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Abstract: Salmonids are affected by the economically significant whirling disease (WD) caused by the
myxozoan parasite Myxobolus cerebralis. In the past, it was endemic to Eurasia, but it has now spread
to different regions of North America, Europe, New Zealand, and South Africa. Among salmonids,
rainbow trout is considered the most highly susceptible host. Upon entering to the host’s body,
the parasite invades the spine and cranium, resulting in whirling behaviour, a blackened tail, and
destruction of cartilage. The disease is characterized by the infiltration of numerous inflammatory
cells, primarily lymphocytes and macrophages, with the onset of fibrous tissue infiltration. Several
efforts have been undertaken to investigate the role of various immune modulatory molecules
and immune regulatory genes using advanced molecular methods including flow cytometry and
transcriptional techniques. Investigation of the molecular and cellular responses, the role of STAT3 in
Th17 cell differentiation, and the inhibitory actions of suppressors of cytokine signaling (SOCS) on
interferons and interleukins, as well as the role of natural resistance-associated macrophage proteins
(Nramp) in WD have significantly contributed to our understanding of the immune regulation
mechanism in salmonids against M. cerebralis. This review thoroughly highlights previous research
and discusses potential future directions for understanding the molecular immune response of
salmonids and the possible development of prophylactic approaches against WD.
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1. Introduction

Fish, being a potential source of nutrition, play an important part in meeting global
food demands [1]. Climate change has created favourable conditions for the parasitic
lifecycle, posing a serious threat to aquaculture, including salmonid fishes [2]. Among
these threats, myxozoan parasites, particularly Myxobolus cerebralis, is a major challenge
for salmonids. It is the causative agent of the serious disease named as whirling disease
(WD) [3–5]. Studies have suggested that M. cerebralis stands out as the most notable and
economically impactful parasite, leading to an estimated loss of $35–60 million in the US
alone [6,7]. While previously believed to be enzootic only in Eurasia, WD has now been
detected in various salmonid-rearing regions across Europe, the USA, Canada, South Africa,
and New Zealand [8,9].

Whirling disease affects multiple salmonid fishes with varying severity and disease
onset [10,11]. Clinical signs can be observed in Chinook salmon (Oncorhynchus tshawytscha),
brook trout (Salvelinus fontinalis), sock eye salmon (Oncorhynchus nerka), rainbow trout
(Oncorhynchus mykiss), and brown trout (Salmo trutta) [10,12,13]. Although different studies
have revealed clinical progression in brown trout, rainbow trout is considered the most
highly susceptible host [14–16]. The clinical signs caused by WD include a blackened tail,
whirling behaviour, and death in infected fish [17–19]. Tubifex tubifex, as an obligate inverte-
brate host, releases triactinomyxon spores (TAMs) [20], which invade fish through mucous
cell openings in skin, gill epithelium, and the oral route [21]. Following penetration, the

Int. J. Mol. Sci. 2023, 24, 17392. https://doi.org/10.3390/ijms242417392 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms242417392
https://doi.org/10.3390/ijms242417392
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-8148-0218
https://orcid.org/0000-0001-9273-1502
https://doi.org/10.3390/ijms242417392
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms242417392?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 17392 2 of 22

sporoplasm travels within the skin and gill epithelium, subsequently invading epithelial
cells [22]. As a result of internal budding within a cytoplasmic vacuole, the sporoplasm pro-
duces primary and secondary cells [21]. These primary cells, containing vegetative nuclei
and generative cells, are named as plasmodia. They migrate through the peripheral nerves
to spinal cord and brain and reside in the cartilage, leading to destruction of the ossification
processes in the entire skeleton and necrosis due to granulomatous inflammation [14,22].
This cartilage damage activates the fish host’s immune system [16].

The fish immune system comprises two main components: the innate and adaptive
immune systems [23]. Innate immunity is activated by pathogens and serves as the host’s
first line of defence against infections [24]. Myxosporean spp. often provoke minimal or
no host responses [21,25]. In fact, it is believed that they employ such a manipulative
strategy to evade the fish immune system, avoiding local immune responses and potential
inflammatory reactions at the point of entry [26,27]. Specifically, M. cerebralis uses an
immune-privileged pathway to invade the head cartilage via the central nervous system
and peripheral nerves, where there is a minimum of immune response [21]. TAMs exhibit a
higher affinity for rainbow trout compared to brown trout. On the other hand, brown trout
triggers more protective immune mechanisms that contribute to disease resistance [14]. The
attachment of TAMs is influenced by mucosal factors, and a cellular protective response
can be observed through the presence of eosinophils in the root ganglia of infected fish [15].

Limited information is available regarding resistance and susceptibility mechanisms
among M. cerebralis and fish host species [28]. However, recent investigations have used
fluorescence-activated cell sorting (FACS) [29] to reveal certain aspects of cellular and
cytokine responses against M. cerebralis, thereby enhancing our understanding of the
factors underlying susceptibility and resistance to WD [29–32]. Previously, both innate and
acquired immune mechanisms have been reviewed in myxozoans [33,34]. Various efforts
have also been made to investigate the role of STAT3 in Th 17 cell differentiation [35] and
to study the potential inhibitory actions of suppressors of cytokine signalling (SOCS1 and
SOCS3) on IFNγ and IL-1β [30] during WD. Moreover, the expression levels of natural
resistance-associated macrophage proteins (Nramp α and β) [28] have been studied to
stimulate the immune systems. An effort has been made to silence M. cerebralis serine
protease (MyxSP-1) within the T. tubifex host using short-interfering RNA techniques to
disrupt the life cycle of M. cerebralis [36]. Nevertheless, a complete understanding of fish
immune mechanisms against M. cerebralis remains to be uncovered [4,37]. Although, the
aforementioned research studies have investigated the expressions of different immune
related genes, offering insights into the role of these genes in immunity against WD, further
exploration is still required to fully comprehend the whole function of the immune system
of host in defence mechanism against WD. Therefore, in this review, we highlight the
comprehensive immune dynamics of salmonids and techniques (FACS, siRNA) used in
investigation against M. cerebralis, aiming to unveil possible novel approaches in the future
to enhance disease management and create prevention strategies.

