temperature does not differentially influence development time or juvenile survival in 
different 6Pgdh genotypes. This study reveals the relationship between genetic variation, 
environmental factors, and reproductive fitness in natural bulb mite populations, shedding 
light on the dynamic mechanisms governing 6Pgdh polymorphism.
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Introduction

Balancing selection is the process through which polymorphism within a population is 
actively maintained over generations. Such maintenance of genetic variation is particularly 
important in genes that govern key metabolic traits, as variation in these genes has the 
potential to significantly impact the organism’s fitness and chances of survival (Koshiba 
et  al. 2020; Whitt et  al. 2002). Despite the general conservation of metabolic genes 
(Mukherjee et  al. 2018; Kapahi et  al. 2010), the presence of functional differences and 
selective pressures acting on them suggest, in some cases, the action of balancing selec-
tion. Metabolic genes can affect multiple aspects of an organism’s physiology and many 
traits. Therefore, balancing selection on these genes is likely to take the form of antagonis-
tic pleiotropy, where a gene affects two or more traits of an organism with opposite effects 
on fitness (Stearns 1998). In genes with multiple functional alleles under antagonistic plei-
otropy, one of the alleles is beneficial for one trait while the other for another trait (often-
times with additional detrimental effects on fitness), thus creating a tradeoff between differ-
ent fitness components (Meyer and Zanger 1997; Kozyra et al. 2017; Di Bartolomeo et al. 
2020). Antagonistic pleiotropy is already a recognized mechanism for the maintenance of 
polymorphism (Hedrick 1999).

This mechanism becomes even more intriguing when we consider the complex inter-
play of environmental factors (Brown and Kelly 2018; Mérot et al. 2020) where antagonis-
tic pleiotropy might be present in some environments, but not in others. Different enzyme 
variants can be favored at different environments, resulting in selection on such enzyme 
variants and influencing the geographic patterns of genetic diversity. For example, in Dros-
ophila serrata (Rusuwa et al. 2022), the polymorphism in a single gene influencing circular 
hydrocarbon profile (CHC) is maintained in warm and humid climates but not in hot and 
dry ones. This is because one of the alleles is associated with male reproductive advan-
tage, but lowers female desiccation resistance, resulting a trade-off between male reproduc-
tion and female stress response (termed also sexually antagonistic pleiotropy) and driving 
balancing selection in specific climate conditions (Rusuwa et al. 2022). The influence of 
environmental heterogeneity on functional polymorphism in metabolic genes was shown 
by Kerwin et  al (2015) on the gene involved in glucosinolate production in Arabidopsis 
thaliana, which showed that no allele consistently outperformed another in different envi-
ronments, emphasizing the importance of environmental heterogeneity as an evolutionary 
force. Understanding the relationship between environmental factors and the functioning of 
enzyme variants is essential for gaining insight on how organisms adapt to their environ-
ment, utilize resources (Vieille and Zeikus 2001), defend against diseases (Hollman et al. 
2016), and evolve (Rix et al. 2020).

This study focuses on the metabolic gene 6-Phosphogluconate dehydrogenase (6Pgdh), 
which is also a target of sexual selection in bulb mite, Rhizoglyphus robini. 6Pgdh is one of 
the key enzymes in the Pentose Phosphate Pathway (PPP), an alternative to glycolysis. It 
produces NADPH and ribose-5-phosphate used in the synthesis of fatty acids, sterols and 
nucleotides (Ge et al. 2020). PPP is also a source of amino acid and vitamin B6 precursors 
(Tambasco-Studart et al. 2005). The pathway is essential for energy metabolism of a cell 
and plays an important role in stress response to abiotic factors such as temperature, salin-
ity, drought, etc. (Fahrendorf et al. 1995; Krüger et al. 2011; Hou et al. 2007). The expres-
sion levels and activities of PPP enzymes are associated with environmental factors (Watts 
and Lawrence 1990). Environmental heterogeneity has been shown to drive patterns of pol-
ymorphism in the 6Pgdh and some other genes involved in PPP in organisms ranging from 
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invertebrates (González-Ruiz et al. 2023) to plants (Landi et al. 2021). However, to really 
understand how selection of genes involved in PPP is driven by environment, we need to 
connect geographical and temporal patterns of polymorphism with phenotypic differences 
between genotypes and environmental background of these differences.

