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Abstract Hibernation is a period of metabolic suppression utilized by many small and large 
mammal species to survive during winter periods. As the underlying cellular and molecular mech-
anisms remain incompletely understood, our study aimed to determine whether skeletal muscle 
myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utili-
zation. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys 
quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded 
Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and 
its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a pres-
ervation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridece-
mlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to 
higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures 
(20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature 
of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced 
by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-
phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin 
molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases 
in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. 
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Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing 
to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it 
is further altered in response to cold exposure and highlight myosin as a potentially contributor to 
skeletal muscle non-shivering thermogenesis.

eLife assessment
The work by Lewis and co-workers presents important findings on the role of myosin structure/ener-
getics on the molecular mechanisms of hibernation by comparing muscle samples from small and 
large hibernating mammals. The solid methodological approaches have revealed insights into the 
mechanisms of non-shivering thermogenesis and energy expenditure.

Introduction
Hibernation is an adaptive strategy employed by many animals aiming to decrease their metabolic 
rate and improve survival, particularly during harsh, winter conditions where food supply is limited, 
and thermogenic demands are high (Geiser, 2013). During hibernation, mammals typically undergo 
a decrease in body temperature, heart, and breathing rates (Jani et al., 2013; Milsom and Jackson, 
2024; Sprenger and Milsom, 2022). In so-called fat-storing hibernators, this is inherently accompa-
nied by prolonged fasting and fatty acids become the main substrate for energy provision (Florant, 
1998; Giroud et al., 2020). Besides these common features associated with overall metabolic depres-
sion, there are also significant inter-species differences in the underlying strategies. For instance, small 
(<8 kg) fat-storing hibernating mammals such as 13-lined ground squirrels (Ictidomys tridecemlineatus) 
or garden dormice (Eliomys quercinus) experience extended bouts of a hypo-metabolic state (torpor), 
punctuated by spontaneous periods of interbout euthermic arousals (IBA), during which metabolic 
activity transiently increases back to basal levels. During torpor, metabolic rate decreases below 5% of 
euthermic values and core body temperatures decrease from 35°C–38°C to 4°C–8°C (Sprenger et al., 
2018; Haugg et al., 2024). In contrast, either medium (10–20 kg, e.g. European badger, Meles meles) 
or large (>20 kg, e.g. Eurasian brown bear, Ursus arctos, and American black bear, Ursus americanus) 
hibernating mammals exhibit a pronounced hypo-metabolic state (as low as 25% of their basal meta-
bolic rate in the case of bears), but only experience a mild decline in body temperature (to 32–35°C 
depending on body size) that lasts for several winter months (Geiser, 2013; Tøien et al., 2011; Evans 
et al., 2023). While species-specific physiological patterns are well-documented, the molecular and 
cellular mechanisms operative in individual organs to achieve these remain largely undefined.

Skeletal muscle constitutes approximately 45–55% of body mass and serves as a major determinant 
of basal metabolic rate and heat production (Zurlo et al., 1990; Sylow et al., 2021). Previous studies 
have uncovered some specific metabolic changes in skeletal muscle during hibernation (Giroud et al., 
2020). For example, a decrease in mitochondrial respiration, as well as a suppression of ATP production 
capacity, has previously been documented in skeletal muscles from I. tridecemlineatus during torpor 
(James et al., 2013). Previous work has demonstrated that ground squirrels require an optimal dietary 
ratio of monounsaturated to polyunsaturated fats, approximately 2:1, during their fat-storing period 
to facilitate effective hibernation (Frank and Storey, 1995). The proteome of I. tridecemlineatus has 
then been shown to be enriched for fatty acid β-oxidation during periods of torpor. However, some 
reliance upon carbohydrate metabolism is maintained. The activity of phosphoglucomutase (PGM1) 
is even increased during torpor (Hindle et al., 2011). In U. arctos, skeletal muscle exhibits a transition 
from carbohydrate utilization to lipid metabolism, coupled with a reduction in whole-tissue ATP turn-
over (Chazarin et al., 2019).

Muscle is organized into an array of fibers containing repeating sarcomeres, which are crucial for 
regulating not only contraction but also metabolism and thermogenesis (Gordon et al., 2000). Until 
recently, energy consumption in skeletal muscle was thought to be primarily linked to the activity of 
myosin during muscular contraction (Gordon et al., 2000). Additionally, thermogenesis in skeletal 
muscle was previously attributed primarily to the electron transport system, in some cases link to 
uncoupling of sarcoplasmic reticulum calcium ATPase (SERCA) (Periasamy et al., 2017; González-
Alonso et al., 2000). However, growing evidence that the sarcomeric metabolic rate and thermo-
genesis are also controlled by ‘relaxed’ myosin molecules is emerging (McNamara et  al., 2015). 

https://doi.org/10.7554/eLife.94616
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Myosin heads in passive muscle (pCa >8), can be in different resting metabolic states that maintain a 
basal level of ATP consumption. In the ‘disordered-relaxed’ (DRX) state, myosin heads are generally 
not bound to actin and structurally exist in a conformation (so-called ON state) where they primarily 
exist freely within the interfilamentous space in the sarcomere (Stewart et al., 2010; Grinzato et al., 
2023). In the ‘super-relaxed’ (SRX) state, myosin heads adopt a structural conformation against the 
thick filament backbone (so-called OFF state; Hooijman et al., 2011). This conformation sterically 
inhibits the ATPase site on the myosin head, significantly reducing both ATP turnover in these mole-
cules and, therefore heat production. The SRX state has an ATP turnover rate five to ten times lower 
than that of myosin heads in the DRX state (Cooke, 2011). A 20% shift of myosin heads from SRX to 
DRX is predicted to increase whole-body energy expenditure by 16% and double skeletal muscle ther-
mogenesis (Cooke, 2011). What remains to be determined is whether, across mammals, increasing 
the proportions of myosin in the DRX or SRX states serves as a physiological molecular mechanism to 
fine-tune metabolic demands and thermogenesis. This includes potential contributions to whole-body 
metabolic depression observed during hibernation.

Hence, in the present study, we hypothesized that a remodeling of the proportions of myosin 
DRX and SRX conformations within skeletal muscles occurs and is a major suppressor of ATP/meta-
bolic demand during hibernation. A recent study on I. tridecemlineatus cardiac muscle supports this 
hypothesis, finding higher proportions of SRX during torpor (Toepfer et al., 2020). We examined 
isolated skeletal myofibers extracted from both small and large hibernating mammals - I. tridecem-
lineatus, E. quercinus, U. arctos, and U. americanus. We employed a multifaceted approach: loaded 
Mant-ATP chase experiments to assess myosin conformation and ATP turnover time, X-ray diffraction 
for sarcomere structure evaluation, and proteomic analyses to quantify differential PTMs.

eLife digest Many animals use hibernation as a tactic to survive harsh winters. During this 
dormant, inactive state, animals reduce or limit body processes, such as heart rate and body 
temperature, to minimise their energy use. To conserve energy during hibernation, animals can use 
different approaches. For example, garden dormice undergo periodic states of extremely low core 
temperatures (down to 4–8oC); whereas Eurasian brown bears see milder temperature drops (down 
to 23–25oC).

An important organ that changes during hibernation is skeletal muscle. Skeletal muscle typically 
uses large amounts of energy, making up around 50% of body mass. To survive, hibernating animals 
must change how their skeletal muscle uses energy. Traditionally, active myosin – a protein found in 
muscles that helps muscles to contract – was thought to be responsible for most of the energy use by 
skeletal muscle. But, more recently, resting myosin has also been found to use energy when muscles 
are relaxed. Lewis et al. studied myosin and skeletal muscle energy use changes during hibernation 
and whether they could impact the metabolism of hibernating animals.

Lewis et al. assessed myosin changes in muscle samples from squirrels, dormice and bears during 
hibernation and during activity. Experiments showed changes in resting myosin in squirrels and 
dormice (whose temperature drops to 4–8oC during hibernation) but not in bears. Further analysis 
revealed that cooling samples from non-hibernating muscle to 4–8oC increased energy use in resting 
myosin, thereby generating heat. However, no increase in energy use was found after cooling hiber-
nating muscle samples to 4–8oC. This suggest that resting myosin generates heat at cool tempera-
tures – a mechanism that is switched off in hibernating animals to allow them to cool their body 
temperature.

