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Preface 
 
In the last decades, environmental unpleasant odours have become a serious concern 
caused by the awareness of the population in respect to human health and wellbeing 
issues. Odour exposure may short time not acutely represent a risk for human health, 
but the exposure causes different negative effects, ranging from emotional stress to 
physical symptoms. As a matter of fact, environmental odours are considered to be 
major causes of public complaints. Residents living near odour emitting sources 
complain to local authorities, regional or national environmental agencies or directly to 
the personnel involved with the odour-emitting source for problem reduction or 
elimination. Therefore odour is on the top agenda in the field of air quality programs of 
environmental agencies all over the world. 
 
In general odour emission can be handled like any other airborne pollutant. Starting 
with the release of the odour at an emission rate depending on the source, the emitted 
odorous substances are dispersed in the atmosphere. This dilution process can be 
calculated by various dispersion models, which permit the assessment of the odour 
exposure. By national odour impact criteria this exposure is calculated to decide if 
odour annoyance can be expected at a certain site. The odour chain, which starts with 
the emission and ends with the perception of a resident, was the framework of the 1st 
Chinese-Austrian Workshop on Environmental Odour held in Tianjin, China in February 
2015. The contributions to this workshop are published in this issue of the Austrian 
Contributions to Veterinary Epidemiology. The workshop was successful to stimulate 
the dialogue between China and Austria on air pollution and to develop innovative and 
successful strategies to handle environmental odour. 
 
This bilateral meeting laid paths for the community of scientists involved in odour 
assessment to achieve a better understanding of the specific aspects connected to 
odour problems. The major goal was to stimulate research activities and co-operations 
in the field of environmental odour.  
 
The workshop as well as the current publication of the Austrian Contributions to 
Veterinary Epidemiology was funded by Eurasia-Pacific Uninet as a network which 
aims at establishing contacts and scientific partnerships between Austrian universities 
and member institutions in East Asia, Central Asia, South Asia and the Pacific region. 
This Chinese-Austrian workshop was hosted by Prof. Dr. Qing-Hao Meng at the School 
of Electrical Engineering and Automation, Tianjin University. He and his team deserve 
gratitude for the successful organisation on site and his Austrian counterpart Prof. Dr. 
Günther Schauberger from the University of Veterinary Medicine Vienna for initiation 
and organisation of the meeting. Both were the guest editors for this issue.  
 
I hope that this workshop is an incentive for a fruitful and long-lasting scientific 
exchange between the two countries. 
 

Prof. Dr. Wolf-Dieter Rausch  
Vienna, November 2015          President of the Eurasia-Pacific Uninet 
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The concentrations and species profiles of gaseous pollutants emitted from a municipal 
solid waste (MSW) treatment plant were investigated to identify the major odorous 
substances. Three methods were used to measure different gaseous pollutants in this 
study, including gas-chromatography with mass spectrometry/flame ionization 
detection/pulsed flame photometric detection (GC-MS/FID/PFPD) preceded by cold 
trap concentration, GC-FID preceded by sorbent concentration, and high-performance 
liquid chromatography (HPLC) after derivation by 2,4-dinitrophenylhydrazine (DNPH). 
Seventy-five gaseous compounds belonging to nine groups (nitrogen compounds, 
sulfur compounds, alkanes, alkenes, aromatics, terpenes, alcohols, carbonyls, and 
volatile fatty acids (VFAs)) were identified. The major odour compounds in the plant 
were acetic acid, butyric acid, valeric acid, isovaleric acid and dimethyl sulfide.  

1. Introduction 
Mechanical biological treatment (MBT) technology could benefit resource and energy 
recovery from municipal solid waste (MSW), as well as the reduction on the landfilled 
amount of biodegradable waste. In recent years, MBT has been widely used in 
European countries (Calabro et al., 2007). For example, 6.35 million tons of MSW were 
treated by MBT technology in Germany (Weidemeier, 2007). MBT technology has also 
been used in some developing countries, including China (in Beijing and Shanghai 
City) (Tränkler et al., 2005). Due to dietary habits, the contents of organic matter and 
moisture in MSW in Asian countries are usually relatively higher than those in 
European and North American countries, which may induce more secondary pollution 
(i.e. leachates and gaseous pollutants) (Norbu et al., 2005; Pierucci et al., 2005). The 
gaseous pollutants mainly include inorganic compounds such as ammonia, hydrogen 
sulfide, as well as a large number of extremely complex volatile organic compounds 
(VOCs), most of which are toxic and hazardous and classified as priority pollutants in 
the United States, Europe, Japan and China (Bockreis and Steinberg, 2005; 
Karageorgos et al., 2005). 
Studies of gaseous pollutants released during the MSW treatment process have 
primarily been focused on two aspects, i.e., the characteristics of gaseous pollutants 
and their impacts on the environment, and occupational exposure (Tolvanen et al., 
2005; Domingo and Nadal, 2009). Among gaseous pollutants released in a waste 
composting plant, ammonia was found to be predominant, with an emission of around 
18−1150 g/t waste (Clemens and Cuhls, 2003). The ammonia concentration in the 
exhaust gases of a sewage sludge composting plant was as high as 700 mg/m3 
(Cadena et al., 2009). Other important compounds were VOCs, which had been 
detected with concentrations ranging from 10 mg/m3 to 15 mg/m3 in the air in MSW 
composting plants (Eitzer, 1995). 
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Rodriguez et al. (2010) investigated the impacts of operating parameters (moisture, 
oxygen and C:N ratio) on the release patterns of VOCs during a composting process 
and found that the C:N ratio was the most important factor, followed by the internal 
oxygen and moisture contents of the waste pile.  
During the waste composting process, incomplete or inadequate ventilation could 
cause significant releases of odour substances such as hydrogen sulfide. Mao et al. 
(2006) found that dimethyl sulfide, dimethyl disulfide, limonene and α-pinene were the 
main odour substances in a MSW composting plant. A study conducted in a food waste 
composting plant by Tsai et al. (2008) showed that the relationships between 
concentrations and odour intensities of ammonia, dimethyl sulfide and acetic acid were 
logarithmic, while those of acetic acid, ethyl benzene and p-cymene were linear. It has 
also been reported that trimethylamine could be perceived and detected at greater 
distances than ammonia due to its higher persistence and lower odour threshold (Thriel 
et al., 2006). 
This study investigated the spatial distribition of gaseous pollutants outside the 
treatment facilities of a MBT plant in Shanghai. Based on the concentrations, the main 
distributions of the pollutants of the plant were simulated and identified through the 
contour profiling.  
 

 
Figure 1: Arrangement of sampling points in the treatment plant and the wind-rose chart during 
the sampling campaign (left bottom). “P1-P8” with stars, represents the sampling points. The 
shadow area in the wind-rose chart represents the wind direction frequency and the curve 
represents the wind speed. 
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2. Materials and methods 
2.1 Site Description and sampling location 
The MSW treatment plant was 1200 t/d, with a working area of 20,000 m2. A schematic 
diagram of the treatment processes is shown in Fig. 1. Briefly, MSW was delivered 
from the north gate to the mechanical treatment facility, where the waste was sorted 
manually, then size-separated using trommel screens. After the mechanical treatment, 
the waste was conveyed to the biotreatment facility for 20 days of aerobic fermentation. 
Next, the waste was sorted again in mechanical treatment facility, after which 
undersized material was delivered to a biotreatment again for another 30−60 days of 
aerobic fermentation. Two biofilters were located symmetrically on the left and right 
side of the treatment facilities. On the north of the plant, there was the leachate 
treatment facility. These facilities were all enclosed. The odour compounds inside the 
treatment facilities had already been discussed by Fang et al. (2013), while this present 
study focused on the surrounding circumstance outside the above-mentioned facilities 
in the plant. Two points were arranged on the south and north gate (P1, P8), two points 
were arranged in the exhaust pipe on the monitoring platform (P2, P3), one point was 
arranged between the facility and office building (P4), one point was arranged on roof 
of the leachate treatment facility (P7), the rest two points were arranged on the north of 
biofilter (P5, P6). Overall, 8 sampling points were arranged in the plant outside of the 
facilities (Fig. 1). The sampling campaign was conducted on May 10th 2013 and lasted 
from 8:00 to 19:00 (Noted: The operation time in the plant was from 7:00 to 13:00). 
Sampling in each point were respectively at 9:00, 12:00 and 17:00, totally 24 samples. 

2.2 Gas sampling and analyses 
Four methods were used to measure different gaseous pollutants in this study, 1) 
colorimetric tubes, 2) gas-chromatography (GC) with mass spectrometry (GC-MS) or 
flame ionization detection (GC-FID) or pulsed flame photometric detection (GC-PFPD) 
preceded by cold trap concentration, 3) GC-FID preceded by sorbent concentration, 
and 4) high-performance liquid chromatography (HPLC) after derivation by 2,4-
dinitrophenylhydrazine (DNPH). 