2. Clinical and Histopathological Changes in Diseased Fish

The parasite migrates to the spine and cranium, causing inflammation and lesions
resulting in cranium destruction, which leads to damage and deformation of the skeleton in
fish [38]. Moreover, it causes spinal cord constriction and brain stem compression, resulting
in whirling behaviour and pressure on nerves, which control the pigment cells causing
a black tail [8,39]. Numerous intra- and intercellular sporoplasm cells are found in the
epithelia of the buccal cavity and epidermis (Figure 1a). Myxobolus cerebralis spores can
also be found in gill arches [14]. Parasitic stages can be observed between the nerve fibres
of the spinal cord (Figure 1b) [16], as well as in the head cartilage, vertebrae and gills [40].
The presence of cartilaginous necrotic foci rich in parasitic stages and vegetative cells
characterizes the cranial lesions (Figure 2). The disease is characterized by the infiltration
of numerous inflammatory cells, primarily lymphocytes and macrophages, with onset of
fibrous tissue infiltration [41]. Reduced ability to maintain an upright orientation of the
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body was suggested to be due to the damage of the vestibular-auditory apparatus [42].
Following penetration through the integumentary system, the parasite attacks the nervous
system directly, so scientists have focused more on immune studies in the cartilage and
nervous system of salmonids.
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3. Innate Immune Response

Two immune mechanisms are involved in fish immunity: innate immunity and adap-
tive immunity, also named the non-specific and specific immune systems, respectively [43].
Being efficient, innate immunity is considered the primary component in combating disease-
causing pathogens in comparison with the acquired immune system [44]. Innate immunity
is a rapidly responding strategy but does not deliver protection for long period of time [45].
The categorization of the innate immune mechanism is based on three compartments: the
physical barrier and cellular and humoral factors [26,46].

3.1. Role of Physical Barrier in Immunity against M. cerebralis

The physical component of the immune system is a significant part of the innate im-
mune system in fish. It includes scales, the mucous layer and epithelium present in the skin,
gills and gastrointestinal tract, providing resistance to various infections [47–49]. Further,
immune cells such as macrophages, lymphocytes, and eosinophilic granular cells are also
found in the epidermis [47,50,51]. The triactinomyxon spores of M. cerebralis enter the fish
body through these physical barriers [22,52] and encounter mucous barriers that consist
of a complex of mucins containing lectins, lysozymes, C-reactive proteins, complements,
haemolysins commensal microbiota, pentraxins and immunoglobulins (IgM) [53–57]. These
biochemicals substances have biocidal or biostatic functions [58]. A study revealed the
destruction of M. cerebralis within the cytoplasm of fish epithelial cells [21]. There is another



Int. J. Mol. Sci. 2023, 24, 17392 4 of 22

report about presence of parasitic developmental stages in cytoplasm of phagocytes in the
epidermis of the rainbow trout [59]. During the first few hours of intrapiscine development,
M. cerebralis proteases were upregulated in the fins and gills after invasion. Genes encoding
the serine protease (MyxSP-1) and cysteine protease (MyxCP-1) were assessed post infec-
tion. Upregulation in the expression of these genes was reported in the gills and dorsal fin
tissues [60,61]. There was additional identification of the serine protease gene (MyxSubtSP)
from M. cerebralis [62]. Sarker et al. [36] used short-interfering RNA (siRNA) to induce RNA
interference (RNAi), targeting the MyxSP-1 for development of intervention strategy. The
study silenced M. cerebralis MyxSP-1 in its annelid host T. tubifex via siRNA-induced RNAi.
T. tubifex were infected with M. cerebralis myxospores and were subjected to treatment with
MyxSP-1 siRNA or negative control siRNA, both at 2 µM concentration for 24 h at 15 ◦C.
This treatment occurred at 24 h post infection (hpi), 48 hpi, 72 hpi, 96 hpi, 1 month post
infection (mpi), 2 mpi and 3 mpi, respectively. After the final siRNA treatment at 3 mpi,
the siRNA-treated T. tubifex were collected, and the expression of the MyxSP-1 gene was
assessed using qPCR (Figure 3). When it was applied to rainbow trout fry, it prevented
whirling disease and induced sustained RNAi in T. tubifex, representing a promising RNAi-
based therapy for whirling disease in salmonids [36]. It would be beneficial to explore the
optimization of siRNA methods and dosages to increase the efficiency of MyxSP-1 gene
silencing in T. tubifex. Moreover, adapting RNAi therapy for diverse salmonid species and
environments is essential for a comprehensive whirling disease strategy.
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3.2. Cellular Immunity

Like mammals, the immune cell populations in fish include macrophages, lympho-
cytes, neutrophils, eosinophilic granular cells, basophils, and dendritic cells. Additionally,
fish possess melanomacrophage centres and rodlet cells (RC) [63].