6Pgdh coding sequence in bulb mites consists of 486 amino acids and is divided by 
four introns. While four SNPs have been found in the coding sequence (Skwierzyńska 
and Plesnar-Bielak 2018), only one is associated with amino acid substitution (arginine 
to methionine). The two alleles of 6Pgdh, S and F correlate with reproductive fitness of 
males. Males bearing the S allele gain higher reproductive success compared to males with 
the F allele (Konior et al. 2006; Łukasik et al. 2010), due to higher sperm production and 
copulation frequency (Skwierzyńska and Plesnar-Bielak 2018). Female fitness seems to be 
independent of the 6Pgdh genotype, but the S-bearing males reduce the fitness of their 
female partners, even though the exact mechanism behind it is unknown (Konior et  al. 
2006). As expected from the advantage in male competition, the S allele rapidly fixes in 
laboratory conditions, but surprisingly, the polymorphism seems to be maintained in some 
natural populations (Konior et al. 2006; Łukasik et al. 2010, personal observations). There 
is very limited knowledge regarding the ecological conditions linked to this polymorphism 
and we hypothesize the active maintenance of polymorphism of this metabolic gene is 
environment-dependent. Nevertheless, a systematic study on the patterns of 6Pgdh varia-
tion in natural bulb mite populations has not been conducted before so it is not known how 
common and stable over time the polymorphism is.

Here, we study several natural bulb mite populations to look into the amount of poly-
morphism and its geographical variation across Poland. To start with, we aim to correlate 
6Pgdh polymorphism levels with latitude and longitude, most important macro-climatic 
factors, as well as with local soil properties. Moreover, we investigate seasonal varia-
tion in 6Pgdh frequencies, by investigating frequency shifts between spring and autumn. 
Finally, we explore fitness differences between 6Pgdh genotypes at different temperatures. 
We test if the allele providing advantage in male-male competition has antagonistic effects 
on life history traits and if these effects are temperature-dependent, as earlier studies have 
suggested the effects of temperature on PPP (Kauffman et al. 1969) and on 6Pgdh allele 
frequencies (Plesnar-Bielak et al. 2020). So, we further complement our field study with 
experimental fitness assays at different temperatures. The expression of the S allele, that 
conveys reproductive advantage to males, might be associated with energetic costs that 
could result in reduced juvenile survival and/or longer development time for individuals 
bearing this allele.

Methods

Study species

The bulb mites, Rhizoglyphus robini (Acari: Acaridae) are common pests with cosmopoli-
tan geographical distribution. They inhabit subterrain parts of Lilliaceae and other plants 
(Díaz et al. 2000). The life cycle of Rhizoglyphus robini consists of egg, larva, protonymph, 
tritonymph, and adult stages, with a facultative migratory stage of deutonymph, which 
develop from protonymphs when conditions are unfavorable (overcrowding, low food 
availability etc.). The bulb mites do not enter a diapause (Gerson et al. 1991), remaining 
active throughout the year. However, their activity might be reduced during colder months.
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Rhizoglyphus robini is characterized by high promiscuity (Radwan and Siva-Jothy 1996) 
and is used as model species in sexual selection studies (e.g. Smallegange and Coulson 
2011; Jarzebowska and Radwan 2010; Plesnar-Bielak et al. 2012; Łukasiewicz et al. 2017; 
Parrett et al. 2022). Both males and females mate multiply, with mating frequency depend-
ing on environmental conditions (Gerson and Thorens 1982). While male fitness increases 
with the number of copulations, multiple mating is associated with fitness cost to females, 
signifying sexual conflict (Tilszer et al. 2006). The amount of male harm has been shown 
to depend on a male’s 6Pgdh genotype, such that mating with males bearing the S allele is 
associated with higher cost than mating with a male lacking this allele (Konior et al. 2006). 
This effect might, at least to some extent, be caused by higher ability of the S-bearers to 
exert more frequent copulations of females (Skwierzyńska and Plesnar-Bielak 2018), but 
the actual physiological mechanism of female fitness reduction is not clear.