These findings reveal key insights into how animals conserve energy during hibernation. In addi-
tion, the results show that myosin regulates energy use in skeletal muscles, which indicates myosin 
may be a potential drug target in metabolic diseases, such as obesity.

https://doi.org/10.7554/eLife.94616
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Results
Resting myosin metabolic states are preserved in skeletal muscles 
fibers of hibernating Ursus arctos and Ursus americanus
To investigate whether resting myosin DRX and SRX states and their respective ATP consumption rates 
were altered during hibernation, we utilized the loaded Mant-ATP chase assay in isolated permeabi-
lized muscle fibers from U. arctos obtained during either summer (active period) or winter (hibernating 
period). A total of 104 myofibers were tested at ambient lab temperatures (20 °C). A representative 
decay of the Mant-ATP fluorescence in single muscle fibers is shown, indicating ATP consumption by 
myosin heads (Figure 1A). In both type I (myosin heavy chain - MyHC-I) and type II (MyHC-II) myofi-
bers, we did not observe any change in the percentage of myosin heads in either the DRX (P1 in 
Figure 1B) or SRX states (P2 in Figure 1C). We also did not find any difference in their ATP turnover 
times as demonstrated by the preserved T1 (Figure 1D) and T2 values (Figure 1E). We calculated the 
ATP consumed by myosin molecules by using the following equation based on the assumption that 
the concentration of myosin heads within single muscle fibers is 220 μM (Cooke, 2011):

	﻿‍ Myosin ATP consumption (fiber × min) = (P1/100) × 220 × (60/T1) + (P2/100) × 220 × (60/T2)‍�

the ATP consumed by myosin molecules was not different between groups (Figure 1F). We repeated 
these experiments on 95 myofibers obtained from summer and winter from U. americanus. A repre-
sentative decay of the Mant-ATP fluorescence in single muscle fibers is shown (Figure 1G). We found 
very similar results to the U. arctos that in both type I and type II muscle fibers, with no changes to 
resting myosin conformation, ATP turnover time or ATP consumption per fiber. These data indicate 
that myosin metabolic states are unchanged during hibernation in both U. arctos and U. americanus.

Relaxed myosin metabolic states are disrupted in skeletal myofibers of 
small hibernators: Ictidomys tridecemlineatus and Eliomys quercinus
In smaller hibernators we utilized samples obtained from E. quercinus and I. tridecemlineatus during 
the summer active state (SA), IBA and torpor. In E. quercinus, a total of 146 myofibers were assessed at 
ambient lab temperatures. Consistent with U. arctos and U. americanus, we did not see any difference 
in the percentage of myosin heads in either the DRX (Figure 2A) or SRX states (Figure 2B). However, 
the ATP turnover time of myosin molecules in the DRX conformation (DRX T1) was 35% lower in IBA 
and torpor compared with SA in type I fibers and was 36% and 31% lower during IBA and torpor, 
respectively, compared to SA in type II fibers (Figure 2C). The ATP turnover time of myosin heads in 
the SRX state (SRX T2) was 28% lower in in both IBA and torpor compared to SA for type I fibers and 
was lower in torpor by 26% compared with TA for type II fibers (Figure 2D). All these changes were 
accompanied by a 56% greater myosin-based ATP consumption of in IBA compared to SA for type I 
fibers. In type II myofibers ATP consumption was 55% and 47% greater in IBA and torpor, respectively, 
compared with SA (Figure 2E). In I. tridecemlineatus, a total of 156 muscle fibers were evaluated. In 
accordance with E. quercinus, we did not observe any modification in the percentage of myosin heads 
in the DRX conformation (P1) in the SRX conformation (P2) in either fiber type between SA, IBA or 
torpor (Figure 2F and G). Nevertheless, DRX T1 was 35% lower for type I fibers in torpor compared 
to SA and was 29% lower in IBA and 46% in torpor compared to SA for type II fibers (Figure 2H). SRX 
T2 was significantly lower in both IBA, and torpor compared to SA for type I by 49% and 29%, respec-
tively (Figure 2I). SRX T2 was also significantly lower in type II fibers in both IBA, and torpor compared 
to SA by 31% and 27%, respectively. Myosin-specific ATP consumption in type II muscle fibers during 
torpor was significantly higher at 99% compared to SA (Figure 2J).

To gain insights into the mechanisms that cause such unexpected myosin metabolic adaptive 
changes, we investigated whether these latter changes were accompanied by a structural alteration 
of myosin molecules. We collected and analysed X-ray diffraction patterns of thin muscle strips in 
I. tridecemlineatus. The ratio of intensities between the 1,0 and 1,1 reflections (I1,1 / I1,0; Figure 3A) 
provides a quantification of myosin mass movement between thick and thin filaments. An increase in 
I1,1 / I1,0 reflects myosin head movement from thick to thin filaments, where increasing I1,1 / I1,0  tracks 
myosin head movement from thick to thin filaments, signaling a transition from the OFF to ON state 
(Ma and Irving, 2022). 1,0 and 1,1 equatorial intensities were quantified and the intensity ratio (I1,1 
to I1,0) calculated. This intensity ratio was significantly lower in torpor compared to IBA (Figure 3B), 

https://doi.org/10.7554/eLife.94616
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Figure 1. Myosin dynamics and myosin ATP consumption is unchanged in Ursus arctos and Ursus americanus during hibernation. (A) Representative 
fluorescence mant-ATP decays from single muscle fibers isolated from Ursus arctos skeletal muscle measured over 300 s. (B–C) Percentage of myosin 
heads in the P1/DRX (B) or P2/SRX (C) from Ursus arctos single muscle fibers obtained during summer (active) or winter (hibernating) periods. Values 
were separated based on each individual fiber was MyHC type I or MyHC type II. (D) T1 value in seconds denoting the ATP turnover lifetime of the DRX. 
(E) T2 value in seconds denoting the ATP turnover lifetime in seconds of the SRX. (F) Calculated myosin ATP consumption values of each single muscle 
fiber per minute. This was calculated using the equation shown in the Materials and methods section. (G) Representative fluorescence mant-ATP decays 
from single muscle fibers isolated from Ursus americanus skeletal muscle measured over 300 s. (H–I) Percentage of myosin heads in the P1/DRX (G) or 
P2/SRX (H) from Ursus americanus single muscle fibers obtained during summer (active) or winter (hibernating) periods. Values were separated based 
on each individual fiber was MyHC type I or MyHC type II. (J) T1 value in seconds denoting the ATP turnover lifetime of the DRX. (K) T2 value in seconds 
denoting the ATP turnover lifetime in seconds of the SRX. (L) Calculated myosin ATP consumption values of each single muscle fiber per minute. Grey 
circles represent the values from each individual muscle fiber which was analyzed. Colored triangles represent the mean value from an individual animal, 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.94616
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suggesting more myosin heads are structurally OFF in torpor vs IBA. A reorientation of the myosin 
heads between OFF and ON states can also be captured by the M3 reflection along the meridional 
axis of diffraction patterns (Figure 3A). The M3 spacing represents the average distance between 
myosin crowns along the thick filament. An increase in M3 spacing signifies a reorientation of myosin 
heads from the OFF towards the ON states (Ma et  al., 2018a). No differences were seen in M3 
spacing or intensity (Figure 3C and D), indicating that the orientation of myosin crowns along the 
thick filament are similar across all conditions (SA, IBA and torpor). Thick filament length, measured 
here by the spacing of the M6 reflection (Figure 3A), was significantly greater in IBA compared to 
SA, and during torpor compared to both SA and IBA (Figure 3E). Taken together we report a unique 
structural signature of muscle during hibernating periods in I. tridecemlineatus.