3.2.1. Macrophages

Macrophages have a central role in immunity owing to their function in phagocytosis
and lymphocyte activation. They have distinct receptors with the ability to recognize
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β-glucan, which allows immunostimulants to intensify leukocytes’ respiratory burst by
producing reactive oxygen species possessing bactericidal properties [64]. In macrophages,
nitric oxide is produced in ample amounts by inducible nitric oxide synthase iNOS, and
assumes a pivotal role in the process of inflammation [65]. Previous studies have reported
increased iNOS expression after M. cerebralis infection within progressive time periods of
the disease. These observations were in the infected susceptible Trout lodge (TL) strain,
while in the case of the resistant Hofer strain (HO), greater expression was evident only at
8 days post exposure (PE) [66]. Arginase is the distinctive enzyme involved in promoting
the macrophage’s proinflammatory response [67]. There are two different isoforms of
arginase, arginase-1 and arginase-2 [68]. In fish, arginase-2 is subjected to distinct reg-
ulatory mechanisms and is implicated in inducing an alternative activation state in fish
macrophages [67]. A qRT-PCR-based study measured the expression level of arginase-2
and iNOS after exposure to M. cerebralis infection in rainbow trout. The susceptible fish
strain TL exhibited increased levels of arginase-2 at 2 h, while in the case of resistant strain
HO, the increase was observed 8 days after exposure [66]. The expression level of iNOS
was upregulated in the susceptible strain from 24 h to 8 days post exposure, whereas in
the resistant strain, this upregulation was observed only at 8 days post exposure. As a
result of increased iNOS expression, it is expected that the inflammatory response and
tissue damage will be more significant than strain H and strain T being unable to mount an
effective immune response compared to resistant strains [69]. A research study compared
the post-exposure expression level of Nramp α and β to M. cerebralis. Natural resistance-
associated macrophage proteins (Nramp) have been considered a central figure in the innate
immune response that arouses macrophage activity and boosts the macrophage’s capability
to kill phagocytized pathogens. Downregulation of both genes Nramp α and Nramp β

was noted in the vulnerable American TL strain at day 14 and day 40 following exposure,
respectively [28]. This discovery indicated a possible Nramp involvement in the negative
feedback mechanism [70]. Other studies have also reported similar gene expression in
response to pathogens, but the cause of this regulation still needs to be disclosed [71–73].
Exploring the immune functional role of Nramp in the host through the regulation of the
negative feedback mechanism would be a captivating endeavour.

3.2.2. Lymphocytes

Lymphocytes are defensive cells analogous to B cells, T cells, macrophages, cytotoxic
cells, and leukocytes [47,74,75]. Haematological responses against triactinomyxon spores
of M. cerebralis have been investigated [76]. Lower numbers of lymphocytes were reported
in infected fish. In salmonid fish, the presence of lower number of lymphocytes has been
reported in Saprolegina-infected brown trout [77], in rainbow trout infected with Vibrio
anguillarum [78], and post exposure to copper [79]. Physiological processes leading to
stress [80,81], alterations in dynamics of lymphocytes due to the direct interaction of the
fish immune system, lymphocyte destruction by pathogenic agents, and migration of
lymphocytes from peripheral blood to invaded tissue are multiple factors involved in the
cause of lymphopenia [78,82].

The modulation of immune cells in salmonids to combat M. cerebralis infection is
summarized in Table 1. Densmore et al. (2004) reported lower activity of lymphocytes in M.
cerebralis-infected rainbow trout against bioactive proteins, pokeweed mitogen, lipopolysac-
charides, phytohemagglutinin, and concanavalin [83]. On the contrary, fish infected with
M. cerebralis exhibited higher bactericidal activity of anterior kidney macrophages against
Yersinia ruckeri than in noninfected fish. Because of the involvement of leukocyte sup-
pression, functional increase, and the characteristics of the immune response evoked by
the pathogen and secondary pathogen, difficulties will be encountered in extrapolating
these results to other parasites and pathogens, especially on M. cerebralis [83]. However, a
recent study revealed that proper activation of T and B lymphocytes in the head kidneys
(HK), caudal fin (CF), and spleen (SP) allows more regulated immune cell responses and
immunity against parasites in resistant HO rainbow trout strain [29].
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Table 1. Summary of how immune cells are modulated in salmonids to combat M. cerebralis infection.

Immune Cells Studied Fish Spp. Immune Modulation Techniques Used Reference

Lymphocytes Rainbow trout
Lower propagation of lymphocyte in M.

cerebralis infected fish against
bioactive proteins.

Bromodeoxyuridine (BrDU)
incorporation assay [83]

Granulocytes Brown trout and
rainbow trout

Eosinophilic granular leucocytes were
noticed in the root ganglia of infected
brown trout, but not of rainbow trout.

Histopathology and
Immunohistochemistry [84]

Mast cells
Chinook salmon,

Coho salmon, and
rainbow trout

Coho salmon, but not rainbow trout or
chinook salmon susceptible to M. cerebralis
infection, exhibited an abundance of many

eosinophilic granule cells (EGC) or mast
cells in lesions caused by parasites or
ganglia containing parasitic stages.

Histological analyses [85]

Eosinophilic granular
leucocytes

Brown trout and
rainbow trout

Eosinophilic granular leukocytes were
more noticeable in brown trout compared

to rainbow trout.

Histopathology and
Immunohistochemistry [84]

Myeloid cells, B cells and
T cells Rainbow trout

The study expressed that in the TL strain,
there were overall increases in CF, HK, and
SP myeloid cells, alongside drops in B cells

and T cells in the SP and HK at carious
time periods. Conversely, the HO strain

primarily experienced an increase in T cells
across CF, HK, and SP at various times.

FACS [29]

3.2.3. Granulocytes

Fish granulocytes are traditionally referred to with the terms neutrophil, basophil, and
eosinophil. However, other terms such as eosinophilic granulocytes or fine granulocytes
have also been used [86]. In mucosal infections (skin, gills, and intestines), granulocytes
and phagocytes are typically the most prevalent immune system cells [63].