DNA extraction and 6Pgdh genotyping

DNA was extracted from individual mites. Each individual was placed in 1% chelex solu-
tion (40 μl) and was crushed. Then 3 μl of proteinase-K (EurX) was added, and the mixture 
was incubated in a thermocycler (10 min 94 °C, 15 min 75 °C).

The 6Pgdh genotyping was done using Real-Time PCR with fluorogenic TaqMan 
probes (Thermofisher Scientific) specific for the missense single nucleotide polymorphism 
determining the F and S alleles. The Bio-Rad CFX96 Real-Time PCR detection system 
was used for the genotyping. A TaqMan Genotyping Master Mix (Thermofisher Scientific) 
and Custom Genotyping Assay that included allele-specific primers and fluorescent probes 
were mixed in 10:1 ratio. 5.5 μl of such a mix and 4.5 μl of DNA were put in a 96 well 
plate for genotyping. PCR was performed in 41 cycles (15 s 95 °C, 1 min 60 °C).

The patterns of 6Pgdh polymorphism in the wild

Population sampling was carried out in Poland, which has a clear gradient of climatic and 
environmental conditions such as temperature, precipitation, air pressure, etc. from south-
west to north-east (Błaś and Ojrzyńska 2024; Blazejczyk 2006) that might affect 6Pgdh 
frequencies. Moreover, there is some record of variation in the level of 6Pgdh polymor-
phism in Poland and substantial genetic diversity within populations with little structuring 
between populations in this region (Kolasa et  al. unpublished; Boroń et  al. unpublished; 
Przesmycka and Radwan 2023). Sampling was done between October 2021 and December 
2022. The main sampling was done in late Spring/Summer (May, June) with some loca-
tions sampled also in Autumn (October, November) to see how stable 6Pgdh frequencies 
are across seasons.

Samples of bulbs of different plant species were collected from private gardens and 
botanical gardens across different regions in Poland (Table 1) and checked for the pres-
ence of mites. Between 2 and 6 plant bulbs together with soil samples (taken only during 
Spring sampling and for a subset of samples) were collected per location, depending on 
availability.

In the lab, bulb mites, if present, were transferred to plastic containers (diameter ≈ 
2.5  cm) with plaster of Paris soaked with water (which are standard containers to keep 
large groups of mites). They were kept at 12 °C and fed powdered yeast ad libitum. Ca. 40 
individuals from each sample (location, see Table 1) were genotyped within 2 months after 
collection to ensure that the individuals collected as juveniles reached adulthood.
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Table 1  Locations (with latitude and longitude) from which the samples were collected across Poland and 
the respective seasons during sample collection

The F-allele frequency, heterozygosity measures and results from the Hardy Weinberg test for each location 
are also shown

Location Latitude Longitude Season Number of 
mites geno-
typed

F frequency Heterozygo-
sity

H–W test, 
P-value

Stanislaw 
Gorny

49.91062 19.62935 Autumn 38 0.145 0.184 2.005 0.157

Krakow OB 50.06368 19.95549 Autumn 39 0.051 0.103 0.216
0.642

Mikolow 50.18060 18.82853 Autumn 52 0.596 0.538 0.734
0.392

Rudawa 50.12200 19.71217 Autumn 35 0.200 0.229 2.501 0.114
Lublin 51.29331 22.53616 Autumn 45 0.145 0.178 0.782

0.377
Marszyce 50.18099 19.85584 Autumn 54 0.130 0.148 4.733

0.029
Warszawa 52.25531 21.02248 Autumn 42 0.071 0.048 8.494 0.004
Brzeg 50.87413 17.46600 Spring 9 0.333 0.444 3.55e−15 1
Glucholazy.1 50.33271 17.37789 Spring 32 0.562 0.375 1.824 0.177
Brody 49.88037 19.72432 Spring 28 0.250 0.286 1.479 0.224
Rudawa 50.12200 19.71217 Spring 35 0.242 0.314 0.701

0.402
Piekary 

Slaskie
50.34695 18.98586 Spring 25 0.320 0.400 0.161

0.688
Stanislaw 

Gorny
49.91062 19.62935 Spring 33 0.576 0.424 0.571

0.449
Krakow 50.06368 19.95549 Spring 36 0.194 0.056 21.026 

4.53e−06
Lublin.1 51.29331 22.53616 Spring 30 0.033 0.067 0.069

0.793
Lublin.2 51.29331 22.53616 Spring 6 0.416 0.500 0.005

0.944
Bory Tuchol-

skie
53.61859 18.16236 Spring 27 0.000 0.000 n.a.