2.2.1 GC analysis after cold pre-concentration  
Samples were grabbed using Tedlar bags from the air. Tedlar bag was placed in a 
vacuum-generating container. Using a vacuum pump connected to the container, the 
samples were drawn directly into the Tedlar bags via Teflon tube. These samples were 
then transported immediately to the lab for analysis (within 24 hours) to minimize the 
loss of reduced sulfur compounds (RSC) during storage. 
Ambient air samples were pre-concentrated by cryogenic liquid nitrogen according to 
the EPA TO15 method. The pre-concentration instrument used was an Entech 7100A 
(Entech Instruments Inc., USA) and the injection volume was 50-500 mL.  
Conditions for GC-PFPD and GC-FID had been reported by Fang et al. (2012, 2013) 

2.2.2 GC-FID analysis after sorbent concentration 
The sorbent concentration method was used to determine volatile fatty acids (VFAs) in 
the air samples. Commercial sorbent tubes (Silica Gel Tube, SKC, USA) were used to 
collect the air samples. The air flow rate was 1000 mL/min and the collection time was 
120 min. After sampling, the tube were capped with the end plugs and transported 
back to lab for analysis. The silica gel was placed into 5 mL volumetric flask and was 
desorbed by 5 mL of deionized water. After standing 30 min in the ultrasonic 
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instrument, the supernate of the liquid were analyzed by GC-FID. The operation 
parameters for the FID detection system were the same as described above. 

2.2.3 HPLC analysis after derivation by DNPH 
EPA method TO11A was applied to determine aldehydes in the air samples.  
Commercial cartridges (Cleanert DNPH-Silica, Agela Technology, China) were used to 
collect the air samples. The air flow rate was 1000 mL/min and the collection time was 
30 min. After sampling, the cartridges were connected to a clean syringe (Visiprep DL, 
Supelco Analytical, USA) and placed on the solid phase extraction vacuum manifold 
(Visiprep, Supelco Analytical, USA), after which compounds absorbed onto the 
cartridges were eluted into a 5 mL volumetric flask with 5 mL of acetonitrile.  
The analytical column used was a C18 (4.6 mm ID × 25 cm, 5 µm) stainless steel tube 
(Venusil XBP, Agela Technology, China) and the mobile phase was acetonitrile (Merck, 
Germany) and high purity water (Milli-Q Millipore, USA). The elution program was 45% 
acetonitrile for 1 min, followed by a linear gradient from 45% to 75% acetonitrile in 30 
min, which was then held for 5 min. The flow rate was 2 mL/min and the sample 
injection volume was 25 µL. The detection limit of this method was 50 ppb. 
 

 
Figure 2: Total concentration and composition of the odour compounds in the 8 points. In X-
axis, “m”, represents 9:00, “n”, represents 12:00, “a”, represents 17:00. 

 

3. Results and discussion 
Six groups of pollutants including sulfur compounds, carbonyls, alcohols, aromatics, 
alkanes, alkenes, terpenes and VFAs were identified. The concentrations of the 
gaseous pollutants in the air at the 8 sampling points are shown in Fig. 2.  
Carbonyls including ketones and aldehydes, and the dominant carbonyls in this plant 
were butyraldehyde and crotonaldehyde, as shown in Fig. 3(b). VFAs were almost 
below 50 ppb except P6 and P7, where the concentrations were higher than other 
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places and above this value, as shown in Fig. 3(c). Alcohols showed an extra high 
value in the biofilter exhaust pipe, and mainly was ethanol from the Fig. 3(d). Ethanol 
showed a great decrease in the afternoon, from 4745 ppb declining to 521 ppb in P2 
and from 5342 ppb declining to 453 ppb in P3. The relatively higher concentrations of 
ethanol could be due to the anaerobic conditions of the materials. 
Six representative aromatics were identified in this study, as shown in Fig. 3(e). Except 
for P6, the concentrations of the other places were below 2000 ppb. Some researchers 
have reported that aromatics originated from the decomposition of plastics and 
solvents (Pierucci et al., 2005), while others suggested that they were xenobiotic 
compounds disseminated from raw materials, rather than intermediate products of 
waste biodegradation (Komilis et al., 2004). Aromatics can also be found in the 
gaseous contaminants of sludge degradation (Huang et al., 2011). The dominant 
compounds of this family were not obvious.  
 

 
Figure 3: Composition of each odour family and concentration of each compound in the plant. 
(a) Terpenes, (b) Carbonyls, (c) VFAs, (d) Alcohols (e) Aromatics, (f) Sulfur compounds. In X-
axis, “m” represented 9:00, “n” represented 12:00, “a” represented 17:00. 

 

Sulfur compounds showed strong relationships with the physicochemical properties of 
the waste. In this plant, the characteristics of sulfur compounds composition could be 
discriminated into two groups. One was more similar in P2, P3 and P4, where the 
proportion of hydrogen sulfide was low, while the other group was more similar in P5, 
P6, P7 and P8, where the proportion of hydrogen sulfide was relatively high. Cysteine 
and methtonine were two kinds of amino acids in proteins that contain sulfur. 
Decomposition of organic sulfur under oxic (presence of oxygen) conditions resulted in 
mecaptans (Organic group - SH) and anoxic conditions (absence of oxygen) resulted in 
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hydrogen sulfide. Both these products were generated when biodecomposition occurs. 
In addition, dimethyl sulfide was generated under conditions of anoxic circumstances 
predominate. Hydrogen sulfide occurred largely only when the pH and oxygen 
concentration of the waste reduced and in this case the high proportion of hydrogen 
sulfide were most probably caused by the anaerobic tank of leachate treatment facility. 
Due to the low odour threshold value of hydrogen sulfide, the odour impact of leachate 
treatment facility to the neighbourhood circumstance was much larger than the 
biofilters and the waste treatment facilities. 
 

 
(a)                             (b)                             (c) 

Figure 4: Contour figures of the total pollutants in different times in the plant. (a) At 9:00, (b) At 
12:00, (c) At 17:00. The unit of the contour data is ppb. 

 
The contour figures were got through the total concentration and the coordinate of each 
point, as shown in Fig. 4. From the figure, the distributions of odour pollutants in the 
plant were very similar in the morning and at noon, in which the biofilter exhaust pipe 
was the major source to the surrounding circumstance. Nevertheless, the leachate 
treatment facility became the major source in the afternoon, in which the waste 
treatment was ceased and the running of biofilter was stopped. 

4. Conclusions 
The odour concentration at noon in this plant was much higher than that in other times. 
The concentration fluctuation law in these places was more influenced by the operation 
time of the treatment plant. The main contributors to malodorous smell were carbonyls, 
alcohols and sulfur compounds, mainly butyraldehyde, crotonaldehyde, ethanol and 
hydrogen sulfide. The odour impact of leachate treatment facility to the neighbourhood 
circumstance was much larger than the biofilters and waste treatment facilities. 
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Graphical Abstract 
 

 
 
The odour activity value (OAV) has been widely used for the assessment of odour 
pollution from various sources. However, little attention has been paid to the extreme 
OAV variation and potential inaccuracies of odour contribution assessment caused by 
odour interaction effects. In our recent studies (Wu et al., 2015), an odour activity value 
coefficient (γ) was first proposed to evaluate the type and the level of binary interaction 
effects based on the determination of OAV variation in the binary odorous mixture. By 
multiplying OAV and γ, the odour activity factor (OAF) was used to reflect the real OAV. 
The correlation between the sum of OAF and odour concentration reached 80.0 ± 
5.7%, which was 10 times higher than the sum of OAV used before. Results showed 
that hydrogen sulfide contributed most (annual average 66.4 ± 15.8%) to odour 
pollution in the waste disposal plant. However, as the odour intensity of samples in 
summer is rising, the odour contribution of trimethylamine was improved to 48.3 ± 3.7% 
by the synergistic interaction effect, which was not found in previous studies. 
 
1. Introduction  
 
Recently, the emission of odorants has attracted enormous attention due to their 
harmful effects on human health and atmospheric environment (Qin et al., 2013) . 
Odour activity value (OAV) has been widely used for the assessment of odour pollution 

Austrian Contributions to Veterinary Epidemiology, Vol. 8 15



from various sources. However, applying OAV in the assessment of odour contribution 
is valid only under the hypothesis that interaction effects between components can be 
ignored (Feilberg et al., 2010, Hales et al., 2012). Indeed, odorants in mixtures have 
shown complex interaction effects, such as additive, antagonistic and synergistic 
interaction (Yan et al., 2014). These interaction effects lead to extreme OAV variation 
and potential inaccuracy in the assessment of individual odour contribution. Yet studies 
concerning the evaluation of odour interaction effects and the revise of OAV variation 
are limited. Therefore, a proper method is still needed to evaluate these interaction 
effects in odorous mixture. 
 