A wide range of hosts and variability in host susceptibility to M. cerebralis are ev-
ident [15,22]. It is thought that brown trout’s resilience compared to other salmonid
hosts [84,87] is a result of this host’s evolutionary relationship with M. cerebralis in its
native European habitat [88]. However, assuming that co-adaptation is the only cause of
resistance based solely on geographic proximity is difficult to reconcile with the robust
resilience of indigenous Trout lodge species like coho salmon [15]. Despite the fact that
precise defence mechanisms remain incompletely elucidated, the existence of eosinophilic
granular leucocytes in the root ganglia of afflicted brown trout, as opposed to rainbow
trout, suggests the potential for a cellular protective response against the parasite [58].

3.2.4. Mast Cells

Being a part of natural immunity, mast cells are found close to the skin’s blood vessels,
gills, gastrointestinal tract, and ovaries [89]. These cells are identified using electron
microscopy as exhibiting numerous cytoplasmic electron-dense granules. Various proteins
like desmin, CD117, and S100 proteins are expressed by mast cell granules [90]. A number
of factors, notably chronic inflammation and infection by parasites, lead to the induction of
mast cells in fish tissues and organs [91].

A study concluded that coho salmon are immune to infection and the emergence of
symptoms associated with WD [10]. Coho salmon, unlike rainbow trout or chinook salmon,
which are susceptible to M. cerebralis infection, exhibited an abundance of eosinophilic
granule cells (EGC) or mast cells in parasite-induced lesions or ganglia containing parasitic
stages [85]. Brown trout species that are mildly resistant to M. cerebralis have shown similar
mast cell responses [84,86]. For this reason, EGCs were suggested to have a role in the
immunity of salmonids to whirling disease, but in general, their role is still unresolved [92],
and detailed investigation could be helpful for future endeavours.
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3.2.5. Rodlet Cells

Rodlet cells are recognized by their distinctive thicker capsule-like cell borders and
the presence of rodlet cytoplasmic inclusions resembling rods, and are closely related
to inflammatory cells (eosinophile granule cells, mesothelial cells, epithelioid cells) [93]
involved in the response against myxosporea [94,95]. Most often, these cells are found
within the cardiac region, kidney, spleen, thymus, skin, gills, pancreas, gall bladder, and
blood vessel endothelium [89]. They are responsible for various functions, having a
secretory defensive role [96] and carrying out pH control, osmoregulation, electrolyte, and
ion transport. They are mostly observed during parasitic infections, and can be triggered
by any form of tissue damage, which ultimately stimulates leukocyte reaction due to
chemotactic stimuli [95,97]. Disparity in the distribution of rodlet cells can be seen among
various fish families. In salmonids, helminth infections are thought to be the reason for
the induction of local recruitment of rodlet cells in affected epithelial cells [96]. Although
some reports on rodlet cells and their defensive role in salmonids and other fish families
against various parasites are available [98], the role of these cells during whirling disease
still needs to be explored, and this would be fascinating development.

3.3. Humoral Immunity

Humoral immune parameters are a variety of soluble compounds that act as preven-
tive agents by limiting the growth of microbes and neutralizing the enzymes on which
the pathogen depends for pathogenesis [63]. Multiple nonspecific protective substances,
including lectins, transferrin, antimicrobial peptides, and lysozymes, inhibit or suppress
microbial growth [46]. In the case of myxosporean infections, multiple humoral innate
factors such as lysozymes, peroxidases, and compliments are engaged in the eradication of
pathogens [99]. During the development of whirling disease, parasites degenerate after
entry into the host’s skin, and do not reach the peripheral nervous system [21]. Humoral
immunity is thought to be involved in eliminating the M. cerebralis parasite from the fish’s
skin, but the actual mechanisms involved should be interrogated [59].

3.4. Cytokine Response

Cytokines, being signalling low-molecular-weight secretory proteins, are considered
regulators of the immune mechanism [31,100]. They are produced at the entry sites of
pathogens to control phagocytes and neutralize entering microorganisms [101]. In gen-
eral, fish have been found to possess various cytokines, including interleukin-1β (IL-1β),
transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), chemokines, and
interferon (IFN) [102–105]. The IFN-γ related inflammatory response is modulated by
SOCS proteins, and is involved in host’s response to M. cerebralis infection. Differential
modulation of several interleukins (IL-17A, IL17-C, IL-21) and RORγ after M. cerebralis
infection indicates the function of these molecules in rainbow trout immunity against the
parasite (Table 2) [30]. Other studies have reported increased post-exposure expression of
pro-inflammatory cytokines like IFNγ and IL-1β in brown trout and rainbow trout against
M. cerebralis [35,106]. The increase in gene expression indicates their role in host protection
against the infection [30]. The expression induction of TGF-β1b, SOCS1, and SOCS3 in
brown trout following M. cerebralis exposure signifies their importance in mediating proper
immune protection and restraining excessive inflammatory responses during the course of
the infection [30].