Myosin temperature sensitivity is lost in relaxed skeletal muscles fibers 
of hibernating Ictidomys tridecemlineatus
To mimic the drastic body temperature decrease experienced by small hibernators during torpor, 
we repeated the loaded Mant-ATP chase experiments in I. tridecemlineatus at 8 °C. A total of 138 
myofibers were assessed and similar to when measured at ambient lab temperatures, no changes 
to the conformation of myosin states were observed (Figure  4—figure supplement 1). At these 
temperatures, we observed that during torpor the DRX T1 was 77% compared to SA and 107% higher 
compared to IBA in type II muscle fibers (Figure 4A). We further observed that during torpor the SRX 
T2 was 60% higher compared to SA and 64% higher compared to IBA (Figure 4B). We then calculated 
the 20°C to 8°C degree ratios, allowing us to define myosin temperature sensitivity of DRX T1, SRX T2 
and myosin ATP consumption (Figure 4C, D and E). In SA and IBA, lowering the temperature led to a 
reduction in the myosin ATP turnover time of both the DRX and SRX, thus decreasing ATP consump-
tion especially for type II muscle fibers. In contrast, during torpor lowering the temperature had oppo-
site effects (Figure 4C, D and E). This observation was particularly prominent in type II muscle fibers 
(Figure 4C and D). From these results, we suggest that I. tridecemlineatus reduce their resting myosin 
ATP turnover rates in response to cold exposure to increase heat production via ATP hydrolysis.

Hyper-phosphorylation of Myh2 predictably stabilizes myosin 
backbone in hibernating Ictidomys tridecemlineatus
Based on our findings of discrepancies between the dynamics of myosin at different temperatures, we 
wanted to obtain a greater understanding of changes at the protein level during these different hiber-
nating states. The myosin molecule is well-known to be heavily regulated by post-translational modifi-
cations (PTMs; Nag et al., 2017; Spudich, 2015; Bódi et al., 2021; Duggal et al., 2014; Huang et al., 
2015; Vandenboom et al., 2013; Papadaki et al., 2022). We assessed whether hibernation impacts 
the level of phosphorylation and acetylation on the Myh7 and Myh2 proteins from I. tridecemlin-
eatus. Myh2 exhibited significant differences in phosphorylation sites during torpor compared to SA 
and IBA (Figure 5A). Three specific residues had significantly greater levels of phosphorylation: thre-
onine 1039 (Thr1039-P), serine 1240 (Ser1240-P), and serine 1300 (Ser1300-P). These PTMs lie within 
the coiled-coil region of the myosin filament backbone (Figure 5B and C). To define whether they 
have functional implications during hibernation, we utilized EvoEF, an in silico programme which can 
characterize the effects of single amino acid residue substitutions on protein stability (Huang et al., 
2020). For our analysis, we replaced the three native residues where PTMs were found by aspartic 
acid (Asp), which chemically resembles phosphothreonine (Thr-P) and phosphoserine (Ser-P) (Haase 
et  al., 2004). Thr1039Asp, Ser1240Asp, and Ser1300Asp had higher protein stabilities compared 
to Thr1039, Ser1240, and Ser1300, as attested by ΔΔGStability values greater than zero (Figure 5D). 
The combination of these modifications does not counteract one another and thus are predicted to 
provide a high change in Myh2 stability (ΔΔGStability of 2.54, Figure 5D).

8–12 fibers analyzed per animal. Statistical analysis was performed upon mean values. One-way ANOVA was used for statistical testing. n=5 individual 
animals per group. Figure created using BioRender.com and published using a CC BY-NC-ND license with permission.

© 2024, BioRender Inc. Figure 1 was created using BioRender, and is published under a CC BY-NC-ND 4.0. Further reproductions must adhere to the 
terms of this license

Figure 1 continued
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Figure 2. Myosin ATP turnover lifetime is reduced during hibernation in small hibernators, Eliomys quercinus and Ictidomys tridecemlineatus, 
resulting in an increase in myosin ATP consumption at ambient temperatures. (A–B) Percentage of myosin heads in the P1/DRX (A) or P2/SRX (B) from 
E. quercinus single muscle fibers obtained during active, interbout arousal (IBA) or torpor periods. Values were separated based on each individual 
fiber was MyHC type I or MyHC type II. (C) T1 value in seconds denoting the ATP turnover lifetime of the DRX in E. quercinus. (D) T2 value in seconds 
denoting the ATP turnover lifetime in seconds of the SRX in E. quercinus. (E) Calculated myosin ATP consumption values of each single muscle fiber per 
minute in E. quercinus. This was calculated using the equation shown in the Materials and methods section. (F–G) Percentage of myosin heads in the 
P1/DRX (F) or P2/SRX (G) from I. tridecemlineatus single muscle fibers obtained during summer active (SA), interbout arousal (IBA) or torpor periods. 
(H) T1 value in seconds denoting the ATP turnover lifetime of the DRX in I. tridecemlineatus. (I) T2 value in seconds denoting the ATP turnover lifetime 
in seconds of the SRX in I. tridecemlineatus. (J) Calculated myosin ATP consumption values of each single muscle fiber per minute in I. tridecemlineatus. 
Grey circles represent the values from each individual muscle fiber which was analyzed. Colored triangles represent the mean value from an individual 
animal, 8–12 fibers analyzed per animal. Statistical analysis was performed upon mean values. One-way ANOVA was used to calculate statistical 

Figure 2 continued on next page
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We did not identify any hibernation-related changes in Myh7 phosphorylation or acetylation, nor 
did we detect any alterations in Myh2 acetylation in I. tridecemlineatus.

To validate the significance of the PTM findings, a parallel PTM analysis was performed for U. 
arctos, a species in which myosin metabolic states are unaffected by hibernation (Figure 1). In this 
context, minimal changes in phosphorylated or acetylated residues were observed in the Myh7 and 
Myh2 proteins (Figure  5—figure supplements 1 and 2). These minimal modifications occurred 
on amino acids distinct from those in I. tridecemlineatus (Figure 5—figure supplements 1 and 2). 
Overall, our PTM analyses and related simulations indicate that torpor is associated with a Myh2 
hyper-phosphorylation possibly impacting myosin filament backbone stability in I. tridecemlineatus.

significance. *=p < 0.05, **=p < 0.01. n=5 individual animals per group. Figure created using BioRender.com and published using a CC BY-NC-ND 
license with permission.

© 2024, BioRender Inc. Figure 2 was created using BioRender, and is published under a CC BY-NC-ND 4.0. Further reproductions must adhere to the 
terms of this license

Figure 2 continued

Figure 3. X-ray diffraction experiments of skeletal muscle from Ictidomys tridecemlineaus demonstrate changes in M6 myosin meridional spacing 
during torpor. (A) Representative X-ray diffraction recordings from permeabilized skeletal muscle bundles from Ictidomys tridecemlineatus from summer 
active (SA), interbout arousal (IBA) and torpor. The M3 and M6 meridional reflections and the 1,0 and 1,1 equatorial reflections are indicated. (B) Ratio 
of the 1,1–1,0 equatorial reflections from active, IBA and torpor skeletal muscle. (C) M3 meridional spacing, measured in nm. (D) Normalized intensity 
(A.U.) of the M3 meridional reflection. (E) M6 meridional spacing, measured in nm. Colored circles represent the mean value obtained from each skeletal 
muscle bundle which was recorded. Data is displayed as mean ± SEM. One-way ANOVA was used to calculate statistical significance. *=p < 0.05, **=p 
< 0.01, ***=p < 0.001. n=5 individual animals per group.
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Figure 4. Myosin dynamics of Ictidomys tridecemlineatus are protected from temperature induced change during torpor, preventing an increase 
in myosin ATP consumption. (A) T1 value in seconds denoting the ATP turnover lifetime of the DRX in I. tridecemlineatus at 8 °C. (B) T2 value in 
seconds denoting the ATP turnover lifetime in seconds of the SRX in I. tridecemlineatus at 8 °C. (C) Ratio of the T1 expressed as the mean value for 
each matched animal at 20 °C/8 °C, separated for fiber type. (D) Ratio of the T2 expressed as the mean value for each matched animal at 20 °C/8 °C, 
separated for fiber type. (E) Ratio of calculated myosin ATP consumption expressed as 20 °C/8 °C, separated for fiber type. Black triangles represent the 
mean ratio value for each animal. One-way ANOVA was used to calculate statistical significance. *=p < 0.05, **=p < 0.01, ***=p < 0.001. n=5 individual 
animals per group. Figure created using BioRender.com and published using a CC BY-NC-ND license with permission.