2. Materials and methods  
 
Air sample in the food waste disposal plant was collected by a 5 L Tedlar sampling bag 
(SKC Inc., USA). Analytical methods for the determination of various components in air 
samples were based on a pre-concentration step followed by the subsequent 
separation and detection by a gas chromatography/mass spectrometry and gas 
chromatography/ flame photometric detector.  
Odour concentration (OC), odour intensity (OI) and odour threshold value (OTV) were 
measured with dynamic olfactometry (AC’SCENT, USA) by sniffing panelists. Then 
OAV was calculated as the ratio of the concentration to the OTV of each odorant.  
γ was measured in an odorless laboratory. A determined odorant and the reference 
odorant were mixed, volatilized and diluted by pure air in a Tedlar bag. Concentrations 
were adjusted to make the determined odorant and the reference odorant to reach 
same OI value, namely, form isointense mixture. In this instance, the ratio of OAVPure to 
OAVMixed was defined as γ (OAVPure was OAV of the single determined odorant, and 
OAVMixed was OAV of the determined odorant in isointense mixture) (Wu et al., 2015). 
 
3. Results and discussion 
  
A total of 28 odorants were detected, and the average concentration of each category 
was in the following order: Aromatics (919.4 µg m-3) > Terpene (757.0 µg m-3) > 
Nitrogenous compounds (607.9 µg m-3) > Oxygenated compounds (305.6 µg m-3) > 
Halogenated compounds (92.0 µg m-3) > Alkanes (72.7 µg m-3) > RSCs (53.0 µg m-3).  
Mean OAV of odorants with detectable frequency higher than 50% were calculated in 
this study. On the basis of Chen (Chen et al., 2000) and Parker’s (Parker et al., 2012) 
theory, odorants with detectable frequency over 50% and OAV above 1 were defined 
as key odorants in this study, including hydrogen sulfide, trimethylamine, phenol, 
limonene, ethylbenzene, styrene and ammonia. The sum of the seven key odorants’ 
mean OAV was 177.2, which was far less than average OC (2183 ± 1692 ou m-3). 
Therefore, a proper method is needed to evaluate odour interaction effects precisely.  
Hydrogen sulfide was selected as reference odorant for its highest OAV and distinct 
odour characterization, and binary interaction effects between key odorant and the 
reference odorant were assessed to optimize the evaluation of odour interaction effects 
in this study. Based on the study of OAV-OI relationship of single odorants and 
odorants in isointense mixture with hydrogen sulfide, the functional formula relating γ 
with OI was concluded as lg γ = k' OIMixture + b'.  
The ratio of OAVPure to OAVMixed reflects the change of odorous ability caused by binary 
interaction effects, so γ might quantitatively characterize the type and the level of 
binary interaction effects. Previous researchers had also reported similar odour 
interaction effects in binary mixtures. These results were meaningful for binary 
interaction effects studies but limited to a given mixing proportion in controlled 
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laboratory experiment. By proposing the odour activity value coefficient in our study, we 
expect quantitatively evaluating the type and the level of binary interaction effects in 
odour samples from various odour sources. OAF stands for the real OAV which is 
taking binary interaction effects into consideration. 
 

 
Figure 1: Comparison of SOAV, SOAF and OC of odour samples in each season. SOAV: the 
sum of odour activity value, SOAF: the sum of odour activity factor, OC: odour concentration 
determined by dynamic olfactometry. Error bars indicate disparity of odour emission at each 
sampling site (Wu et al., 2015).  
 
Fig. 1 reflects the comparison of mean SOAV, SOAF and OC of odour samples 
collected at four sites in each season. On average, SOAF matched 80.0% ± 5.7% of 
OC. It was 10 times higher than SOAV which was widely used in previous 
assessments of odour contribution. The average odour contribution of key odorants in 
each season was reflected in Fig. 2. Generally, hydrogen sulfide was the largest 
contributor (annual average 66.4 ± 15.8%) to odour pollution in the waste disposal 
plant. However, as OI of odour samples in summer were rising, the odour contribution 
of trimethylamine was improved to 48.3 ± 3.7% by the increasing synergistic interaction 
effect, while odour contribution of phenol decreased to 0.1 ± 0.02% for the increasing 
antagonistic effect. 
 
4. Conclusions  
 
This study showed a novel odour activity value coefficient method for the assessment 
of binary interaction effects. The correlation between SOAF and OC was about 10 
times higher than that of SOAV, and odour contribution of trimethylamine in summer 
was improved to 48.3 ± 3.7% by the synergistic interaction effect, which was not found 
in previous studies. This might be useful for precise prediction and effective treatment 
of odour pollution in various regions. 
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Figure 2: Average odour contribution of key odorants in each season. EB: ethylbenzene, H2S: 
hydrogen sulfide, NH3: ammonia, TMA: trimethylamine (Wu et al., 2015). 
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This paper focuses on the problem of mapping odour sources using a mobile robot in a 
time-variant airflow environment, and provides a localization method which uses the 
Dempster-Shafer (D-S) theory to reason the possible locations of odour sources. In the 
proposed method, the robot carries out the D-S inference and iteratively updates a grid 
map, using the successive measurements from a gas sensor and an anemometer 
when the robot is cruising in the given search area. Simulations are carried out and the 
results in a time-variant airflow environment show that the locations of the multiple 
odour sources can be estimated online with the proposed method. 
 

1. Introduction 
Odour information is widely used by many animals for searching for food, finding 
mates, exchanging information, and evading predators. Inspired by the olfaction 
abilities of many animals, in the early 1990s, people started to try building mobile 
robots with similar olfaction abilities to replace trained animals (Sandini and Lucarini et 
al., 1993; Consi and Atema et al., 1994; Ishida and Suetsugu et al., 1994; Russell and 
Thiel et al., 1994). It is expected that mobile robots developed with such olfaction 
capability will play more and more roles in such areas as judging toxic or harmful gas 
leakage location, checking for contraband (e.g., heroin), searching for survivors in 
collapsed buildings, humanitarian de-mining, and antiterrorist attacks. 
The methods of odour source localization (OSL) realized using an individual or multiple 
mobile robots can be classified into tracing-behavior-based methods and analytical-
model-based methods (Lilienthal and Loutfi et al., 2006). In the tracing-behavior-based 
group, the source location is often determined by the final position of the mobile robot 
doing plume tracing and successfully arriving at the source. An alternate name for 
OSL, chemical plume tracing (Farrell and Pang et al., 2005; Zarzhitsky and Spears et 
al., 2005), reflects the importance of the plume-tracing strategy in these methods. 
Some biologically inspired approaches have been designed for mobile robot based 
plume tracing, such as gradient-following-based algorithm in low Reynolds number 
(Berg, 1990) and up-wind algorithm in a wind tunnel (Belanger and Willis, 1996), which 
intended to mimic the behaviors of chemotaxis and anemotaxis of a few biological 
entities, respectively. Moreover, some engineered plume tracing strategies have also 
been proposed, such as fluxotaxis (Zarzhitsky and Spears et al., 2005) and infotaxis 
(Vergassola and Villermaux et al., 2007) algorithms. A combination of the biomimetic 
and engineered strategies can be found in (Li and Farrell et al., 2006). 
Comparatively, only a few analytical-model-based methods have been reported, such 
as modeling the wind field using naive physics (Kowadlo and Russell, 2006; Kowadlo 
and Russell, 2009), remote gas source localization (Ishida and Nakamoto et al., 1998), 
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building gas distribution grid maps (Lilienthal and Duckett, 2004), a source-likelihood 
mapping approach based on the Bayesian inference method (Pang and Farrell, 2006), 
mapping multiple odour sources using Bayesian occupancy grid map (Ferri and Jakuba 
et al., 2011), and localizing via Particle Filter (Li and Meng et al., 2011) in our earlier 
work, etc. Kowadlo et al. (Kowadlo and Russell, 2006; Kowadlo and Russell, 2009) 
tried to obtain the location of the odour source by mapping the search area in 
environments with a stable airflow field. Ishida et al. (Ishida and Nakamoto et al., 1998) 
intended to identify the source location based on a time-averaged gas distribution 
model in conditions with stable airflows and stable odour release rate. Lilienthal et al. 
(Lilienthal and Duckett, 2004) demonstrated that the position of the average maximum 
concentration can often be used to estimate the source location in environments with 
no strong airflow. Pang et al. (Pang and Farrell, 2006) localized the odour source 
offline using Bayesian inference in near-shore ocean conditions with an autonomous 
underwater vehicle. Ferri, G., et al. (Ferri and Jakuba et al., 2011) located multiple 
odour sources by a Bayesian occupancy grid mapping based method in an 
uncontrolled indoor environment. In our earlier work (Li and Meng et al., 2011), a PF-
based OSL algorithm was presented to localize an odour source in outdoor airflow 
environments. 
For tracing-behavior-based methods, it is difficult for the robot to automatically provide 
the source location with its final position because the robot cannot know whether it 
arrives at the source. Therefore, to automatically obtain the source location by the 
robot itself, an analytical-model-based method is necessary. However, the methods 
proposed in (Kowadlo and Russell, 2006; Kowadlo and Russell, 2009) and (Ferri and 
Jakuba et al., 2011) might not work in real outdoor environments because the required 
conditions, i.e., stable airflow field or weak airflow, are hardly satisfied in outdoor 
environments where the airflow is almost always turbulent, time varying, and strong. 
And the methods presented in (Pang and Farrell, 2006) and (Li and Meng et al., 2011) 
only suit the cases with a single odour source. Unfortunately, large amount of OSL 
problems not only happen in environments with turbulent flow, but also involve multiple 
odour sources. 
This paper presents a multiple odour sources localization (MOSL) method via D-S 
inference to estimate the locations of the odour sources while the robot performs 
exploratory behavior in an outdoor environment with time-variant airflow. The purpose 
of the exploratory behavior is to collect information associated with the locations of the 
odour source, such as odour concentrations and airflow directions/velocities, and the 
collected information is exploited by the D-S Inference to obtain the solution to the 
MOSL problem. In current study, the exploratory behavior of the robot is by following a 
predefined path shaped like rectangular wave to cover the given search region. To 
exploit the collected information, belief mass functions is constructed and used in the 
proposed MOSL algorithm, even though the belief mass functions are sometimes 
inaccurate. 
The remainder of this paper is organized as follows. Section 2 introduces the D-S 
inference for MOSL. The belief mass function for MOSL is presented in section 3, and 
the simulation setup and results are presented in section 4. The conclude is presented 
in the final section.  
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2. D-S Inference for MOSL 
2.1 Introduction of D-S Theory 
D-S theory has established itself as a promising and popular approach to data fusion 
especially in the last few years (Khaleghi and Khamis et al., 2013). It can be 
considered as a generalization to the Bayesian theory that deals with probability mass 
functions. Unlike the Bayesian Inference, the D–S theory allows each source to 
contribute information in different levels of detail. Furthermore, D–S theory does not 
assign a priori probabilities to unknown propositions; instead probabilities are assigned 
only when the supporting information is available. In fact, it allows for explicit 
representation of total ignorance by assigning the entire mass to the frame of 
discernment at any time, whereas using probability theory one has to assume a 
uniform distribution to deal with this situation. 
Consider Θ  to represent all possible states of the frame of discernment and the power 
set Θ2  to represent the set of all possible subsets of Θ . In contrast to probability theory 
that assigns a probability mass to each element of Θ , D–S theory assigns belief mass 
m  to each element e  of Θ2 , which represent possible propositions regarding the 
system state. Function m  has two properties: 0)( =φm  and ∑ Θ∈