The gene expression levels of SOCS1 and SOCS3 genes have been investigated fol-
lowing exposure to M. cerebralis. The parasite triggered the expression of SOCS1, IL-6-
dependent SOCS3, IL-10, and Treg-associated transcription factor FOXP3 in the TL suscep-
tible strain, which caused limited STAT1 and STAT3 stimulation, thereby impacting the
Th17-mediated immune response [32]. The expression of SOCS1 and SOCS3 was instigated,
which inhibits the stimulation of STAT1 and STAT3 in American TL strain, thus resulting in
an imbalance of Th17/Treg17 and rendering the host incapable of launching a defensive
reaction or regulating inflammatory responses, increasing vulnerability to WD. Conversely,
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within the resistant HO rainbow trout strain, the expression of SOCS1 and SOCS3 was
controlled, while STAT1 and IL-23-mediated STAT3 expression enabled a more protective
immune reaction. Fish immunity was promoted by the successful balancing of Th17/Treg17
responses, which was maintained by increased expression of STAT1 and IL-23-mediated
STAT3. Therefore, the study demonstrated the key role of SOCS1 and SOCS3 in modulating
the activation and significance of host immunity in rainbow trout [32]. Future investiga-
tions into the mechanisms of WD’s resistance to disease should focus on STAT3 and other
factors influencing Th17/Treg cell distribution and balance [32,35].

Table 2. An overview of the expression patterns of immune-related genes involved in the immunity
of salmonids to M. cerebralis.

Cytokines Studied Fish Spp. Immune Modulation Technique Used Reference

Ubiquitin-like protein,
metallothionein B

Rainbow trout
strains

After pathogen exposure, ubiquitin-like protein
1 exhibited a more than 100-fold upregulation,

and interferon-regulating factor 1
demonstrated a more than 15-fold upregulation

in both strains. The expression of
metallothionein B was increased by more than
5-fold in the Hofer strain, whereas it remained

unchanged in the Troutlodge strain after
pathogen exposure.

qRT-PCR [107]

Serine protease (MyxSP-1)
and cysteine protease

(MyxCP-1)
Rainbow trout

Post-infection upregulation of these genes in
gills and dorsal fins exposed the enzymatic

action in host tissue
qRT-PCR [60,61,107]

Nramp α & β
Rainbow trout and

Brown trout

A notable reduction in the expression of both
genes was observed at various time intervals in

the susceptible rainbow trout that were
infected, in comparison to the noninfected

cohort.

qRT-PCR [28]

Arginase 2, iNOS Rainbow trout The expression level of both genes was
upregulated in both the strains. cDNA microarrays [66]

iNOS Rainbow trout

The susceptible American strain had increased
expression only at one time point, while

resistant HO strain had stimulation at two PE
time intervals.

qRT-PCR [35]

TGF-β Rainbow trout Resistant HO strain expressed more TGF- β in
comparison to the susceptible TL strain. qRT-PCR [106]

IL-1β and IFN-γ Brown trout

IL-1β and IFN-γ were upregulated in HK, SP,
and CF at various time intervals post exposure
to M. cerebralis. IL-1β increased during initial

time points while IFN-γ elevated at initial and
later times (including 2 dpe, when the lowest

parasite quantity was detected).

qRT-PCR [30]

IFNγ Rainbow trout
Upregulation in M. cerebralis-infected rainbow
trout and resistant fish showed a more rapid

induction.
qRT-PCR [35]

STAT3, IL-17A Rainbow trout

In susceptible strains, the greatest expression of
IL-17A was noticed in 2 dpe interacting with

the highest parasite burden, in contrast to
resistant strain.

qRT-PCR [32]

KLF2, IL-1b, and innate
immune response genes
(IRF1, IFN-g, and iNOS)

Resistant (H) and
susceptible (TL)
rainbow trout

IFN-g, IL-1b, IRF1, and iNOS were upregulated
post exposure to M. cerebralis for one or both
strains over various time points. IFN-g and

IRF1 showed a continuous increase in the TL
strain in comparison to the HO strain. STAT3

was the sole gene with persistent elevated
expression in the HO strain after infection,

while remaining stable in the TL strain.

qRT-PCR [35]

SOCS1 and SOCS3 Rainbow trout

The parasite induced the expression of SOCS1,
IL-6-dependent SOCS3, IL-10 and

Treg-associated transcription factor FOXP3 in a
susceptible strain of rainbow trout, which
caused limited STAT1 and STAT3 action,

thereby having an effect on Th17 balance.

qRT-PCR [32]
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4. Adaptive Immune Responses to M. cerebralis

The adaptive immune response in fish depends on T and B cells, as well as the diversity
and specificity of their antigen receptors, which are called antibodies and T cell receptors,
respectively [108,109]. For many years, it was believed that fish could not mount an
adaptive immune response to myxosporea [110–112]. However, it has now been clearly
confirmed that fish with various myxosporean infections, including whirling disease, have
expressed particular antibodies [59,113,114].

4.1. T Cells

T cells are a type of lymphocytes that bear a surface T cell receptor, which identifies
antigens in conjunction with MHC molecules [37]. Fish T cells include CD8+ cytotoxic T
lymphocytes (CTL) and CD4+ T helper (Th) cells [37,115]. CTLs express the membrane
bound glycoprotein CD8 and are capable of killing cells of the host that are infected [116].
Th cells express CD4+ molecules and release cytokines that control the activity of other cells
of immune system. Fish CD4+ cells functionally differentiate into the effector subtypes
Th1, Th2, Th17 and Treg [116–118]. By promoting CTL proliferation and macrophage
activation, Th1 cells in fish facilitate the coordination of the immune response to ensure
protection against intracellular infections [119]. Th2 cells aid in the promotion of B cell
proliferation and antibody-mediated production, and are linked to immunity to external
parasites [120,121]. Just like in mammals, in fish, Th1 and Th2 responses interact with
IL4, lowering Th1 proliferation, and with IFNγ, hampering Th2 proliferation [122–124].
Th 17 cells are involved in mucosal immunity against extracellular pathogens including
fungi and bacteria; they secrete IL17, IL21, and IL22 [117]. Regulatory T cells produce the
anti-inflammatory cytokines IL10 and TGF, which help regulate the immune response [125].