1
Poznan 52.41385 16.92981 Spring 28 0.054 0.107 0.170

0.680
Warszawa 52.25531 21.02248 Spring 28 0.232 0.179 6.226

0.013
Glucholazy.2 50.33271 17.37789 Spring 30 0.500 0.000 41.589 

1.12e−10
Przysieki 49.74042 21.38654 Spring 32 0.000 0.000 n.a.
Mikolow 50.18060 18.82853 Spring 38 0.026 0.000 9.248 0.002
Kepa Slupska 54.41783 17.05663 Spring 29 0.138 0.138 3.785 0.052
Lublin.3 51.29331 22.53616 Spring 24 0.250 0.250 2.454 0.117
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Climate data

Climate data was obtained from the KNMI climate explorer website (https:// clime xp. 
knmi. nl). Daily values of mean surface temperature (in °C) and precipitation/rainfall (in 
mm/day) were obtained from the E-OBS database, with 0.25° regular grids. Daily cli-
matic values were obtained for each location using their coordinates (from the grid they 
belonged to) for 60 days before the bulb collection date. The values were then averaged 
for each location (so that we obtained a mean for a 60-day long period before collection) 
and used for the analysis. Using the same procedure, we also calculated average surface 
temperatures and rainfall values for the 30 and 90-day periods before collection.

Soil analyses

Soil samples were collected from sampling points (10 sampling points) near the plant 
using teaspoons and ensuring that the points were within 1   m2 of the plant and were 
kept in 12  °C for analysis. The dry weight (DW) of the soil samples was determined 
by measuring mass loss (water) after soil samples dried at 105 ± 1  °C for 24 h. Next, 
the organic matter content (OM) in soil dry weight was determined as the mass loss on 
ignition at 550 ± 1 °C for 24 h. The water holding capacity (WHC), which is the amount 
of water that a given soil can hold without leaking, was measured by a standard gravi-
metric method after soil soaking for 24 h in net-ended plastic pipes immersed in water. 
The organic carbon (C), total nitrogen (N), and total sulfur (S) were analyzed by dry 
combustion of ca 10 mg milled soil samples with an elemental analyser (Vario El III, 
Elementar Analysensysteme GmbH). The soil pH was measured in air-dried subsam-
ples (2 g) shaken in deionised water (1:10 w:v) for 1 h at 200 rpm (pH-meter with glass 
electrode).

The total element concentrations, that is phosphorus (P), calcium (Ca), potassium 
(K), magnesium (Mg), manganese (Mn), and sodium (Na) in each soil sample were 
determined after wet digestion of ca 0.5 g of DW in 10 ml of SupraPure-concentrated 
 HNO3 and  HClO4 (7:1 v/v) (Sigma-Aldrich). A flow injection analyser (FIA compact, 
MLE, Radebeul, Germany) was used to determine the P content. The total concentra-
tions of the other elements were measured using atomic absorption spectrometry (AAS) 
with a flame nebulizer (Perkin-Elmer, AAnalyst200, Waltham, Massachusetts, USA). 
The accuracy of the mineralization process was determined using blank samples as well 
as standard certified material (CRM025-050, Sandy Loam 8, RT Corp.). Each analysis 
was performed in two subsamples from each soil sample, and the data were averaged 
and expressed based on the dry weight of the soil.

Laboratory population

For the life-history fitness experiments, we used a population enriched in the F allele 
that was established from a field population obtained in July 2020 from Łazany 
(49.9476, 20.1535) near Kraków. Several dozens of individuals collected from an 
onion were placed in a common container with powder yeast that served as food. Such 
obtained population was kept at 8 °C, with the exception of a 1-week period after we 
finished collecting individuals, when it was moved to 24 °C to let juvenile individuals 
develop so that population would expand. The F-increased population was created in 