=
2

1)(
e

em . 
 

2.2 MOSL using D-S Inference 
In most OSL applications, the odour sources are immovable, thus the distribution of the 
odour sources can be conveniently represented by a grid map },2,1,{ MiCi != , where 
the constant M  is the number of the cells in the grid map. For each cell iC  in the grid 
map, it has two states, named S  (occupied by an odour source), S  (not occupied by 
odour source), respectively, composing a frame of discernment },{ SS=Θ .  
Intuitively for any proposition e , )(em  represents the proportion of available evidence 
that supports the claim that the actual cell state belongs to e . When the robot takes a 
measurement, there will be a piece of evidence. Given two pieces of evidence with 
corresponding belief mass functions )( 11 em  and )( 22 em , Θ∈2, 21 ee  (to be detailed in 
section 3), using the Dempster’s rule of combination, the two pieces of evidence can be 
fused and produce a joint belief mass function )(2,1 em  as (Shafer, 1976) 
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where K  represents the amount of conflict between the two evidences and is given by  
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It is not hard to find that the power set Θ2  only has four elements, φ , }{S , }{S , and 
},{ SS  (i.e., Θ ). In order to understand easily, here we denote the subset },{ SS  as U  

(unknown). Thus, there is  

1)()()( =++ UmSmSm  .     (3) 

Since the frame of discernment },{ SS=Θ  only has two states, the proposed D-S 
inference for MOSL itself is simple and will not suffer the exponential complexity of 
computations. In addition, because the Dempster’s rule of combination satisfies the 
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associative law, i.e., )()( 321321321 mmmmmmmmm ⊕⊕=⊕⊕=⊕⊕ , thus there is 

nnn mmmmmmm ⊕⊕⊕⊕=⊕⊕⊕ − )( 12121 !! , and we can easily perform a recursively 
inference using new coming evidence from the successive measurements by the robot. 

3. Belief Mass Function for MOSL 
In our earlier work, we use item “odor-patch path” to represent the trajectory that the 
concerned odour patch passed by. In fact, odour patches are imaged air mass which 
contains enough odour molecules. Not only are there air masses containing enough 
odour molecules, but also air masses without enough odour molecules or even having 
no odour molecule. When robot encounters the former, an odour detection event would 
be happen, the latter a non-detection event. Because both the detection and non-
detection events will be helpful to localize the odour source, so we might as well use a 
new item “air-mass path” which is defined as the trajectory most likely taken by an air 
mass encountered with the mobile robot.  
Same as the estimation of odor-patch path in our earlier work, we can get an 
estimation of air-mass path. Intuitively, if we get a detection event, there will likely be 
one or some odour sources in the area covered by the estimated air-mass path. 
Otherwise, the possibility there are some odour sources in the covered region will 
decrease. 
Let the set },2,1,{ Mii !=π  denote the probability map of the air-mass path that has 
been estimated in  (Li and Yang et al., 2013), where iπ  indicates the probability that 
the air mass arrived at the robot comes from the cell iC , and the constant M is the 
number of the cells in the grid map. Therefore, the belief mass function can be given 
for both detection event D  and non-detection event D  respectively as follows: 
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where Dµ  is the probability of detection event D  arising given that there is detectable 
odour at the position of the robot; Dµ  is the probability of non-detection event D  
happening given that there is no detectable odour at the position of the robot; ζ  
represents the reliability of the model of the air mass transportation (detailed in section 
4.1); ρ  indicates the reliability decreasing because of the intermittency of the odour 
plume or the lack of enough odour molecules (easily cause the false non-detection 
event). 
According to our test data of the gas sensor, 9.0≈Dµ , 0.1≈Dµ ; ζ  and ρ  vary with the 
distance from a location to the robot, and we conservatively choose 6.0≈ζ  and 5.0=ρ  
in this research. 
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4. Simulations 
4.1 Simulation Platform  Setup 
In our research, in order to have a repeatable and controllable flow-field and plume, 
and also to reduce the computational load, a flow-field file with frame structure, just like 
a movie, is generated from the simulation platform released by Jay A. Farrell and his 
colleagues (Farrell and Murlis et al., 2002). The file has a constant time interval 0.5s 
between consecutive frames, and each frame contains the flow information with 15×15 
grids as well as the positions and concentrations of all odour puffs. All data in a frame 
was intercepted and saved during the running of the Farrell’s simulation platform 
without any modification. In this research, the code of the simulation platform (Farrell 
and Murlis et al., 2002) was modified to have several odour sources. 
On our simulation experiment platform, the flow-field file is replayed just as same as 
the play on the Farrell’s simulation platform, but almost without any calculation because 
the calculation has been done on the Farrell’s platform when the file was being 
generated. 

4.2 Simulations and Results 
In this study, the robot simply follows a predefined path shaped like rectangular wave 
to cover the given search region, performing an exploratory behavior. At each time 
step, the robot collects the odour concentration, airflow speed and direction by the 
equipped gas sensor and the anemometer, respectively. 
Fig. 1 illustrates four scenes of the estimated distribution of the two odour source, in 
which the virtual robot can achieve a maximum speed of 0.5 m/s, the mean flow 
velocity is about 1.0 m/s and the mean flow direction is about 0°. The two odour 
sources locate at (20.0m, 50.0m) and (24.0m, 55.0m), with same area 0.3m×0.3m. The 
robot starts at the location (33.0m, 40.0m) to search a given rectangular region with 
left-top corner (18.7m, 60.3m) and right-bottom corner (32.7m, 40.3m). It firstly goes 
vertically up to the top bound of the given region, and then goes vertically down to the 
bottom bound with an fixed offset 2m in left direction (called 1 return, see Fig. 1(a)), 
and so on. When the robot arrives at the left-top corner (called 1 round, see Fig. 1(c)), 
the robot comes back to the right-bottom corner, and starts a new round of the 
exploration, and so on. 

It can be found from Fig. 1 that, the distribution map of the two odour sources is 
updated recursively via the proposed D-S inference using new coming evidence from 
the successive measurements by the robot when the robot is cruising in the given 
search area. Apparently, the estimated locations of the two odour sources approach to 
the true sites as the evidence accumulates.  
It also can be found that in Fig. 1(d), near the right bound of the search region, there 
are still some cells with false information of being occupied by an odour source. This is 
because that, the mean airflow direction is about 0° in this simulation, and the robot 
often has detection events near the right bound, resulting some cells with confusing 
information. This result suggests that more exploration should be performed to the 
region near these cells. 

5. Conclusion 
In this research, the robot carries out the proposed D-S inference and iteratively 
updates a grid map indicating the possible locations of two odour sources, using the 
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successive measurements from a gas sensor and an anemometer when the robot 
performs an exploration in the given region. Simulations are carried out and the results 
in a time-variant airflow environment show that the locations of the multiple odour 
sources can be estimated and approach to the true sites as the evidence accumulates. 
The simulations also indicate that the proposed method has a low computational cost 
which allows it to be used in online applications. 
 