Interferon-related genes (IFNγ and IRF1) were upregulated in rainbow trout infected
with M. cerebralis, indicating an activation of the innate immune system in both strains. At
24 h and later time points, TL strain showed greater up-regulation of these two genes than
the resistant HO strain [35]. This trend of increased transcription may be harmful to the
susceptible TL strain, as it is necessary for IFNγ to keep a balance between anti-pathogenic
effect and host inflammatory tissue damage [126]. In brown trout, the expression of IFNγ

was greater in HK, SP, and CF. STAT3 expression was comparatively higher in the caudal
fin of resistant HO fish, indicating it may induce resistance in the HO strain through
activation of Th17 cells [35]. Th17 cells produce IL-17 and are thought to be the key player
in resisting M. cerebralis at the epithelia [30]. Using flow cytometry, increased CD8+ and
CD8− (presumably CD4+) T cells were observed in the CF, spleen, and HK in the resistant
HO fish strain. The resistant strain exhibits a significantly more robust T cell response than
the susceptible TL strain [29].

4.2. B Cells

Antibodies or immunoglobulins (IGs) are the primary elements of the immune re-
sponse to infections [26]. Pathogen clearance through phagocytosis, virus and toxin neutral-
ization, and complement cascade activation are a few of the immunological mechanisms
mediated by IGs [127,128]. In teleost, the main three B cell lineages have been identified,
resulting in the production of three different isotypes of immunoglobulins: IgM, IgD, and
IgT/Z [129]. IgT was detected in rainbow trout and identified as IgZ in zebra fish [63].
Rainbow trout have expressed three subcategories of IgT. The IgT1 subclass has been
reported in gut [130] and mucosal lymphoid tissues (gills) [131]. Similarly, IgT2 and IgT3
have been observed to be present in lymphoid organs and serum, respectively [130]. IgM
has a role in systemic immunity, with IgM+ B cells predominating within both the blood
and various systemic lymphoid organs, and during infection, their proliferation increases
in the mucosal surface of skin and intestine [132,133].

Using flow cytometry, an increased cell count of IgM+ B was identified within the spleen,
head kidney, and caudal fin in the M. cerebralis-resistant HO rainbow trout strain [29]. An
experiment conducted by Ryce et al. (2003) investigated the acquired immune response of
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rainbow trout to M. cerebralis. It was determined that initial immunization exposure provides
th fish with immunity to subsequent exposures [134,135]. Previously, a study detected
antibodies against triactinomyxon spores’ antigen via Western blot and ELISA [135]. Samples
from infected rainbow trout in the wild or in controlled laboratory experiments showed
positive results using these assays. Fish that responded through antibody production to early
stages of infection were subjected to Western blotting analysis, which demonstrated a varied
antibody response without a regular or recurring pattern of antigen recognition. However,
strong naturally acquired immunity is evident in reinfected rainbow trout, as these fish resisted
the penetration of even a large number of spores. The acquired resistance was only found
among formerly actively infected rainbow trout with cartilage lesions [59,135]. Regrettably, we
have an insufficient understanding of the immunological mechanisms that resistant salmonids
employ against M. cerebralis. Research studies on the innate immune response, as well as
investigation of the humoral and cellular components of acquired immunity, can be planned
to determine the elements involved in establishing acquired immunity.

5. Immune Modulation in WD-Resistant and Susceptible Fish

M. cerebralis can infect multiple species of salmonids [10,136,137]. Among the
salmonids, brown trout is regarded as resistant, whereas rainbow trout is the most suscep-
tible species and expresses serious disease consequences [10]. Coho salmon (Onchorynchus
kisutch) is also considered a resistant strain, while the European Danube salmon (Hucho
hucho) is highly vulnerable to WD [10]. It is not completely clear what causes the variable
degrees of resistance shown in salmonids, and it seems that every species defends against
the sickness through different mechanisms [15,84].

Severin et al. [66] evaluated the role of macrophages in the susceptibility of two
different rainbow trout strains infected with M. cerebralis. The expression level of arginase-2
was noticeably more elevated in the susceptible strain TL than in the resistant strain Hofer
(HO) at 2 h and 8 days post exposure. Moreover, the expression of iNOS was markedly
induced at 24 h to 8 days post exposure in the susceptible American Trout lodge (TL) strain,
and only at 8 days post exposure in the German strain HO. These findings suggested a
low capability of the susceptible strain to regulate a successful immune response against
infections with M. cerebralis [68]. Further, a study explored the dynamic transcriptional
response of metallothionein and innate immune response genes to WD [107]. The obtained
gene expression data elicited a more protective innate immune response of the Hofer strain
than that of Trout lodge strain. The expressions of IFN-g, IL-1b, IRF1, and iNOS genes were
higher in both susceptible and resistant rainbow trout after infection with M. cerebralis. In a
different study, Nramp, as a candidate gene for resistance, was investigated in brown trout
and rainbow trout after exposure to M. cerebralis. Reduced expression of Nramp α and β

was evident in the Trout lodge strain compared to the resistant brown trout [28]. On the
other hand, STAT3 was the only gene that showed significant upregulation in the German
HO strain, while remaining consistent in the American TL strain [35].