https://climexp.knmi.nl
https://climexp.knmi.nl
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spring 2021, when the F allele frequency in the source population was about 0.23. To 
do it, we randomly paired virgin females and males from a source population. After the 
pairs mated and females laid eggs, both parents were genotyped. Eight offspring from 
pairs with parents having at least 2 copies of F allele (either both parents FS, or one 
FF and one SS, or one FF and one SF, or both parents FF) were transferred as larvae/
protonymphs to a common container to establish a population with increased F allele 
frequency. We used two containers (with offspring from the same parental pairs moved 
to both of them) that established two subpopulations that were mixed and divided again 
after ca. 2 months. The population was let to expand freely for ca. 2 months at 24 °C 
(which corresponds to 3–4 mite generations), before it was moved to 12 °C to elongate 
generation time, slowing down population’s evolution and the loss of the F allele. At 
all these stages the population was kept at > 90% humidity and constant darkness, with 
powdered yeast provided ad libitum as a food source.

Development time

Development time of the individuals with different genotypes was measured at three tem-
peratures, 24  °C (standard temperature in which the laboratory populations are reared), 
12 °C (average yearly ground temperature at 5–10 cm depth in Poland) and 8 °C (low tem-
perature relevant to colder months of sampling) with three replicates per temperature (see 
Fig. 1). Per each replicate, ten females were randomly selected from the F-increased popu-
lation were kept in containers for 24 h to lay eggs. After the females were removed, the 
containers with the eggs were placed to experimental temperatures. The eggs were allowed 
to develop. When they reached the stage of tritonymph (last juvenile stage), they were 
checked every 24 h for emerging adults. Adults that emerged were taken out from the con-
tainers and date of emergence and sex were noted. Then, the individuals were genotyped 
for 6Pgdh. The checks continued until all the adults emerged.

Juvenile survival differences between genotypes

Juvenile survival differences were also tested at 24 °C, 12 °C and 8 °C. For the assay, 50 
females were put in a common container (five replicates per temperature) and allowed to 
lay eggs at 24  °C for 4  days, after which they were removed (see Fig.  1). The contain-
ers were then transferred to their respective experimental temperatures (24 °C, 12 °C and 
8 °C). After all the adults emerged, around 40 individuals from each replicate were geno-
typed for the 6Pgdh. We calculated the frequencies of the F allele at each temperature and 
used them as a proxy of juvenile survival differences between genotypes. If juvenile sur-
vival of individuals with different alleles is temperature-independent, we expect that allele 
frequencies in adults do not differ between temperatures. A higher frequency of a certain 
allele at a given temperature, indicates higher survival of the individuals bearing this allele.

Statistical analysis

6Pgdh genotype frequencies in field samples were tested for Hardy–Weinberg equilib-
rium with likelihood ratio test implemented in Hardy–Weinberg package in R (Graf-
felman and Weir 2016). The frequencies from the samples collected in spring (when 
most of the samples were collected) were checked for their relationship with latitude 
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and longitude of the location to look for geographical cline 6Pgdh polymorphism. We 
applied a quasibinomial model accounting for overdispersion (using glm function in R 
v3.6.1) with a vector of S and F allele counts at each location as a response variable and 
latitude and longitude as independent variables. For plotting the data points on the map 
of Poland, QGIS (v3.34.0-Prizren) was used along with the map shape file obtained 
from GADM data (v4.1).

Both mean temperature and precipitation levels were highly correlated  (r22 = 0.57, 
p < 0.01 for a 60-day-long period). They were analyzed in separate quasibinomial models 
with a vector of S and F allele counts from each location as the response variable and the 
climatic variable (mean surface temperate or precipitation) as the predictor variable. The 
models were rerun for data averaged for 30 and 90 days. Since the results were qualita-
tively the same, we present only the analyses for 60 days.

To test for a correlation between 6Pgdh frequencies and soil characteristics, we first 
summarized soil parameters with Principal Component Analysis. Then, we ran a gener-
alized linear model with a vector of S and F allele counts at each location as a response 

Fig. 1  Methods of laboratory fitness assays—a Development time, b Juvenile survival
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variable and PC1 and PC2 as independent variables. Again, quasibinomial distribution was 
used to account for overdispersion in our data.