 

(a) 1st return     (b) 2nd return 

 

(c) 1st round     (d) 5th round 

 

Figure 1: Estimated distribution map of two odour sources at different time via the proposed D-S 
inference algorithm. 
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Two classes of dispersion models are currently used for (regulatory) odour dispersion, 
namely Gauss and Lagrange models. These models generally predict time-averaged 
concentrations, often over one hour. Therefore, the models have to be adopted 
somehow to cope with short-term odour peaks which can be smelled by the human 
nose. Over the last years, the authors have developed an approach where the short-
term peaks are parameterized according to atmospheric stability (“peak-to-mean” 
factors). This approach is used with the Austrian Odour Dispersion Model AODM, 
based on the Austrian regulatory Gauss model, and described here in detail. With the 
German Lagrange model LASAT as well as with the AUSTAL 2000 model, a factor 4 is 
used independent of the distance from the source and the meteorological conditions to 
account for short-term peak concentrations. The models predict the separation 
distance between odour sources and the adjacent residential area to protect it from 
excessive odour nuisance. Besides the description of the approach in AODM, the 
meteorological input data to run the model are of importance. An example of separation 
distances for a fictitious livestock unit is added.  

1. Introduction 
Environmental odour is a main nuisance besides noise and air pollution. Caused by 
urban sprawl, the annoyance potential due to industrial, agricultural and municipal 
odour sources is growing tremendously. Besides abatement technologies for the 
release of odourous substances, the application of separation distances between odour 
sources and residential area is an appropriate method to reduce nuisance. Separation 
distances can be obtained from dispersion models. Such models predict the ambient 
odour concentration on an hourly or half-hourly basis. This time series of concentration 
values allows a calculation of the percentage of the time in a year during which the 
threshold odour concentration will be exceeded. This can be compared to a tolerated 
exceedence probability depending on the land-use category. Combinations of threshold 
odour concentrations and tolerated exceedence probabilities are called odour impact 
criteria. An overview of various national odour impact criteria can be found in Sommer-
Quabach et al. (2014).  
Two pre-requisites are necessary to run this procedure: a transformation of the mean 
values calculated by the models to short-term concentrations relevant for human odour 
perception, and the appropriate meteorological input, i.e. representative wind and 
stability information for the site under investigation. 
For Austria, to determine the short-term peak concentrations required for the 
assessment of odour perception, the authors developed a peak-to-mean approach 
depending on atmospheric stability; this algorithm is used in the Austrian Odour 
Dispersion Model (AODM), the regulatory Austrian Gauss model, and a description has 
been published already in Schauberger et al. (2000) and Piringer et al. (2007); in 
Piringer et al. (2014), the latest version is described in detail. With the German 
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Lagrange model LASAT, a factor 4 is used independent of the distance from the source 
and the meteorological conditions to account for short-term peak concentrations 
(Janicke et al., 2004; Janicke Consulting, 2013). The discrepancy of the two concepts 
is discussed in Schauberger et al. (2012).  
Dispersion models need mainly wind and stability information as meteorological input 
data. Whereas the use of wind data, either based on measurements or from 
meteorological pre-processors, is often straightforward, on-site representative stability 
information is more difficult to obtain. An overview on methods to determine discrete 
stability classes can be found e.g. in Piringer et al. (2004; Section 4.6) and Piringer & 
Schauberger (2013). 
The structure of the paper is as follows: Section 2 presents a brief description of the 
models used, the peak-to-mean approach, and the model input data. The results and a 
discussion are presented in Section 3. Section 4 contains a summary and a brief 
outlook on current developments. 

2. Material and methods 
2.1 Brief description of the models used 
The Austrian odour dispersion model (AODM; Piringer et al., 2007; Piringer et al., 
2013; Schauberger et al., 2002) estimates mean ambient concentrations by the 
Austrian regulatory dispersion model and transforms these to instantaneous values 
depending on the stability of the atmosphere (Section 2.2). The model has been 
validated internationally with generally good results ((Baumann-Stanzer & Piringer, 
2011; Piringer & Baumann-Stanzer, 2009). The regulatory model is a Gaussian plume 
model applied for single stack emissions and distances from 100 m up to 15 km. Plume 
rise formulae used in the model are a combination of formulae suggested by Carson & 
Moses (1969) and Briggs (1975). The model uses a traditional discrete stability 
classification scheme with dispersion parameters developed by Reuter (1970). 
The dispersion model LASAT (Janicke Consulting, 2013) simulates the dispersion and 
the transport of a representative sample of tracer particles utilizing a random walk 
process (Lagrangian simulation). It computes the transport of passive trace substances 
in the lower atmosphere (up to heights of about 2000 m) on a local and regional scale 
(up to distances of about 150 km). A number of physical processes, including time 
dependencies, are simulated, such as transport by the mean wind field, dispersion in 
the atmosphere, sedimentation of heavy aerosols, deposition on the ground (dry 
deposition), washout of trace substances by rain and wet deposition, first order 
chemical reactions. The quality of the results achievable by Lagrangian models mainly 
depends on the wind field they are based on. A simplified version of LASAT is offered 
free of charge (AUSTAL2000, http://www.austal2000.de) which is favoured by German 
guide lines (GOAA, 2008; TA Luft, 2002). LASAT uses the Klug-Manier stability 
classification scheme (TA Luft, 2002). Like AODM, LASAT has been evaluated using 
test data sets for different applications (see www.janicke.de).  

2.2 The Austrian peak-to-mean approach 
The peak-to-mean concept in the AODM is based on a relationship by Smith (1973), 
where the peak-to-mean factor ψ0 =Cp / Cm is given by: 
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with the mean concentration Cm calculated for an integration time of tm (1800 s) and the 
peak concentration Cp for an integration time of tp (5 s). The exponent a depends on 
atmospheric stability. The maximum peak-to-mean factor ψ0 valid near the odour 
source varies between approx. 3 (stable conditions) and 55 (very unstable conditions). 
For the reduction of the peak-to-mean ratio with distance due to turbulent mixing, an 
exponential attenuation function (Mylne & Mason, 1991; Mylne, 1992) is used: 
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where T = x/u is the time of travel with the distance x and the mean wind speed u, tL is 
a measure of the Lagrangian time scale (Mylne, 1992). 
The time scale tL is taken to be equal to σ2/ε where ( )2 2 2 21
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of the wind speed taken as the mean of the variance of the three wind components u, 
v, and w, respectively, and ε is the rate of dissipation of the turbulent energy using the 
following approximation: 
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where k = 0.4 is the von Karman constant and z = 2 m is the height of the receptor, the 
human nose. 
A relationship between the standard deviations of the three wind components and the 
mean wind speed u was proposed by Robins (1979) and is given in Tab. 1. For σu/u 
and σv/u, no change with stability is assumed. Deviating from Robins (1979), σw/u is 
taken in the AODM to be stability-dependant, assuming an increasing importance of σw 
compared to u in unstable conditions. 
 
Table 1: Ratios of the standard deviations of the three wind components (σu, σv and σw) to the 
horizontal wind velocity u depending on the stability of the atmosphere (Robins, 1979). 

Stability class σu/u σv/u σw/u 
2 very unstable 0.2 0.2 0.3 

3 unstable 0.2 0.2 0.2 
4 neutral 0.2 0.2 0.1 
5 slightly stable 0.2 0.2 0.1 
6 stable 0.2 0.2 0.1 

7 very stable 0.2 0.2 0.1 
 
The resulting peak-to-mean attenuation curves are presented in Fig. 1. For classes 2 
and 3, the peak-to-mean factors, starting at rather high values near the source, rapidly 
approach 1 with increasing distance. This is in agreement with the premise that vertical 
turbulent mixing can lead to short periods of local high ground-level concentrations, 
whereas the ambient mean concentrations are low. For class 4, the decrease of the 
peak-to-mean ratio is more gradual with increasing distance, because vertical mixing is 
reduced and horizontal diffusion is dominating the dispersion process. The peak-to-
mean ratio in 100 m is then about 4. The curve for class 5 is similar to that of class 4, 
with reduced absolute values. For classes 6 and 7 (identical curves due to identical ψ0 
values), the peak-to-mean ratio exceeds 2 only near the source. The grey horizontal 
line denotes the overall factor 4 of the German TA-Luft (2002). This factor clearly 
dominates from 100 m onwards. This has strong implications on the resulting 
separation distances, as will be shown in Section 3. 
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Figure 1: Peak-to-mean ratios depending on the distance from the source for different 
atmospheric stabilities (classes 2 to 7, definition see Tab. 1) and the overall factor 4 of the 
German TA-Luft. 