In a preceding experiment, the gene expression profile was determined by microarray
analysis and verified through qRT-PCR. Following exposure to M. cerebralis, the expression
of ubiquitin-like protein 1 and interferon-regulating factor 1 was up-regulated 100-fold and
15-fold, respectively, in both rainbow trout strains. The expression of metallothionein B was
increased over 5-fold in the resistant German HO strain compared to the susceptible American
TL strain, wherein it remained unchanged. Metallothionein B is known to play a role in
immune response and inflammation. On the other hand, the CC chemokine SCYA113 was
increasingly expressed in the TL strain. The CC chemokine SCYA gene is a member of the CC
chemokine family that directs leukocytes to areas of inflammation and infection [138]. The
differential expression of these genes indicates that leukocyte migration to the infection site
and their stimulation are crucial in determining fish’s vulnerability or resistance [107].

Flow cytometry-based research was conducted to investigate the dynamics of local
and systemic immune cell responses in rainbow trout strains both susceptible and resistant
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to WD. A lower number of parasitic stages were noticed in the epidermis of the HO strain
than in the TL strain at 12 h post exposure (Figure 4).
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epidermis of the susceptible host (a), while very few parasitic stages appear in the epidermis of the
resistant strain (b) [29].

In caudal fins (CF), myeloid cells showed increased levels only at 24 h post exposure
in HO fish, whereas TL myeloid cells exhibited increased levels at all time points post
exposure to M. cerebralis. The number of IgM+ B cells also increased in both resistant
and susceptible fish at various time points during WD. Likewise, CD8+ and CD8− T
cells were also upregulated at multiple time points in both rainbow trout strains of M.
cerebralis-exposed fish (Figure 5).
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cells (c) and CD8− T cells (d) [29].

In the case of the head kidney (HK) and spleen of infected fish, the resistant HO strain
elicited an increase in T cells and a decrease in myeloid cells compared to the susceptible
TL strain. IgM+ B cells and CD8+ T cells were also markedly elevated in the HO strain
compared to the TL strain. In the spleen, CD8+ and CD8− cells were upregulated at
various time points in the German HO strain, and at day 14 in the American TL strain
(Figures 6 and 7) [29]. The TL susceptible strain expressed excessive immune responses
at all time points. The uncontrolled and excessive immune response in TL fish triggered
irreversible inflammatory responses and tissue damage, favouring parasite development
and contributing to host susceptibility [29]. Although our understanding of immune
regulation has improved due to knowledge about immune response comparisons between
susceptible and resistant strains, it would be useful to investigate the distribution and
kinetics of regulatory and pro-inflammatory cells in both strains. Moreover, additional
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exploration of the cellular-based immune response implicated in WD would be helpful in
disease exploration and ultimate disease prevention.
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6. Immune Modulation in Response to Co-Infection

Co-infection has detrimental effects on the host, notably influencing their vulnerability
to other infectious agents, the duration of the infection, and clinical progression [139,140].
An overview of comparative analysis of outcomes during whirling disease co-infection
in salmonids is provided in Table 3. For instance, the immune modulation of rainbow
trout exposed to M. cerebralis and Tetracapsuloides bryosalmonae was studied [141]. The host
initially infected with M. cerebralis and then with T. bryosalmonae expressed greater numbers
of parasites in both the posterior kidney and cranial cartilage, which are the target sites
of T. bryosalmonae and M. cerebralis, respectively. The relative expression of the ribosomal
protein L18 (RPL18) gene continued to rise, indicating parasitic activation. Moreover, the
mortality rate was high, and upregulation of SOCS1 and SOCS3 was reported in both
organs (Figures 8 and 9).
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Table 3. Comparative analysis of whirling disease co-infection outcomes in salmonids.

Fish Spp. Parasites Co-Infection Outcomes of Infection Techniques Used Reference

Rainbow trout
M. cerebralis and T.

bryosalmonae

First, infection with M.
cerebralis, followed by T.

bryoslamonae

A greater number of parasites were observed
in the posterior kidney and cranial cartilage.
Upregulation of all immune genes (SOCS-1
and -3, JAK-1 and STAT-3) occurred in the

kidney and crania. There was overexpression
of SOCS1 and SOCS3 genes in the cranium.
Increased expression of RPL18 was evident.

RT-qPCR [141]

Co-infection with T.
bryosalmonae followed

by M. cerebralis

There were a lesser number of parasites in
infected organs. All immune genes showed

higher expression, but this group elicited the
downregulation of the RPL18 gene.

Rainbow trout M. cerebralis and Y.
ruckeri

M. cerebralis-infected
fish challenged with Y.

ruckeri

The higher bactericidal activity of already M.
cerebralis-infected rainbow trout against Y.

ruckeri was observed.

Bromodeoxyuridine
(BrDU) incorporation
assay and Histological

technique

[83]

Rainbow trout T. bryosalmonae and M.
cerebralis

Infection with M.
cerebralis in conjunction

with T. bryosalmonae

More severe pathological progression of each
parasite with high mortality was observed.
Along with more intense cartilage loss and

displacement, a pronounced kidney swelling
index of grade 4 was observed. Histology and

immunohistochemistry [41]

Infected with T.
bryosalmonae

concurrently with M.
cerebralis

Typical pathological alterations associated
with both parasitic diseases with a reduced

mortality rate, similar to those caused by
single M. cerebralis or T. bryosalmonae

infection. Mild WD clinical signs without
skeletal deformities were noticeable, and the

kidney swelling index was grade 2 to 3.
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Likewise, elevated levels of JAK-1, and STAT-3 were also reported in both cranial
cartilage and posterior kidneys (Figures 10 and 11). The gene expression of SOCS1 and
SOCS3 was much higher compared to JAK and STAT genes [141].
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The synergistic effect established in the present case of co-infection was considered
a result of T. bryosalmonae-mediated immunosuppression due to the downregulation of
immune genes [141–144]. On the other hand, the fish group infected with T. bryosalmonae
first and then co-infected with M. cerebralis, expressed a smaller number of both parasites.
This was thought to occur due to the cross-reactivity between the sporogonic stages of both
parasites, which led to cross immunity [145].