To check how genotype affects development time at different temperatures, we used a 
linear mixed model fit with the number of days taken for development (transformed with 
square root) as the response variable and with genotype and temperature (factor) as the 
dependent variables and population ID as random factor. We also checked to see if the 
effect of sex of the individuals was important to the model using AIC scores, but the effect 
of sex did not improve the model and the conclusions remained unchanged and hence the 
effect of sex was removed from the main model. The function lmer was used for the analy-
sis in R (the package lmertest, lme4, v1.1-26).

The allele frequencies of the individuals that survived to adulthood at each tempera-
ture were obtained from the juvenile survival experiment. To analyze the data, a binomial 
model was used with a vector of S and F allele counts in each replicate as the response var-
iable and temperature as the dependent variable using the glm function in R (glm2 pack-
age, v1.2.1).

Results

The patterns of 6Pgdh polymorphism in the wild

We found 6Pgdh polymorphism in a majority (15 out of 17) of populations (Fig.  2), 
with only two of them having just one allele (S). In polymorphic populations, F-allele 

Fig. 2  F-allele frequency of natural bulb mite populations at different locations in Poland in spring
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frequencies varied from 0.026 to 0.60, with a mean frequency of 0.23 (SD = 0.19). Mean 
frequency was similar for the samples collected in Autumn (mean ± SD 0.191 ± 0.18) 
and Spring (0.243 ± 0.19). 6Pgdh allele frequencies varied a lot between Autumn and 
Spring, but the changes were not consistent in their direction, with F frequency increas-
ing in Spring in some locations, but decreasing in others (Fig.  3). Similarly, samples 
taken from the same botanical garden substantially differed in allele frequencies, even 
in the same season. Eighteen samples were in Hardy–Weinberg equilibrium. In 6 sam-
ples (Table 1), we found deviation from Hardy–Weinberg equilibrium and observed het-
erozygosity was lower than expected in all these cases. We did not find evidence for 
geographical clines in 6Pgdh frequencies in Poland (longitude: effect estimate − 0.285, 
t = − 1.78, p = 0.089, latitude: effect estimate − 0.406, t = − 1.88, p = 0.075). Similarly, 
we did not find any influence of climatic variables in 6Pgdh allele frequencies (tempera-
ture: effect estimate 0.132, t = − 1.27, p = 0.219, precipitation: effect estimate − 0.402, 
t = − 0.62, p = 0.543). The data from the 90  days and 30  days interval provided with 
similar results (not shown).

Fig. 3  F-allele frequencies between spring and autumn at various locations in Poland

Fig. 4  a The results from the PCA showing the PC1 and PC2 axes explaining 44.3% and 19.8% of the vari-
ance in soil patterns respectively. b The inverse relationship of the second PC axis with the Na, Mg, K and 
Ca content of the soil. Units: S (%), P (%), organic matter (%), Na (mg  kg−1), N (%), Mn, Mg, K, Ca (mg 
 kg−1), C (%). All data are expressed per dry soil mass. c Negative relationship between PC2 and F-allele 
frequency
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The association of 6Pgdh polymorphism with soil properties

PC1 and PC2 explained 44.3 and 19.8% of the total variance in soil parameters, respec-
tively (Fig. 4a). PC1 was mainly influenced by organic matter, S, N and C content (Fig. 4b). 
Higher PC1 values were also associated with lower pH. PC2 values were negatively corre-
lated with Na, K, Ca and Mg content. We found a significant negative relationship between 
F allele frequencies and PC2  (t11 = − 2.99, p = 0.017), but not PC1  (t11 = 1.584, p = 0.152). 
(Fig. 4c).

Laboratory fitness experiments

Development time increased with decreasing temperature  (F2; 8 = 7521.85, p < 0.01). There 
was no difference in development time between genotypes  (F2; 953 = 1.53, p = 0.22) or geno-
type by temperature interaction  (F4; 954 = 1.33, p = 0.25) (Fig. 5). The effect of sex was also 
not significant  (F1; 950 = 1.31, p = 0.22).

F allele frequencies did not differ between groups developed at different temperatures 
(effect estimate 0.002, z = 0.17, p = 0.86), indicating there is no temperature-dependent dif-
ference in juvenile survival between genotypes (Fig. 5).