© 2024, BioRender Inc. Figure 4 was created using BioRender, and is published under a CC BY-NC-ND 4.0. Further reproductions must adhere to the 
terms of this license

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Myosin ATP turnover lifetime is altered following exposure to cold temperature in MyHC-II muscle fibers from I. tridecemlineatus 
during active and IBA periods but not torpor.
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Sarcomeric proteins are dysregulated in resting skeletal myofibers of 
hibernating Ictidomys tridecemlineatus
In addition to PTMs, myosin binding partners and/or surrounding proteins may change during torpor 
and may contribute to disruptions of myosin metabolic states in I. tridecemlineatus. We performed 
an untargeted global proteomics analysis on isolated muscle fibers. Principal component analyses 

Figure 5. MYH2 protein in Ictidomys tridecemlineatus is hyper-phosphorylated during torpor, which is predicted to increase protein stability. (A) Peptide 
mapping of differentiated phosphorylation sites upon MYH2 protein during SA, IBA and torpor periods. Heat map demonstrates all sites observed to be 
differentiated following the calculation of z-scores for each site. Z-scores >0 equal hyper-phosphorylation and z-scores<0 equal hypo-phosphorylation 
for each residue. Violin plot demonstrates significantly differentiated residues using z-scores. Two-way ANOVA with Šídák’s multiple comparisons test 
was used to calculate statistical significance. *=p < 0.05, **=p < 0.01, ***=p < 0.001, ****=p < 0.0001. n=5 individual animals per group. (B) Chimera 
of MYH2 protein created using ChimeraX software. Important regions of the protein are annotated including coiled-coil region, ATP binding domain, 
actin binding domain and N-terminal SH3-like domain. Also, significantly hyper-phosphorylated residues are highlighted in red. (C) Schematic of MYH2 
protein with regions and hyper-phosphorylated resides annotated in red. Figure made in BioRender. (D) EvoEF calculations of protein stability in both 
wild type and phosphor-mimetic mutants. Aspartic acid was used to mimic phospho-threonine/phospho-serine due to their chemical similarity. ΔGStability 
indicates the stability score for the protein in its corresponding configuration. ΔΔGStability represents the change in stability in mutant proteins versus 
the wild type protein. ΔΔGStability of >0 represents an increase in the stability of a mutant versus wild type. Panel C created using BioRender.com and 
published using a CC BY-NC-ND license with permission.

© 2024, BioRender Inc. Figure 5 was created using BioRender, and is published under a CC BY-NC-ND 4.0. Further reproductions must adhere to the 
terms of this license

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. MYH7 protein phosphorylation and acetylation in U. arctos is relatively unchanged during winter periods.

Figure supplement 2. MYH2 protein phosphorylation and acetylation in U.
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showed that whilst SA muscle fibers form a separate entity, both IBA and torpor myofibers are clus-
tered, suggesting a common proteomics signature during the two states of hibernation (Figure 6A). 
Differentially expressed proteins included molecules involved in sarcomere organization and func-
tion (e.g. SRX-determining MYBPC2 and sarcomeric scaffold-defining ACTN3) as well as molecules 
belonging to metabolic pathways (e.g. lipid metabolism-related HMGCS2, carbohydrate metabolism-
linked PDK4; Figure 6B and C as well as Figure 6—figure supplements 1 and 2). Gene ontology 
analyses including the top five up-/downregulated proteome clusters reinforced the initial findings. 
They emphasized proteins related to ‘muscle system process’, ‘fiber organization’, ‘muscular contrac-
tion’ or ‘muscle development’ and to ‘lipid or carbohydrate metabolism’ pathways (Figure 6D–G). To 
complement these results, we performed profiling of core metabolite and lipid contents within the 
myofibers of I. tridecemlineatus. Lipid measurements were significantly lower during IBA, and torpor 
compared to SA (e.g. omega-6 and omega-7 fatty acids – Figure 6—figure supplement 3), in line 
with previous studies (Otis et al., 2011).

Untargeted global proteomics analysis was performed in U. arctos where myosin metabolic states 
are preserved during hibernation (Figure  1). As for I. tridecemlineatus, the principal component 
analysis emphasized differences between active and hibernating U. arctos (Figure 6—figure supple-
ment 4). Differentially expressed proteins, complemented by gene ontology analyses, underscored 
hibernation-related shifts in metabolic proteins as in I. tridecemlineatus (Figure 6—figure supple-
ment 5 ). However, sarcomeric proteins did not appear as differentially expressed molecules, high-
lighting their potential contribution to the adaptation of myosin in hibernating I. tridecemlineatus.

Discussion
In the present study, our objective was to investigate whether modulating muscle myosin DRX and 
SRX states could serve as a key mechanism for reducing ATP/metabolic demand during mammalian 
hibernation. Contrary to our hypothesis, our results indicate that during hibernation small mammals 
such as I. tridecemlineatus or E. quercinus modulate their myosin metabolic states unexpectedly by 
increasing energy expenditure of sarcomeres at ambient temperatures. At 8 °C, muscle fibers from 
I. tridecemlineatus obtained during SA and IBA phases displayed a significant rise in myosin-based 
ATP consumption. Conversely, fibers sampled during torpor bouts did not exhibit this cold-induced 
increase. These data suggest that small hibernators may stabilize myosin during torpor to prevent 
cold-induced increases in energy expenditure and thus increased heat production. Overall, our results 
also demonstrate a preferential adaptation of type II, fast-twitch, muscle fibers. Type II muscle fibers 
generally have more plasticity than type I, slow-twitch, fibers and have been demonstrated to undergo 
behavioral and fiber type transition in response to both metabolic and exercise stimuli (Qaisar et al., 
2016; Bourdeau Julien et al., 2018; Plotkin et al., 2021; Andersen and Aagaard, 2010).

Resting myosin conformation is unchanged during hibernation
In contrast to our study hypothesis, we demonstrated that the animals studied continue to main-
tain their active levels of myosin in the more metabolically active disordered-relaxed state (DRX) 
during periods of metabolic shutdown. This is of particular interest when compared to a previous 
study by Toepfer et al., who observed that in cardiac muscle from I. tridecemlineatus the percentage 
of myosin heads in the DRX conformation was lower in periods of torpor vs SA and IBA (Toepfer 
et al., 2020). Maintenance of the resting myosin conformation to active levels during hibernating 
periods may be to prevent the onset significant muscular atrophy during hibernation. Hibernating 
animals have evolved mechanisms that prevent skeletal muscle atrophy during the extended periods 
of immobilization inherent to hibernation (Hindle et  al., 2011; Miyazaki et  al., 2022; Miyazaki 
et al., 2019; Mugahid et al., 2019). Further research into changes to myosin head conformation in 
human atrophy and immobilization models would provide an interesting comparison to these data 
and potentially highlight resting myosin conformation as a novel target in the treatment of sarco-
penia associated with aging and/or inactivity. It would furthermore ideally be possible to increase 
the biological sample size of all the species analysed in this study to further confirm the results which 
we report, particularly as modest differences are seen in the resting myosin conformation values of 
U. americanus.