In another study, Densmore et al. (2004) reported the higher bactericidal activity of
already M. cerebralis-infected rainbow trout against Y. ruckeri [83]. The greater bactericidal
activity was due to the proliferative response of the immune system to M. cerebralis [146].
This represented an antagonistic interaction between the myxozoan parasite and bacterial
pathogen. In the case of co-infection with primary infection of M. cerebralis followed by
T. bryosalmonae, a synergistic effect was observed, resulting in more pronounced disease
progression and mortality rate. However, in co-infection with T. bryosalmonae following M.
cerebralis, less severe outcomes of the disease were noticed [41]. Hence, it was indicated
that the consequences of co-infections depend upon the interaction between M. cerebralis
and the co-infecting secondary pathogen.
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7. Immune Modulation Due to Environmental Factors

As fish are poikilotherms, their physiology and body temperature are directly in-
fluenced by the ambient water temperature [147,148]. Immune response dynamics are
linearly influenced by variations in water temperature due to changes in the season, salinity,
microclimates, and fish migration [48]. Thermal stress can suppress the host immune
system by altering the course of immune responses [48,149,150]. In a previous study, dis-
ease occurrence and the severity of lesions demonstrated a positive correlation with the
increase in water temperature. This was due to the negative impact of temperature on fish
immunity [14]. Another study investigated the contribution of bacterial pathogens, water
temperature, and gas saturation in the mortality of rainbow trout fingerlings exposed to
M. cerebralis. The increase in water temperature significantly increased mortality. Infection
with Flavobacterium psychrophilum was only a significant issue when additional stressors
were present, and the effect of gas supersaturation on mortality was negligible [151].

Furthermore, a study found a positive correlation between temperature and both the
prevalence and mortality of M. cerebralis infection in rainbow trout [151]. Rainbow trout
showed the highest prevalence of infection and the most serious lesions between 10 and
12 degrees Celsius. It is still not clear whether temperature-dependent illness variation
in myxozoans, specifically M. cerebralis infection, is solely caused by adaptations in the
immune system or by influences on the proliferation of myxozoans [152]. In addition,
altitude can have an indirect impact on the immune mechanism in fish. A study was
conducted to find a correlation between altitude and water temperature. A correlation
between water temperature and altitude was identified. However, exceptions, such as
low-altitude rivers fed by glacial water with consistently low temperatures, and high-
altitude rivers with warmer temperatures due to surface water from shallow lakes, were
observed. [153]. Based on the study mentioned earlier, it can be concluded that altering
altitude influences water temperature, which can have effects on immune regulation.
Makkula et al. (2007) observed that irradiated fish have decreased resistance to germs
and parasites [154]. The impact of ultraviolet (UV) rays on the viability of the infective
stage of M. cerebrealis in rainbow trout was evaluated. It was concluded that UV irradiation
is effective in eliminating the infectivity of TAMs in fish [155]. Likewise, when juvenile
rainbow trout were exposed to UV-treated TAMs, they did not inhibit epidermis attachment
and penetration; however, they significantly hindered disease progression [156].

Stress is a further factor that has a major influence on the immune modulation of fish.
Above all, corticosteroids and pro-inflammatory cytokines are potential factors causing such
immunomodulation [157,158]. Increasing steroids in sea bream infected with Ceratomyxa
diplodae [159] and T. bryosalmonae-infected rainbow trout caused increased susceptibility to
their respective parasites [160]. In general, these studies suggested that stress has a negative
impact on M. cerebralis-infected salmonids, but more research can help our understanding
of the actual role of steroids in disease development.

Although studies have looked at the factors impacting morbidity and mortality, immune
modulation in salmonids due to these effectors is still insufficiently understood. Hence,
more research is needed to determine how stress, either external or internal, affects the
immunological regulation of salmonids against M. cerebralis and other myxozoan parasites.

8. Future Perspectives

The distribution and recent spread of whirling disease [7,161], with its economic
consequences on the aquaculture sector, particularly the trout farming industry, have
significantly changed how scientists view M. cerebralis, the causative agent of whirling
disease [3,59]. Although many innovative techniques such as siRNA, gene expression
analysis, and FACS have aided in uncovering immune regulation, unfortunately, there are
currently no available vaccines that can protect fish hosts from WD [16]. Given the lack of
effective prophylactic strategies, the development of novel immunotherapeutics and effec-
tive vaccines is an increasingly urgent task. This review aims to enhance our understanding
of immune modulation in salmonids in response to WD, and use of modern techniques.
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Emerging technical approaches like immunoproteomic analysis [162], computer-aided
vaccine design using an in silico immunoinformatics approach [163], mRNA vaccines, and
reverse vaccinology (subunit vaccines) [164] may help identify suitable targets for enhanc-
ing resistance and immunoprotection as a basis for disease prevention and management.
Comparing immune responses, such as upregulation of CD8+ and CD8- (possibly CD+ T
cells), and a significant increase in myeloid cells in the HO strain and the susceptible TL
strain, respectively [29], can lead to a better understanding of immune modulation against
the parasite. Investigating early skin interactions with the penetrating parasite might be
helpful in determining the resistance traits of different salmonid species, and may provide
valuable insights for future protective measures against WD. Furthermore, based on this
review, functional studies and future research should address the knowledge gap regarding
adaptive immune response. Specifically, the role played by various populations of B cells, T
cells, and Treg cells should be investigated to understand how these cells shape resistance
against WD. Such exploration may be valuable in developing effective future strategies to
combat whirling disease in salmonids.
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