2.3 Site and emissions 
Separation distances have been calculated for the site Kittsee east of Vienna near 
Bratislava (17.070° E and 48.109 N at 136 m asl.). The site is within flat terrain, mainly 
farmland. Kittsee can experience high wind speeds, mainly from northwesterly 
directions, often associated with frontal systems and storms. The secondary maximum 
of wind directions is from northeast, in contrast to a lot of other meteorological stations 
in the area. This is explained by a topographical deflection of the regional flow in the 
area caused by the southernmost tip of the Carpathian mountains in the region of 
Bratislava north of the site. These wind directions show on average lower wind speeds 
as they are mainly observed in anti-cyclonic conditions. 
For all model runs, the same source data are used (Tab. 2). The source is assumed 
non-buoyant, i.e. the effective stack height is equal to the physical stack height. As for 
the AODM and LASAT runs the same emissions, the same meteorological input data 
and the same peak-to-mean attenuation curves are used, the resulting separation 
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distances depend on the different model physics and differences in the schemes to 
determine atmospheric stability only. 

Table 2: Source data for dispersion calculations  

Stack height [m] 8.0 
Stack diameter [m] 2.7 

Outlet air velocity [m s-1] 3.0 
Volume flow rate [m3 h-1] 60 000 

Temperature [°C] 20 
Odour emission rate  [ouEs-1] 5 200 

3. Results and discussion 
Direction-dependent separation distances are calculated for two odour impact criteria 
used in Austria: 1 ouE/m3 and 3 % exceedence probability, representative for 
recreation areas (high odour protection), 1 ouE/m3 and 8 % exceedence probability, 
representative for residential areas mixed with commercial activity (low odour 
protection). They are shown as isolines in Fig. 2, encompassing the area of 
exceedence of the given thresholds. The larger the area, the more unfavourable is the 
odour impact criterion. In Fig. 2, the AODM results are compared to the factor 4-model 
of TA-Luft (2002) applied with LASAT. 
 

 
Figure 2: Direction-dependent separation distances [m] with (left) AODM, peak-to-mean ratios 
from Fig.1, and (right) LASAT, factor 4, for 1 ouE/m3 and 3 % (blue) and 8 % (orange) 
exceedence probability for Kittsee. 
 
Comparing the left and the right panel in Fig. 2, large differences in the separation 
distances can be seen. The application of an overall factor 4 over all distances and 
stability conditions clearly leads to very large, partly unrealistic separation distances. 
The shape of the separation distances is strongly influenced by the wind directions in 
Kittsee, and the elongation towards SE is due to the fact that north-westerly winds 
coincide with the highest wind speeds, on average. Allowing for an exceedence 
probability of 3 %, this elongation is much more pronounced for LASAT, where the 
separation distance towards SE well exceeds 500 m, compared to only 280 m for 
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AODM. Also towards the west, LASAT calculates far larger separation distances 
compared to AODM, for an exceedence probability of 3 %. For 8 %, however, the area 
of exceedence then is similar to AODM. 
Apart from the use of the factor 4 with LASAT, another reason for the discrepancy of 
separation distances between AODM and LASAT originates from the different stability 
schemes used with the two models. Stability classes in Austria are determined with the 
Reuter (1970) scheme, those in Germany with the Klug-Manier scheme (TA-Luft, 
2002). In both schemes, stability classes are determined as a function of half-hourly 
mean wind speed and a combination of sun elevation angle, cloud base height and 
cloud cover. In the Reuter (1970) scheme, classes 2 and 3 can occur only during 
daytime, classes 5 to 7 only at night. Class 4 can occur day and night. Klug-Manier 
classes are numbered from I to V and are classified according to atmospheric stability 
as follows: Stability classes V and IV comprise very unstable and unstable conditions. 
They do not occur during nighttime. Class V occurs only between May and September 
in Central Europe. Stability classes III/2 and III/1 are classified as neutral. III/2 occurs 
predominantly at daytime, III/1 predominantly at nighttime and during sunrise and 
sunset. Stability classes II and I comprise stable and very stable conditions, mostly, but 
not exclusively at night. 
 

 
Figure 3: Relative frequency of stability classes in Kittsee; KM = Klug-Manier (TA-Luft, 2002); 
ON = Reuter (1970). 
 
The Reuter (1970) scheme used in the AODM delivers about twice as many unstable 
situations for Kittsee compared to the Klug-Manier scheme (TA-Luft, 2002), whereas 
the latter calculates much more neutral and stable cases (Fig. 3). Thus, the large 
separation distances for NW wind calculated by LASAT are supported by the neutral 
and stable conditions which often occur with NW wind; only at shorter distances, the 
unstable classes 2 and 3 are relevant which are mainly observed with easterly winds. 
As unstable situations are very seldom in the Klug-Manier scheme, LASAT calculates 
similar separation distances compared to AODM for an exceeding probability of 8 % 
west of the odour source.   
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4. Conclusions and outlook 
Separation distances to protect the neighbourhood from odour nuisance have been 
calculated with two models, the Gaussian Austrian Odour Dispersion Model AODM and 
the Lagrange particle diffusion model LASAT. Short-term peak odour concentrations 
have been calculated with the peak-to-mean ratios of Fig. 1 for AODM and with the 
factor 4 for LASAT. The same emission (Tab. 2) and meteorological data have been 
used, but atmospheric stability is determined differently from these data (Section 3). 
Differences in the resulting separation distances are then both due to the different 
peak-to-mean concepts and to the different atmospheric stability schemes used with 
the models. The results are demonstrated for Kittsee, a rural site in the Eastern 
flatlands of Austria near Bratislava. 
The maximum of the separation distances occurs for NW wind and is thus stretching 
south-east; this can be explained by the fact that the main wind direction in Kittsee is 
also associated with the highest average wind speed and predominantly neutral to 
stable dispersion conditions. In this case, LASAT delivers unrealistically large 
separation distances, caused by the factor 4 and the stability scheme with LASAT 
which calculates far more neutral and stable situations occurring with NW wind than the 
AODM stability scheme. Allowing for an exceedence probability of 8 %, LASAT 
calculates similar separation distances as AODM for easterly winds, as these are 
mainly associated with unstable conditions, which are very seldom in the LASAT 
stability scheme compared to AODM. 
Currently, a coupling of the peak-to-mean approach developed for AODM to LASAT is 
undertaken which is stimulated, apart from the large discrepancies in separation 
distances between LASAT and AODM with the current peak-to-mean ratios, also by the 
wider range of applicability of LASAT. It is commonly accepted that Gauss models can 
be used in flat terrain without nearby obstacles; Lagrange models have a broader 
range of applicability, including built-up areas and moderate topography. 
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To determine separation distances between odour sources and residential areas to 
avoid odour nuisance and complaints by the residents, odour impact criteria OIC have 
to be adopted by the responsible authorities. There is a wide variety of OIC used for 
this purpose, which differ by the odour concentration threshold (between 0.12 ouE m-3 
and 10 ouE m-3), the averaging period (hourly or instantaneous) and by the tolerated 
exceedance probability of the adopted threshold (between 0.1% and about 35% of the 
time). 
There are two groups of OIC used in various jurisdictions: the first one with a low odour 
concentration threshold and a high tolerated exceedance probability (e.g. Germany); 
and the second group with a high odour concentration threshold and a low tolerated 
exceedance probability (e.g. Ireland). The modelled direction-dependent separation 
distances (using OIC which are supposed to offer the same protection level) can vary 
significantly. The OIC of the second group, considering higher ambient odour 
concentrations, show a much lower sensitivity to site-specific meteorological data. 
Therefore, a higher tolerated exceedance probability seems more appropriate for the 
determination of OIC. Even if the similarity of separation distances by various OIC 
could be determined, the direction-dependent separation distances differ considerably 
for the same protection level for a certain receptor type, e.g. rural residential properties. 

1. Direction dependent separation distance 
The annoyance potential of odour sources can be assessed by separation distances. 
The direction dependent separation distance between odour sources and residential 
areas is used to divide the circumjacent area around a source in a zone which is 
protected from nuisance and a zone closer than the separation distance where 
nuisance can be expected and has to be accepted. The protection level depends also 
on the land use category; the higher the protection level, the farther the separation 
distance. 
The direction-dependent separation distance between an odour source and the 
residential properties is the regulatory tool, which takes into account the entire chain 
starting from the odour emission rate (source strength), the dilution in the atmosphere 
(the dispersion model) and the evaluation of the predicted ambient concentration (the 
output of the dispersion model) against certain odour impact criteria OIC. In general, 
the OIC are set by the environmental agencies or other governmental institutions on a 
national basis.  
The quantification of annoyance depends on various predictors which can be 
summarised by the FIDO factors (frequency, intensity, duration and offensiveness of 
the perceived odour) (Watts and Sweeten, 1995). In New Zealand (Ministry for the 
Environment New Zealand, 2003) and several countries in Europe, a fifth factor, the 
location, is additionally in use (FIDOL). This last factor describes the nuisance with 
regard to the sensitivity of the receiving environment which is taken into account by the 
zoning. The location factor can directly be compared to the factor reasonableness, 
suggested by Miner (1995). He defines reasonableness of odour sensation as odour 
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causing fewer objections within a community where odour is traditionally part of the 
environment, e.g. for rural smells as part of the rural environment and for industrial 
smells in industrial areas. Problems also often arise when incompatible activities are 
located near each other. For example, complaints about existing intensive farming 
operations often occur when land use in the vicinity is changing. Personal knowledge of 
the operator of the livestock unit, long term residency, economic dependence on 
farming, familiarity with livestock farming and awareness of the agricultural-residential 
context are related to a reduced incidence of formal complaints. An assessment of this 
factor is often done by the land use (zoning) category of the neighbours, e.g. a pure 
residential area has a higher protection level as a rural site.  
In most of the national jurisdictions which set up national odour impact criteria only the 
two dimensions “frequency” and “intensity” are used out of the FIDOL factors. The 
reasonableness and thereby the protection level for a certain zone, which is described 
by the dimension “location”, is considered by varying these two selected dimensions.   