https://doi.org/10.7554/eLife.94616
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Figure 6. Global proteome analysis demonstrates changes to metabolic and sarcomeric changes in skeletal muscle fibers from Ictidomys 
tridecemlineatus during IBA and torpor. (A) Principal component analysis for all animals analyzed during SA, IBA and torpor periods. (B) Volcano plot 
displaying proteins which are differentially expressed during torpor vs active periods. FDR < 0.01. Red circles are upregulated proteins and blue circles 
are downregulated proteins. Highly differentiated proteins of interest are annotated with their respective protein name. (C) Volcano plot displaying 
proteins which are differentially expressed during IBA vs SA periods. Red circles are upregulated proteins and blue circles are downregulated proteins. 
Highly differentiated proteins of interest are annotated with their respective protein name. (D) Ontological associations between proteins upregulated 
during torpor vs SA periods. The top five association clusters are annotated on the network. A full list of clusters and the proteins lists included in 
clusters are available in Figure 6—figure supplement 1 and Supplementary file 2. (E) Ontological associations between proteins downregulated 
during torpor vs SA periods. The top five association clusters are annotated on the network. A full list of clusters and the proteins lists included in 
clusters are available in Figure 6—figure supplement 1 and Supplementary file 2. (F) Ontological associations between proteins upregulated during 
IBA vs SA periods. The top five association clusters are annotated on the network. A full list of clusters and the proteins lists included in clusters are 
available in Figure 6—figure supplement 2 and Supplementary file 3. (G) Ontological associations between proteins downregulated during IBA vs 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.94616
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Resting myosin ATP consumption is higher during hibernation in small 
mammals at ambient temperature
Our findings demonstrate that in small hibernators such as I. tridecemlineatus and E. quercinus, the 
ATP turnover time of relaxed myosin molecules (in both DRX and SRX conformations) is faster during 
torpor (and IBA), especially in type II muscle fibers, leading to an unexpected overall increased ATP 
consumption. Accordingly, a few studies investigating human pathological conditions have reported 
disruptions of the myosin ATP turnover times in resting isolated skeletal myofibers, but their actual 
impacts have never been thoroughly investigated (Lewis et al., 2023; Phung et al., 2020; Sonne 
et al., 2023). Here, originally, we estimated the consequences on the actual energy consumption of 
sarcomeres/muscle fibers. Our results of higher ATP consumption during torpor (and IBA) could, at 
first glance, be seen as counter-intuitive but is an indication of adaptation to the myosin protein during 
hibernating periods. It was therefore essential to investigate if these changes were also observed at 
a lower temperature, more relevant to the actual temperature of skeletal muscle in small hibernators 
during hibernation (Cooper et al., 2012).

Resting myosin ATP turnover time is protected from cold-induced 
change during torpor in Ictidomys Tridecemlineatus
A critical difference between the large hibernators, U. arctos and U. americanus, and the small hiberna-
tors, E. quercinus and I. tridecemlineatus, during their hibernation periods is core body temperature. 
Whilst the large hibernators only undergo a modest temperature decrease during hibernation, small 
hibernators reduce their core body temperature drastically to between 4°C and 8°C (Cooper et al., 
2012; Sahdo et al., 2013; Kisser and Goodwin, 2012). We repeated the Mant-ATP chase assays 
at 8  °C to mimic the environment of physiological torpor. Interestingly, lowering the temperature 
decreased DRX and SRX-linked ATP turnover times during active periods (in SA and IBA), especially in 
type II myofibers from I. tridecemlineatus, inducing an increase in ATP consumption. Metabolic organs 
such as skeletal muscle are well-known to increase core body temperature in response to significant 
cold exposure (i) by inducing rapid involuntary contractions known as shivering (Haman, 2006; Haman 
and Blondin, 2017) or (ii) a process named non-shivering thermogenesis (NST). NST has tradition-
ally been attributed to processes in brown adipose tissue, however, in recent years, skeletal muscle 
has also been shown to contribute to heat production via NST (Himms-Hagen, 1984). NST in skel-
etal muscle is stimulated by Ca2+-slippage by the sarcoplasmic reticulum Ca2+-ATPase (SERCA) in a 
cascade of molecular events controlled by a protein called sarcolipin (Raimbault et al., 2001; Nowack 
et al., 2017; Bal and Periasamy, 2020; Maurya et al., 2015). Mammals have evolved a mechanism 
of resistance to ryanodine receptor (RyR) opening via rises in Ca2+ to allow for Ca2+ leak which is acti-
vated by cAMP via the β-adrenergic system (Meizoso-Huesca et al., 2022; Singh et al., 2023). This 
Ca2+ slippage leads to the uncoupling of SERCA activity from Ca2+ transport across the sarcoplasmic 
reticulum. Consequently, ATP hydrolysis does not fuel ion transport. Instead, the resultant ADP stim-
ulates heat production via the mitochondrial electron transport system (Maurya et al., 2015; Asahi 
et al., 2003). Here we propose that, in addition to SERCA, myosin also contributes to NST in small 

SA periods. The top five association clusters are annotated on the network. A full list of clusters and the proteins lists included in clusters are available 
in Figure 6—figure supplement 2 and Supplementary file 3. Gene ontology networks were established using Metascape and visualized using 
Cytoscape. Detailed information upon the statistical testing used is available in the methods section. FDR < 0.01 significantly differentially expressed 
proteins were used to establish networks. Purple lines indicate a direct interaction. Circle size is determined by enrichment and color is determined by 
p value. n=5 individual animals per group.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. All ontological clusters altered in I. tridecemlineatus in torpor vs SA periods.

Figure supplement 2. All ontological clusters altered in I. tridecemlineatus in IBA vs SA periods.

Figure supplement 3. Metabolite and lipid quantification of skeletal muscle from I.tridecemlineatus reveals a decrease in lipid levels during torpor.

Figure supplement 4. Global proteome analysis of U.arctos skeletal muscle fibers reveal metabolic changes but not sarcomeric changes.

Figure supplement 5. All ontological clusters altered in U.arctos in summer vs winter periods.

Figure 6 continued
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hibernators. Interestingly, our group has previously demonstrated that the resting myosin dynamics 
are altered in patients with RYR1 mutation-related myopathies (Sonne et al., 2023).

Of potential further interest to the regulation of myosin would be the differential expression of 
heat shock proteins (HSPs) during hibernation. Various HSPs have been observed to be differentially 
expressed during hibernation in mammals such as bears and bats (Thienel et al., 2023; Lee et al., 
2008). This is of relevance to the data from our study as HSPs have been demonstrated to be able 
to bind sarcomeric proteins and regulate their turnover, including that of myosin itself (Glazier et al., 
2018; Ojima et al., 2018). The proteins they have been shown to interact with include the cardiac 
isoform of myosin binding protein-C an important regulator of resting myosin conformation in the 
heart (McNamara et al., 2017).

As the biopsies which were used in this study were all obtained from the hind leg of the animals 
studied, it is important to consider that the myosin dynamics may differ if these biopsies were sampled 
from different areas in the body. This is particularly important different areas of the body can have 
different core temperature and in some distal muscles, shivering does not occur (Aydin et al., 2008). 
A study from Aydin et al., 2008, demonstrated in mice that when a shivering muscle, soleus, was 
prevented from undergoing non-shivering thermogenesis via knock-out of UCP1 and were subse-
quently exposed to cold temperatures, the force production of these muscles was significantly 
reduced due to prolonged shivering. These results do suggest that even in shivering muscle, non-
shivering thermogenesis plays a key role in the generation of heat for survival and for the maintenance 
of muscle performance. Further work examining potential differences in the resting myosin dynamics 
of muscles sampled from different sites of the body would be of importance to the field in the future.

Essential to our findings were the simultaneous observations that these cold induced changes 
in myosin ATP turnover times in each resting myosin state were not observed in I. tridecemlineatus 
samples obtained during torpor. I. tridecemlineatus and other similar small hibernators require a 
significant reduction in their body temperature to survive during winter periods (Cooper et al., 2012; 
Christian et al., 2014). Therefore, the inhibition of excess heat production via myosin ATP hydrolysis 
is likely a protective mechanism which has evolved to facilitate reductions in core body temperature 
and wider metabolic shutdown during torpor.

Myh2 is hyper-phosphorylated during torpor increasing protein 
stability in Ictidomys tridecemlineatus
The exact causes of all the above alterations remain unclear but may be linked to unusual PTMs 
directly targeting MyHCs. Thus, hyper-phosphorylation stabilizing the myosin filament backbone of 
the Myh2 protein through Thr1039-P, Ser1240-P, and Ser1300-P during torpor is proposed as a main 
potential underlying biophysical mechanism. Interestingly, in silico molecular dynamics simulations 
mimicking close-by phosphorylations (Thr1309-P and Ser1362-P) have previously demonstrated a 
structural impairment of the myosin filament backbone (Sonne et al., 2023). This is consistent with 
our X-ray diffraction experiments where M6 spacing was found to be greater during torpor and 
is indicative of a unique structural configuration of the thick filament during hibernation (Ma and 
Irving, 2022). Besides PTMs, another potential cause of the myosin metabolic remodeling may be 
changes to myofibrillar protein expression. Our global untargeted proteomics analysis reveals that 
I. tridecemlineatus undergo a subtle reorganization in sarcomeric protein content (Hindle et al., 
2011; Chazarin et al., 2019; Miyazaki et al., 2022). Our results are consistent with previous similar 
analysis on I. tridecemlineatus from Hindle et. al., who identified significant changes in carbohydrate 
metabolism but also changes in sarcomere and cytoskeletal organization in SA vs torpor muscle 
(Hindle et al., 2011). In our analysis, we observed examples of type II muscle fiber specific proteins 
which were highly differentially expressed. ACTN3 (α-actinin-3), a type II fiber-specific molecule 
involved in linking adjacent sarcomeres, was notably downregulated during hibernation (Wyck-
elsma et al., 2021). Its depression in mammals unexpectedly appears to confer superior cold resis-
tance and heat generation in skeletal muscle (Wyckelsma et al., 2021; Pickering and Kiely, 2017; 
Clarkson et al., 2005). Another type II fiber-specific protein significantly downregulated in both 
torpor and IBA was MYBPC2 (fast skeletal myosin binding protein-C) (McNamara et al., 2017; Song 
et al., 2021). Its loss in skeletal mammals of rodents is thought to directly interfere with myosin 
conformation (Song et al., 2021). Taken together, we believe that the aberrant PTMs and/or protein 
expression remodeling do play a role in modifying the myosin filament stability and this all may be 

https://doi.org/10.7554/eLife.94616
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triggered by the well-known decreased tension on sarcomeres during hibernation (Linari et  al., 
2015; Ma et al., 2018b).