Discussion

Genetic polymorphisms in key metabolic genes can potentially influence a wide range of 
phenotypic traits and may therefore be important for adaptive polymorphism. 6Pgdh is 
an example of such a gene with different allelic variants influencing fitness in vertebrates 
(Rivera et al. 2006; Chen et al. 2023), plants (Oostermeijer et al. 1995) and invertebrates 
(Begun and Aquardo 1994; Kilias and Alahiotis 1985), including bulb mites (Rhizogly-
phus robini). The maintenance of such polymorphism under natural conditions is surpris-
ing, particularly in the case of bulb mites, given the strong reproductive advantage of the 
S allele leading to its rapid fixation in the laboratory. In some environments, however, 
reproductive advantage may be balanced by metabolic costs that could lead to a trade-off 

Fig. 5  a Development time for bulb mites with different genotypes of the 6Pgdh allele at different tempera-
tures. The boxplot shows the median along with the interquartile range. The points represent the spread of 
individual data points. b F-allele frequencies of the juveniles that survived at each temperature. The boxplot 
shows the median along with the interquartile range. The data points represent the F-frequency of the repli-
cates
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between sexual and non-sexual fitness, leading to the maintenance of stable polymorphism 
under these conditions (Robinson et al. 2006; Höglund et al. 1998). Our study investigates 
the abundance of 6Pgdh polymorphism in natural populations, explores potential environ-
mental factors influencing these patterns in the wild, and examines potential trade-offs in 
laboratory settings.

We show that 6Pgdh polymorphism is indeed common in natural populations. The 
majority of screened populations were 6Pgdh-polymorphic, but the actual allele frequen-
cies varied. The abundance of polymorphism aligns with certain observations reported in 
prior studies (Łukasik et al. 2010). For example, a natural population from Poland found by 
Konior et al. (2006) was polymorphic in respect to 6Pgdh with F-allele frequency of 0.11. 
Screening of ten populations in Poland by Skwierzyńska and Plesnar-Bielak (2018) found 
only one polymorphic population, suggesting 6Pgdh polymorphism to be rare. However, 
the search was aimed at finding a population of a relatively high polymorphism level to use 
in laboratory experiments. Hence, the sampling might have not been suitable for detecting 
moderate F frequencies, which were not uncommon in the current study.

6Pgdh frequencies varied between populations and sampling dates, but there was no 
seasonal or latitudinal pattern. Neither surface temperature nor precipitation/rainfall were 
able to explain the variation in 6Pgdh allele frequencies. The high variability of 6Pgdh 
allele frequencies is supported by previous observations in bulb mites. For example, the F 
frequency in a natural population was 0.34 in 2003, but it decreased below 0.05 at the same 
site a year later (Łukasik et al. 2010). The lack of geographic, macroclimatic or seasonal 
patterns suggests that perhaps factors other than temperature and rainfall may play a more 
significant role in shaping the frequencies of 6Pgdh alleles or that the effect of these vari-
ables may occur at a much finer scale. These fine scale effects might indeed be important; 
for example, plant cover may significantly affect shading and hence drastically affect both 
temperature and humidity (Procházka et al. 2011; Zhang et al. 2013). Similarly, since our 
sites were located in gardens, plant watering was likely to overwrite the effects of large-
scale precipitation patterns. On the other hand, our results from the laboratory experiments 
do not support temperature’s role in shaping 6Pgdh frequencies in the bulb mite. We found 
no evidence that temperature differentially affects two life-history traits: development time 
and juvenile survival, in individuals with different 6Pgdh genotypes. This suggests that 
temperature does not have an effect on the allele fitness or the distribution of alleles on 
neither microhabitat level (life-history assays) nor macrohabitat scale (field study). Simi-
larly, a prior laboratory investigation demonstrated that there is no reversal in F-allele fit-
ness across temperatures, supporting our conclusion (Plesnar-Bielak et al. 2020). While the 
results from the laboratory studies suggest that temperature doesn’t contribute to the levels 
of 6Pgdh allele frequencies, we cannot rule out other factors as demonstrated in other spe-
cies. For example, two studies in Drosophila (D. melanogaster and D. simulans) showed 
clear latitudinal clines of 6Pgdh allele frequencies in different regions across the world, 
likely associated with climatic conditions (Oakeshott et  al. 1983; Begun and Aquadro 
1994). Similarly, latitudinal clines in 6Pgdh frequencies have been associated with other 
selective factors such as water salinity in Atlantic killifish (Fundulus heteroclitus) (Powers 
et al. 1986). Stockwell and Mulvey (1998) also explicitly demonstrated that it was water 
salinity, and not temperature, that influenced the polymorphism levels in white sands pup-
fish, Cyprinodon tularosa (Stockwell and Mulvey 1998).