2. Odour impact criteria 
For practical use separation distances are calculated to reduce or avoid odour 
annoyance depending on a certain protection level. At such a distance the frequency of 
odour sensation over a certain odour concentration threshold CT does not exceed a 
pre-selected level, called the exceedance probability pT. The exceedance probability 
can be defined as a conditional probability pT = prob [C|C > CT]. This concept is based 
on investigations of Miedema and Ham (1988) and Miedema et al. (2000) who found a 
strong relationship between the odour concentration threshold C2% (respectively the 98 
percentile) for an exceedance probability of pT = 2% and the percentage of the highly 
annoyed neighbours HA, using an integration time of 1 hour (hourly mean values)  

2%logHA K C=   
with a constant K = 9.25 (Miedema et al., 2000) or 10 < K <12 for pigs (Nicolas et al., 
2008b).  

2.1 National determination of OIC  
Various national odour impact criteria NOIC which differ by the odour concentration 
threshold and exceedance probability are in use to protect inhabitants from the same 
level of nuisance. 
Two examples of NOIC are given which differ considerably. In Germany the NOIC for 
pigs is defined by a low odour threshold of 0.25 ou m-3 (as an hourly mean value) and 
high exceedance probabilities of 20% for rural and 13.3% for urban areas. In Ireland an 
odour threshold of 6 ou m-3 for rural and 3 ou m-3 for urban areas with a low 
exceedance probability of 2% is in use.  
This approach of OIC is used identically for all other odour sources (e.g. waste water 
treatment plants (Capelli et al., 2013), municipal solid waste landfills (Sironi et al., 
2005). 
The calculation of the separation distance is carried out using a dispersion model, 
which predicts the ambient odour concentration on an hourly basis. This time-series of 
concentration values allows a calculation of the percentage of time in the year during 
which the threshold odour concentration (OIC) would be exceeded. This can be 
compared to the tolerated exceedance probability. 
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Figure 1: Relationship between exceedance probability pT and odour concentration threshold CT 
to define similar protection levels. The empirically derived functions are compared with the 
functions of Watts and Sweeten (1995) and Wallis and Cadee (2008). Additionally, empirical 
data are added for a pig farm (Nicolas et al., 2008a) (from Sommer-Quabach et al. (2014)) 

For a low exceedance probability of pT = 2% or less only few distinct meteorological 
situations will contribute to the separation distance. For pT = 0.1% (West Australia) only 
9 hours are used to determine the separation distance. This means that for each wind 
direction at least nine hours per year of a certain meteorological situation with a very 
low dilution can be found which leads to a nearly circular separation distance. In 
contrast, for a high exceedance probability in the range of 10 to 20%, nearly all stability 
classes contribute to the separation distance as could be shown by Schauberger et al. 
(2006). Further on, the two isopleths of the protection levels of rural and urban 
residential areas show a higher discriminatory power for higher exceedance 
probabilities, because there the two isopleths have a greater distance (Figure 1). Even 
if the similarity of separation distances for various OIC can be determined, the direction 
dependant separation distances differ considerably for the same protection level. 

2.2 Hedonic tone  
The offensiveness of the odour perception, often measured in terms of “hedonic tone”, 
in the pleasantness–unpleasantness–dimension, is a powerful predictor of annoyance. 
It is shown that exposure-annoyance as well as exposure–symptom associations are 
strongly influenced by the hedonic tone. Whereas pleasant odours induced little to no 
annoyance, both neutral and unpleasant ones did (Sucker et al., 2008). In some 
countries (Germany, Ireland, and Belgium), the NOIC differ by the hedonic tone which 
means that for agricultural odour sources, the limit values depend on the kind of 
animals. This approach is suggested by the German odour guideline (GOAA, 2008) not 
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only for odour emission caused by animal husbandry but also for all other odour 
sources. There a methodology is included into the guideline to judge if a perceived 
odour is closer to a pleasant smell or unpleasant malodour. According to the proximity 
to one of these two poles, the exceedance probability of the OIC can be adapted by 
using a weighting factor f. Then the nuisance relevant exceedance probability pT* is 
calculated by pT* = pT  / f. For an unpleasant odour (e.g. broilers with f = 1.5) the 
tolerated exceedance probability for pure residenatal areas is then reduced from 10% 
to pT* = 6.7%, for a more pleasant odour (e.g. dairy cattle with f = 0.5) the tolerated 
exceedance probability is increase to 20%.  

2.3 Resonableness and protection level  
Besides the hedonic tone also the reasonableness of odour sensation has a strong 
influence on the annoying potential. Taking the 10% value of annoyed people, the 
corresponding concentration threshold CT for the exceedance probability of pT = 2% (1-
hour mean value) is CT = 1.3 ou m-3 for the general public. In areas dominated by 
agricultural land use, the “acceptable” concentration reaches CT = 3.2 ou m-3. If pig 
odour is a historical feature of the environment, then CT = 6.3 ou m-3. For those 
inhabitants which are directly involved in livestock husbandry, the concentration is 
determined to CT = 13 ou m-3 (EPA Ireland, 2001). These findings are good arguments 
that OIC can be adapted according to zoning and to the acceptance of a certain odour 
level by residents. For the German NOIC the protection level is adapted to a certain 
zoning by the variation of the exceedance probability (e.g. for residential areas 
pT = 10%, for rural areas pT = 15%), whereas in most of the other countries, this is done 
by the variation of the odour threshold concentration CT.   

3. Calculation of the separation distance 
3.1 Empirical guidelines  
Some countries have already developed guidelines to address odour from livestock. In 
all these guidelines, the separation distance is calculated as a function of the odour 
emission rate, sometimes parameterized by the number of animals. Recently new 
guidelines were published for Germany (Schauberger et al., 2012d; VDI 3894 Part 2E, 
2011), for Belgium (Nicolas et al., 2008a), and for the US (Nimmermark et al., 2005). In 
Austria a new guideline is under development which will substitute the old version 
published in 1995 (Schauberger and Piringer, 1997), which will include the empirical 
approach by Schauberger et al. (2012a). 
The structure of these guidelines is mostly very similar. On the basis of the odour 
emission rate E (in ouE/s), the separation distance S is calculated by an empirical 
function. In many cases the selected relation is a power function S = a Eb (Schauberger 
et al., 2012d) with a factor a and the exponent b which are derived empirically. The 
predictors for these two parameters are the meteorological situation (e.g. frequency of 
the wind direction and wind velocity) and the selected protection level for the 
separation distance. 

3.2 Dispersion models  
Two classes of dispersion models are currently used for topics of (regulatory) odour 
dispersion, namely Gauss and Lagrange models. Both model classes belong to the so-
called non-CFD (computational fluid dynamics) models. Generally, different grades of 
approximations and simplifications to the primitive equations are used when calculating 
concentrations. For example, these models do not calculate the flow around a single 
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building or obstacle when applied to an urban-like geometry, but the effect of a group of 
obstacles is taken into account through an increased surface roughness value or by a 
coarse resolution of the buildings. Non-CFD dispersion models are in general less 
complex and easier to run than typical CFD models and require much shorter 
calculation time. One main advantage is that non-CFD models may be run over a long 
series of input data to represent different meteorological conditions. 
In Gauss models, flow-disturbing features like building influence or topography can only 
be treated via simple empirical relations and assumptions (e.g. flow around or across 
an isolated hill via the dividing streamline concept). In Lagrange models including a 
diagnostic wind field model, a more realistic simulation of the flow field due to 
topography or buildings is possible. A simple assessment of the ambient odour 
concentration in the near field of buildings can be found in Schauberger and Piringer 
(2004). For all types of models a meteorological station representative for the area of 
interest has to be chosen or erected to deliver the desired time series of meteorological 
parameters, at least over one whole year, in the form of hourly or half-hourly mean 
values. Additionally the atmospheric stability has to be derived from meteorological 
data or observations (e.g. cloud cover of a nearby airport) on an hourly basis.  
The output of these dispersion models is the ambient concentration at a certain point 
with the same temporal resolution in the form of hourly or half-hourly mean values.  