Conclusion
Our findings suggest ATP turnover adaptations in DRX and SRX myosin states occur in small hiberna-
tors like I. tridecemlineatus during hibernation and cold exposure. In contrast, larger mammals like U. 
arctos and U. americanus show no such changes, likely due to their stable body temperature during 
hibernation. This supports our hypothesis that myosin serves as a non-shivering thermogenesis regu-
lator in mammals, a mechanism inhibited during torpor.

Methods
Samples collection and cryo-preservation
Gastrocnemius muscles from I. tridecemlineatus and E. quercinus were collected from animals during 
the summer (when subjects cannot hibernate) as well as from those approximately half-way through 
a torpor bout and during IBA. Animal husbandry and hibernation status monitoring (using tempera-
ture telemetry or biologging) are described elsewhere (Huber et al., 2021; Hutchinson et al., 2022; 
Charlanne et al., 2022). Tissues were excised and frozen immediately in liquid N2, and subsequently 
stored at –80 °C. Muscles were shipped from Canada (I. tridecemlineatus) or Austria (E. quercinus) to 
Denmark on dry ice. For E. quercinus, all procedures have been discussed and approved by the institu-
tional ethics and animal welfare committee in accordance with GSP guidelines and national legislation 
(ETK-046/03/2020, ETK-108/06/2022), and the national authority according to §§29 of Animal Exper-
iments Act, Tierversuchsgesetz 2012 ‐ TVG 2012 (BMBWF-68.205/0175 V/3b/2018). For I. tridecem-
lineatus, all procedures were approved by the Animal Care Committee at the University of Western 
Ontario and conformed to the guidelines from the Canadian Council on Animal Care.

In Dalarna, Sweden, subadult (2.5 years to 5.5 years) Scandinavian brown bears (U. arctos) were 
sedated during hibernation and active periods as part of the Scandinavian Brown Bear Project. Each 
bear was outfitted with GPS collars and VHF transmitters, enabling location tracking in dens during 
winter and in natural habitats during active months. Bears were located in their dens in late February 
and again, from a helicopter, in late June. For winter sedation, a cocktail of medetomidine, zolazepam, 
tiletamine, and ketamine was used. During summer captures, bears were sedated from a helicopter 
using a higher dose of medetomidine, zolazepam, and tiletamine, omitting ketamine, to adjust for 
increased metabolic activity (Evans et al., 2012). All experiments on brown bears were performed 
with approval by the Swedish Ethical Committee on Animal Research (C18/15 and C3/16).

Protocols for black bear experiments were approved by the University of Alaska Fairbanks, Insti-
tutional Animal Care and Use Committee (IACUC nos. 02–39, 02–44, 05–55, and 05–56). Animal 
work was carried out in compliance with the IACUC protocols and ARRIVE guidelines. Animal care, 
monitoring of physiological conditions of the black bear (U. americanus) and tissue harvesting were 
described previously (Fedorov et al., 2014). Before tissue sampling, bears (51–143 kg) were captured 
in the field by Alaska Department of Fish and Game in May–July and kept in an outdoor enclosure 
for at least 2 months to allow adaptation for changes in mobility. Feeding was stopped 24 hr before 
summer active animals were euthanized. Hibernating bears were without food or water since October 
27 and euthanized for tissue sampling between March 1 and 26, about 1 month before expected 
emergence from hibernation. Core body temperature was recorded with radio telemetry and oxygen 
consumption and respiratory quotient were monitored in hibernating bears with open flow respirom-
etry. Samples of quadriceps muscle have been collected from captive hibernating and summer active 
males older than 2 years and banked at –80 °C.

Solutions
As previously published [79, 80], the relaxing solution contained 4 mM Mg-ATP, 1 mM free Mg2+, 10–6 
mM free Ca2+, 20 mM imidazole, 7 mM EGTA, 14.5 mM creatine phosphate and KCl to adjust the ionic 
strength to 180 mM and pH to 7.0. Additionally, the rigor buffer for Mant-ATP chase experiments 
contained 120 mM K acetate, 5 mM Mg acetate, 2.5 mM K2HPO4, 50 mM MOPS, 2 mM DTT with a 
pH of 6.8.

https://doi.org/10.7554/eLife.94616
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Muscle preparation and fibre permeabilization
Cryopreserved muscle samples were dissected into small sections and immersed in a membrane-
permeabilising solution (relaxing solution containing glycerol; 50:50 v/v) for 24 hr at −20°C, after 
which they were transferred to 4°C. These bundles were kept in the membrane-permeabilising solu-
tion at 4°C for an additional 24 hr. After these steps, bundles were stored in the same buffer at −20°C 
for use up to 1 week (Ross et al., 2019; Ross et al., 2020).

Mant-ATP chase experiments
On the day of the experiments, bundles were transferred to the relaxing solution and individual muscle 
fibres were isolated. Their ends were individually clamped to half-split copper meshes designed 
for electron microscopy (SPI G100 2010C-XA, width, 3 mm), which had been glued to glass slides 
(Academy, 26 x 76 mm, thickness 1.00–1.20 mm). Cover slips were then attached to the top to create a 
flow chamber (Menzel-Gläser, 22 x 22 mm, thickness 0.13-0.16 mm) (Ochala et al., 2021; Ranu et al., 
2022). Subsequently, at 20°C, myofibers with a sarcomere length of 2.00 µm were kept (assessed using 
the brightfield mode of a Zeiss Axio Scope A1 microscope). Each muscle fibre was first incubated for 5 
min with a rigor buffer. A solution containing the rigor buffer with added 250 μM Mant-ATP was then 
flushed and kept in the chamber for 5 min. At the end of this step, another solution made of the rigor 
buffer with 4 mM ATP was added with simultaneous acquisition of the Mant-ATP chase.

For fluorescence acquisition, a Zeiss Axio Scope A1 microscope was used with a Plan-Apochromat 
20x/0.8 objective and a Zeiss AxioCam ICm 1 camera. Frames were acquired every five seconds with a 
20 ms acquisition/exposure time using at 385nm, for 5 min. Three regions of each individual myofiber 
were sampled for fluorescence decay using the ROI manager in ImageJ as previously published 
(Ochala et al., 2021; Ranu et al., 2022). The mean background fluorescence intensity was subtracted 
from the average of the fibre fluorescence intensity for each image. Each time point was then normal-
ized by the fluorescence intensity of the final Mant-ATP image before washout (T = 0). These data 
were then fit to an unconstrained double exponential decay using Graphpad Prism 9.0:

	﻿‍ Normalized Fluorescence = 1 − P1(1 − exp(−t/T1)) − P2(1 − exp(−t/T2))‍�

where P1 (DRX) is the amplitude of the initial rapid decay approximating the disordered-relaxed state 
with T1 as the time constant for this decay. P2 (SRX) is the slower second decay approximating the 
proportion of myosin heads in the super-relaxed state with its associated time constant T2 (Ochala 
et al., 2021).