Our study found a significant effect of soil properties on the level of polymorphism, 
with higher amounts of cations (Na, K, Ca and Mg) in the soil corresponding to higher 
frequencies of the F allele. Bulb mites, being subterranean organisms reliant on soil, can 
experience direct or indirect effects of soil composition on their physiology. Soil properties 
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can affect plant diversity and soil fauna indirectly (Kudureti et al. 2023). Indeed, evidence 
for soil properties differentially affecting fitness of multiple mite species have already been 
observed. Soil properties such as pH, nitrogen and carbon content, among other variables 
have been shown to affect community composition (Nielsen et al. 2010) and diversity (de 
Moraes et al. 2011) in oribatid mite group, suggesting they drive fitness differences at inter-
species level. Our results suggest that soil properties can differentially affect mite fitness at 
the intra-species level too. The effects of soil could be mediated by factors like vegetation 
or soil microbial community composition (Li et al. 2023; Pineda et al. 2017). For example, 
host-microbiome interactions in bulb mites affect nutrition (Zindel et al. 2013), which in 
turn impacts fitness and traits like development rate and body size (Leigh and Smallegange 
2014). Nutritional conditions can also influence fitness of different alleles of the same met-
abolic genes. It has been shown in Drosophila melanogaster, where diet quality affected 
fitness of the allelic variants of the “foraging” gene (Burns et  al. 2012). In general, the 
patterns of 6Pgdh polymorphism could be associated with environmental quality, mediated 
by the relationship between soil properties and microbiome. However, resolving this issue 
would require more direct experimental verification.

Importantly, soil nutrients cannot solely explain the levels of 6Pgdh found in this study. 
The minerals or nutrients can explain the variation across space, but they cannot explain 
the variation across seasons. It’s because even though the primary nutrients (nitrogen, 
potassium, phosphorus) can vary between seasons (Hu et al. 2022), there is little evidence 
of such being the case for the other minor nutrients and minerals. The shifts in 6Pgdh 
levels might instead be a result of population demography and gene flow between local 
populations. Indeed, it has been suggested that bulbs are often colonized by small number 
of individuals or single gravid females, making founder effect an important determinant of 
genetic structuring. This could contribute to large differences and presumably erratic pat-
terns of allele frequency changes in natural populations. Indeed, some of the population we 
have sampled were quite small, with high numbers of juvenile individuals, suggesting they 
had been founded recently. However, a recent field study found that colonization events are 
moderately common but, importantly, they do not seem to be associated with strong bottle-
necks or founder effects (Przesmycka and Radwan 2023). A detailed study on the structure 
of genetic variation within and between bulb mite populations using genome-wide data 
would help to clarify this issue.

To conclude, the study shows that the 6Pgdh polymorphism is indeed common in bulb 
mites. We also found significant influence of soil properties on the polymorphism levels. 
Additionally, we found that the patterns of 6Pgdh polymorphism varied across locations 
and seasons, although there was no pattern to this change. Gene flow, driven by the migra-
tion of individuals between bulb mite populations, could be a crucial factor contributing to 
the observed variations in nature. In suspicion of a genotype-by-environment interaction 
for fitness, we looked at climatic variables such as temperature and precipitation, and their 
influence on the patterns of 6Pgdh, but we found no evidence of such. Similarly, the life-
history assays performed in the lab did not provide any evidence of temperature influenc-
ing fitness of the allelic variants.

In summary, soil properties can potentially explain the distribution of 6Pgdh alleles 
of bulb mites in the wild, but not the spatio-temporal variation. Perhaps there are other 
environmental factors contributing to this variation or perhaps it’s the result of gene flow 
between populations. Complementing this study with additional experiments to test the 
effects of different factors on more traits (related to reproductive success) may help us 
understand more about how selection works in nature and about environment dependent 
balancing selection in general.
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