Mant-ATP Chase Experiment were performed at ambient lab temperature (20 °C) for all samples 
unless otherwise stated. An additional setup was made to do the experiments at colder temperatures 
(~8 °C). All slides were prepared in the same manner as mentioned above until incubation with rigor 
buffer and Mant-ATP buffer. All slides were kept on a metal plate on ice while incubated with both 
rigor and Mant-ATP buffer. The temperature of the chambers was measured (~8 ) before flushing with 
ice-cold ATP.

Fiber-type staining
Fiber typing After the completion of the Mant-ATP chase experiments, individual fibers were stained 
with an anti-MyHC slow/type I antibody (A4.951; IgM isoform: 1:50, DSHB). Fibers were then washed 
in PBS and incubated with a secondary antibody conjugated to Alexa 647 in a goat serum (Thermo 
Fisher Scientific, dilution 1:1000). After washing, the muscle fibers were mounted in Fluoromount, and 
images were taken with a Zeiss AXIO Lab A1 microscope (Carl Zeiss AG, GE, objectives × 20 and×10). 
Positive staining with the MyHC β-slow/type I antibody indicated a type I muscle fiber and negative 
staining with the MyHC β-slow/type I antibody indicated a type II muscle fiber. Comparisons between 
muscle fibers sampled in summer or winter were then separated accordingly. Fiber-type breakdown 
and analysis for all samples used in this study are shown in Supplementary file 1.

X-ray diffraction recordings and analyses
Thin muscle bundles were mounted and transferred to a specimen chamber which was filled with 
the relaxing buffer. The ends of these thin muscle bundles were then clamped at a sarcomere length 
of 2.00 µm. Subsequently, X-ray diffraction patterns were recorded at 15°C using a CMOS camera 
(Model C11440-22CU, Hamamatsu Photonics, Japan, 2048 x 2048 pixels) in combination with a 4-inch 
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image intensifier (Model V7739PMOD, Hamamatsu Photonics, Japan). The X-ray wavelength was 
0.10 nm and the specimen-to-detector distance was 2.14 m. For each preparation, approximately 
20–50 diffraction patterns were recorded at the BL40XU beamline of SPring-8 and were analyzed as 
described previously (Ochala et al., 2010). To minimize radiation damage, the exposure time was 
kept low (0.5 or 1 s) and the specimen chamber was moved by 100 μm after each exposure. Following 
X-ray recordings, background scattering was subtracted, and the major myosin meridional reflection 
intensities/spacing were determined as described elsewhere previously (Hessel et al., 2022; Ochala 
et al., 2023).

Myosin heavy chain band Isolation for post-translational identifications
Briefly, muscle biopsy samples were cut into 15 mg sections. These were immersed into a sample 
buffer (0.5 M Tris pH = 6.8, 0.5 mg/ml Bromophenol Blue, 10% SDS, 10% Glycerol, 1.25% Mercap-
toethanol) at 4  °C. Samples were then homogenized and centrifuged allowing the supernatant to 
be extracted and used for SDS-PAGE gels (with stacking gel made with Acrylamide/Bis 37.5:1 and 
separation gel made with Acrylamide/Bis 100:1). Proteins were separated and individual MyHC bands 
excised (Andersen and Aagaard, 2000).

Post-translational modification peptide mapping
Proteins were separated on an SDS-PAGE gel (6% polyacrylamide and 30% glycerol), and individual 
bands excised. For both U. arctos and I. tridecemlineatus, separate gel bands were excised for Myh7 
and Myh2 and their relevant molecular weights. Gel bands were destained twice with destaining buffer 
(25 mM ammonium bicarbonate, 50% acetonitrile), dehydrated with 100% acetonitrile, and incubated 
with reduction/alkylation solution (50 mM Tris pH = 8.5, 10 mM Tcep, 40 mM CAA) for 15 min at 37 °C. 
Gel bands were washed in destaining buffer, dehydrated, and incubated with 500 ng Trypsin in 20 µL 
digestion buffer (50 mM TEAB) for 15 min at 37 °C. A total of 30 µL additional digestion buffer was 
added, and the gel bands incubated over night at 37 °C. After collection of the digested peptides, 
gel bands were eluted once in 50 µl 1% TFA. Both eluates were combined, and peptides desalted on 
C18 material prior to LC-MS analysis.

Liquid chromatography was performed using a Vanquish Neo HPLC system (Thermo Fisher Scien-
tific) coupled through a nano-electrospray source to a Tribrid Ascend mass spectrometer (Thermo 
Fisher Scientific). Peptides were loaded in buffer A (0.1% formic acid) and separated on a 25  cm 
column Aurora Gen2, 1.7uM C18 stationary phase (IonOpticks) with a non-linear gradient of 1–48% 
buffer B (0.1% formic acid, 99.9% acetonitrile) at a flow rate of 400 nL/min over 53 min. The column 
temperature was kept at 50 ° C. Spray voltage was set to 2200 V. Data acquisition switched between 
a full scan (60 K resolution, 123ms max. injection time, AGC target 100 %) and 10 data‐dependent 
MS/MS scans (30 K resolution, 59ms maximum injection time, AGC target 400% and HCD activation 
type). Isolation window was set to 1.4, and normalized collision energy to 25. Multiple sequencing of 
peptides was minimized by excluding the selected peptide candidates for 45 s.

Global proteome profiling
Fresh collagenase dilution in DMEM was first prepared by filtering the collagenase through 22 µm. 
The solution is placed in a+37 chamber before use. Two g of each snap frozen sample is added to 
Eppendorf tubes with marked sample ID. In each tube, 200 µl of +37 Collagenase is added to break 
down the connected tissue in the muscle sample to prevent connective tissue in the sample to be 
analyzed. All tubes were incubated at +37 for 90 min and agitated every 15 min. After this treatment, 
samples were each put in a six-well plate. Fibers were then cleaned from connective tissue and sepa-
rated with tweezers. About 50 fibers of each sample were transferred into an Eppendorf tube with 
ice-cold PBS. Fibers were spun down at 400 × g and 4 and PBS was removed. Skeletal muscle fiber 
tissue samples were then lysed with lysis buffer (1% (w/v) Sodium Deoxycholate, 100 mM Teab, pH 
8.5) and incubated for 10 min at 95 °C followed by sonication using a Bioruptor pico (30 cycles, 30 s 
on/off, ultra-low frequency). Heat incubation and sonication were repeated once, samples cleared by 
centrifugation, reduced with 5 mM (final concentration) of TCEP for 15 min at 55 °C, alkylated with 
20 mM (final concentration) CAA for 30 min at RT, and digested adding Trypsin/LysC at 1:100 enzyme/
protein ratio. Peptides were cleaned up using StageTips packed with SDB-RPS and resuspended in 
50 µL TEAB 100 mM, pH 85. A total of 50 µg of each sample was labeled with 0.5 mg TMTpro labeling 
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reagent according to the manufacturer’s instructions. Labeled peptides were combined and cleaned 
up using C18-E (55 µm, 70 Å, 100 mg) cartridges (Phenomenex).

Labeled desalted peptides were resuspended in buffer A* (5% acetonitrile, 1% TFA), and fraction-
ated into 16 fractions by high-pH fractionation. For this, 20 µg peptides were loaded onto a Kinetex 
2.6u EVO C18 100 Å 150 × 0.3 mm column via an EASY‐nLC 1200 HPLC (Thermo Fisher Scientific) in 
buffer AF (10 mM TEAB), and separated with a non-linear gradient of 5–44% buffer BF (10 mM TEAB, 
80% acetonitrile) at a flow rate of 1.5 µL / min over 62 min. Fractions were collected every 60 s with a 
concatenation scheme to reach 16 final fractions (e.g. fraction 17 was collected together with fraction 
1, fraction 18 together with fraction 2, and so on).

Fractions were evaporated, resuspended in buffer A*, and measured on a Vanquish Neo HPLC 
system (Thermo Fisher Scientific) coupled through a nano-electrospray source to a Tribrid Ascend 
mass spectrometer (Thermo Fisher Scientific). Peptides were loaded in buffer A (0.1% formic acid) 
onto a 110 cm mPAC HPLC column (Thermo Fisher Scientific) and separated with a non-linear gradient 
of 1–50% buffer B (0.1% formic acid, 80% acetonitrile) at a flow rate of 300 nL/min over 100 min. The 
column temperature was kept at 50 ° C. Samples were acquired using a Real Time Search (RTS) MS3 
data acquisition where the Tribrid mass spectrometer was switching between a full scan (120 K resolu-
tion, 50ms max. injection time, AGC target 100%) in the Orbitrap analyzer, to a data‐dependent MS/
MS scans in the Ion Trap analyzer (Turbo scan rate, 23ms maximum injection time, AGC target 100% 
and HCD activation type). Isolation window was set to 0.5 (m/z), and normalized collision energy to 32. 
Precursors were filtered by charge state of 2–5 and multiple sequencing of peptides was minimized 
by excluding the selected peptide candidates for 60 s. MS/MS spectra were searched in real time 
on the instrument control computer using the Comet search engine with either the UP000291022 U. 
americanus or UP000005215 I. tridecemlineatus FASTA file, 0 max miss cleavage, 1 max oxidation on 
methionine as variable mod. and 35ms max search time with an Xcorr soring threshold of 1.4 and 20 
precursor ppm error. MS/MS spectra resulting in a positive RTS identification were further analyzed in 
MS3 mode using the Orbitrap analyzer (45 K resolution, 105ms max. injection time, AGC target 500%, 
HCD collision energy 55 and SPS = 10). The total fixed cycle time, switching between all hree MS scan 
types, was set to 3 s.

Proteomics data analysis
Raw mass spectrometry data from peptide mapping experiments were analyzed with MaxQuant 
(v2.1.4). Peak lists were searched against the U. americanus (Uniprot UP000291022) or I. tridecemlin-
eatus (Uniprot UP000005215) proteomes combined with 262 common contaminants by the integrated 
Andromeda search engine. False discovery rate was set to 1% for both peptides (minimum length of 7 
amino acids) and proteins. Phospho(STY) and Acetyl(K) were selected as variable modifications.

Raw mass spectrometry data from global proteome profiling were analyzed with Proteome Discov-
erer (v3.0.1.27) using the default processing workflow ‘PWF_Tribrid_TMTpro_SPS_MS3_SequestHT_
INFERYS_Rescoring_Percolator’. Briefly, peak lists were searched against the UniProtKB UP000291022 
U. americanus or UP000005215 I. tridecemlineatus FASTA databases by the integrated SequestHT 
search engine, setting Carbamidomethyl (C) and TMTpro (K, N-Term) as static modifications, Oxida-
tion (M) as variable modification, max missed cleavage as 2 and minimum peptide amino acid length 
as 7. The false discovery rate was set to 0.01 (strict) and 0.05 (relaxed).

All statistical analysis of TMT derived protein expression data was performed using in-house devel-
oped python scripts based on the analysis pipeline of the Clinical Knowledge Graph (Santos et al., 
2022). Protein abundances were log2-transformed, and proteins with less than two valid values in at 
least one group were excluded from the analysis. Missing values were imputed with MinProb approach 
(width = 0.3 and shift = 1.8). Statistically significant proteins were determined by unpaired t-tests, with 
Benjamini-Hochberg correction for multiple hypothesis testing. Fold-change (FC) and False Discovery 
Rate (FDR) thresholds were set to 2 and 0.05 (5%), respectively.

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 
via the PRIDE partner repository (Perez-Riverol et al., 2022) with the dataset identifier PXD044505, 
PXD044685, and PXD044728.

Gene Ontology networks were created using Metascape software (Zhou et al., 2019). Networks 
were annotated using Cytoscape (Shannon et al., 2003). Principal component plots analysis were 
created in Perseus (Tyanova et al., 2016).
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1H-NMR metabolomic characterization
Frozen lyophilized tissue samples were shipped on dry ice to Biosfer Teslab (Reus, Spain) for the 1H-
NMR analysis. Prior to analysis, aqueous and lipid extracts were obtained using the Folch method with 
slight modifications (Folch et al., 1957). Briefly, 1440 µL of dichloromethane:methanol (2:1, v/v) were 
added to 25 mg of pulverized tissue followed by three 5 min sonication steps with one shaking step 
in between. Next, 400 µL of ultrapure water was added, mixed, and centrifuged at 25,100 × g during 
5 min at 4 °C. Aqueous and lipid extracts were transferred to a new Eppendorf tube and completely 
dried in SpeedVac to achieve solvent evaporation and frozen at –80 °C until 1H-NMR analysis.

Aqueous extracts were reconstituted in a solution of 45 mM PBS containing 2.32 mM of Trimeth-
ylsilylpropanoic acid (TSP) as a chemical shift reference and transferred into 5 mm NMR glass tubes. 
1H-NMR spectra were recorded at 300 K operating at a proton frequency of 600.20 MHz using an 
Avance III-600 Bruker spectrometer. One-dimensional 1H pulse experiments were carried out using 
the nuclear Overhauser effect spectroscopy (NOESY)-presaturation sequence to suppress the residual 
water peak at around 4.7 ppm and a total of 64 k data points were collected. The acquired spectra 
were phased, baseline-corrected and referenced before performing the automatic metabolite profiling 
of the spectra datased through and adaptation of Dolphin (Gómez et al., 2014). Several database 
engines (Bioref AMIX database Bruker), Chenomx and HMDB, and literature were used for 1D-reso-
nances assignment and metabolite identification (Wishart et al., 2022; Vinaixa et al., 2010).

Lipid extracts were reconstituted in a solution of CDCl3:CD3OD:D2O (16:7:1, v/v/v) containing 
Tetramethylsilane (TMS) and transferred into 5 mm NMR glass tubes. 1H-NMR spectra were recorded 
at 286 K operating at a proton frequency of 600.20 MHz using an Avance III-600 Bruker spectrometer. 
A 90° pulse with water pre-saturation sequence (ZGPR) was used. Quantification of lipid signals in 
1H-NMR spectra was carried out with LipSpin an in-house software based on Matlab (Barrilero et al., 
2018). Resonance assignments were done based on literature values (Vinaixa et al., 2010).

Myosin chimera simulation
ChimeraX was used to make a simulation of Myh2 to illustrate the changes occurring during torpor 
in I. tridecemlineatus. The sequence was downloaded from UniProt, and significant post-translational 
modifications positions were highlighted on the protein simulation and marked with red. ATP binding 
domain and actin binding domain were additionally highlighted.

EvoEF protein stability simulations
EvoEF (version 1) was used to calculate the stability change upon mutation, in terms of ΔΔG. To this 
end, we first used ‘EvoEF --command=RepairStructure’ to repair clashes and torsional angles 
of the wild type structure. ‘EvoEF --command=BuildMutant’ is then used to mutate the repaired 
wild type structures into the mutant by changing the side chain amino acid type followed by a local 
side chain repacking. ‘EvoEF --command=ComputeStability’ is then applied to both the repair 
wild type and the mutant to calculate their respective stabilities (ΔGWT and ΔGmutant). The stability 
change upon mutation can then be derived by ΔΔG=ΔGmutant-ΔGWT. A ΔΔG below zero means that 
the mutation causes destabilization; otherwise, it induces stabilization (Huang et al., 2020; Pearce 
et al., 2019). The sequence of the MYH2 coiled-coil backbone was used for EvoEF stability calcula-
tions due to size limitations in the software when using the entire MYH2 protein sequence.

Statistical analysis
Data are presented as means ± standard deviations. Statistical tests used are listed in the figure 
legends.Graphs were prepared and analysed in Graphpad Prism v9. Statistical significance was set to 
p<0.05 unless otherwise stated.
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The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Wierer M, Ochala J 2024 Proteomic analysis of 
skeletal muscle fibre 
samples from hibernating 
and awake bears

http://www.​ebi.​ac.​
uk/​pride/​archive/​
projects/​PXD044505

PRIDE, PXD044505

Wierer M, Ochala J 2024 Myosin PTM peptide 
mapping from hibernating 
and active bears and 
squirrels

http://www.​ebi.​ac.​
uk/​pride/​archive/​
projects/​PXD044685

PRIDE, PXD044685

Wierer M, Ochala J 2024 Proteomic analysis of 
skeletal muscle fibre 
samples from hibernating 
and awake squirrels

http://www.​ebi.​ac.​
uk/​pride/​archive/​
projects/​PXD044728

PRIDE, PXD044728
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