3.3 Assessment of the perceived odour concentration in the field 
Contrary to most air borne pollutants odour is not a feature of a certain chemical 
species but a physiological reaction of humans. The sensation and perception of 
odorants depends on sniffing as an active stage of stimulus transport.  
For the assessment of peak values, describing the biologically relevant exposure, often 
the so called peak-to-mean concept is used. This is a way to adopt dispersion models 
to short-term odour concentrations. The goal of the use of peak-to-mean factors is to 
mimic the perception of the human nose in a better way as it can be achieved by long 
term mean values. 
The step from the one-hour mean value (as output of the dispersion model) to an 
instantaneous odour concentration is shown in Figure 2. For the one-hour mean value, 
the threshold for odour perception (here taken as 1 ouE/m³) is not exceeded. Taking 
mean values over 10 minutes, one concentration value exceeds the threshold. For the 
short term mean values of 12 s, concentrations in the range of 5 to 6 ouE/m³ can be 
expected, which means a distinct odour perception over several breaths. Figure 2 
shows that the shorter the selected time interval, the higher the maximum 
concentration. For the shortest period of 12 s, a new feature of the time series can be 
seen. Besides 12 s intervals with odour concentrations above zero, a certain 
percentage of zero observations can be expected. The frequency of non-zero intervals 
is called intermittency (Chatwin and Sullivan, 1989). 
Therefore, the maximum ambient odour concentration for a single breath Cp can be 
estimated using a peak-to-mean factor F which modifies the modelled odour 
concentration (one hour mean Cm) using Cp = Cm F. The shorter the integration time for 
the ambient odour concentration, the higher the peak-to-mean factor F. It is assumed 
that this peak concentration Cp is more appropriate to describe the odour sensation of 
the human nose than the one-hour mean value (Piringer and Schauberger, 2013; 
Schauberger et al., 2012b). 
The following predictors are discussed, which influence the concentration fluctuation 
and thereby the peak-to-mean factor (Hanna and Insley, 1989; Olesen et al., 2005): 

Austrian Contributions to Veterinary Epidemiology, Vol. 8 39



1. Stability of the atmosphere 
2. Intermittency 
3. Travel time or distance from the source 
4. Lateral distance from the axis of the wake 
5. Geometry of the source (emission height and source configuration) 

The details for the parameterization of these five predictors can be found in 
Schauberger et al. (2012c).  
A post-processing tool for dispersion calculations was developed by Schauberger et al. 
(2000) showing a decrease of the peak-to-mean factor with distance from the source. 
Further downwind the peak-to-mean factor is modified by an exponential attenuation 
function depending on the Lagrangian time scale (Piringer et al., 2007).  
 

 
 

Figure 2: Time course of the odour concentration (ouE /m³) for three time intervals. (a) one-hour 
mean value (e.g. output of a dispersion model), (b) 12-min and (c) 12-s mean odour 
concentrations observed at a single receptor point during a field study. The 12-s mean values 
were recorded and subsequently used to calculate 12-min and one-hour mean concentrations 
(source: Schauberger et al. (2012c), modified from Nicell (2009)). 

To apply the NOIC properly, the relevant integration interval for the odour concentration 
has to be known.  
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4. Conclusions 
In many countries, odour impact criteria OIC are in use defined as the combination of 
odour concentration threshold (in ou m-3) and exceedance probability (in %). A 
commitment of the environmental authorities for OIC, which guarantees a certain 
protection level depending on the zoning, is an important feature for a reliable planning 
process.  
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Abstract 
In this paper, three random search strategies are implemented and compared in odour 
finding using multiple robots. The first strategy is Brownian walk (BW). As a typical 
uncorrelated random search strategy, BW combines a Gaussian distribution of move 
length with a uniform distribution of turning angles. Another two strategies are 
correlated random search strategies, namely correlated random walk (CRW) and Levy 
walk (LW). CRW and LW are obtained by replacing the distribution of move lengths 
and turning angles in BW with wrapped Cauchy distribution and Levy distribution, 
respectively. Experiments with the three random search strategies were conducted 
using four MrCollie robots in our laboratory. Results show that the two correlated 
random search strategies (i.e., CRW and LW) are more time-efficient than BW, and 
that LW obtains higher time-efficiency than CRW with respect to our experimental 
setup. 

1. Introduction 
Recent advances in microelectronics have accelerated the investigation on artificial 
olfactory systems, which can be divided into passive olfaction and active olfaction 
(Meng and Li, 2006). The former concerns mainly about the discrimination of different 
odours by processing olfaction-related signals (Jing et al., 2014), while the latter 
investigates the problem of controlling mobile olfactory mechatronic devices to locate 
the source of odour plume. In active olfaction, which is considered in this paper, 
autonomous mobile robots equipped with olfactory sensors are commonly utilized. 
Potential applications of active olfaction cover locating toxic or harmful gas/odour 
leakage source, humanitarian demining, and fighting against terrorist attacks, etc. 
Compared with skilled professionals and trained animals, robots are immune from 
chemical injuries, and thus, are more robust and more flexible. 
The process of robot-based odour source localization comprises three alternating sub-
processes (Lilienthal et al., 2006): odour finding (OF), odour source tracing, and odour 
source declaration. OF is conducted at the initial stage of odour source localization and 
ended when the robot detects the odour for the first time. After the first odour detection 
event, the robot searches for the odour source based on collected odour information. 
Then, if a certain condition is satisfied, the robot starts to declare whether the odour 
source lies at a nearby region or not. Obviously, OF serves as the basis of the other 
two sub-processes. Compared with the vigorous studies on odour source tracing and 
declaration, investigations concerning OF are really rare. Moreover, part of these 
investigations focused on the case of utilizing only a single robot, which means even 
fewer published works have concerned about OF based on multiple robots. 
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To the author’s knowledge, two representative systematic search strategies 
(Bartumeus et al., 2005) were proposed for multi-robot based OF. Li et al (Li, 2009) 
proposed a scattering strategy which makes the robots scatter with equal angel spans 
from the start and bounce back when any robot hits the edge of valid search region 
(VSR). Marjovi et al (Marjovi and Marques, 2013) proposed to move a line formation of 
robots along the upwind direction, which forms a sweeping search strategy. Both the 
scattering and sweeping strategies utilize deterministic algorithms, and thus are 
systematic strategies. Another important class of search strategies are random search 
strategies (Bartumeus et al., 2005), which rely on stochastic processes. Pasternak et al 
(Pasternak et al., 2009) simulated four random search strategies: Brownian walk (BW), 
correlated random walk (CRW), Levy walk (LW), and Levy taxis, in the context of 
finding the filamentous odour plume using a single robot in a ventilated environment. 
However, Pasternak’s work lacks of real experimental results and results with respect 
to multiple robots. In environments with weak airflow, the less-dispersed odour 
distribution increases the difficulty of OF. The performance of these random search 
strategies on multi-robot based OF in real weak airflow environments needs further 
evaluation and comparison. 
In this paper, we implement the BW, CRW, and LW strategies on multi-robot based OF 
in a closed indoor environment, where the wind information cannot be acquired using 
normal anemometers. Levy taxis is not considered since it needs real-time wind 
information. It is common to define random search strategies by the probabilistic 
distribution of the move lengths (MLs) and turning angles (TAs) at different steps. In 
each step, a new position is calculated based on ML, TA, and the old position. Being 
an uncorrelated random search strategy, which do not account for directional 
persistence (DP) (Bartumeus et al., 2005), BW utilizes a Gaussian distribution of MLs 
and a uniform distribution of TAs. Based on BW, DP is incorporated in CRW and LW by 
replacing the distribution of TAs and MLs with wrapped Cauchy distribution (WCD) and 
Levy distribution, respectively. Real multi-robot odour finding experiments were 
conducted to test whether DP increases the search efficiency or not and which of the 
BW, CRW, and LW strategies is the most time-efficient. 
The rest of this paper is organized as follows: the real robots and odour source used in 
the experiments, as well as the test scenario, are introduced in section 2; the 
implementation of BW, CRW, and LW are described in section 3; experimental results 
are proposed and discussed in section 4; conclusions are given in section 5. 
 

2. Materials and methods 
2.1 MrCollie robots 
Four isomorphic MrCollie (i.e., Mobile Robots for Cooperative Odour-source 
LocaLization in Indoor Environments) robots (Cao et al., 2015) were used in our 
experiments. One of the MrCollie robots is shown in Fig. 1. A metal-oxide-
semiconductor sensor (MICS-5521, SGX sensor technology) is sustained by a pillar on 
the front side of the robot. Eight ultrasonic sensors and eight infrared sensors are 
mounted around the robot to detect the remote (0.8 m~3 m) and nearby (0 m~0.8 m) 
obstacles, respectively. An anemometer (WindSonic, Gill instruments) is mounted on 
the top of the robot. Although the anemometers were not used in our experiments, they 
were not removed so as to keep the integrity of the robots. On top of the anemometer, 
there is an identification label, which records orientation, index, and global position of 

44 Schauberger and Meng (Guest editors)



the robot. Through ultra-high-frequency radio waves, the robots periodically sent their 
concentration measurements to and received movement commands from a 
workstation. By processing the image acquired by a hard-wired CCD camera (DFx 
31BG03, Imaging source technology) mounted on the ceiling, the workstation can 
recognize the information recorded by the identification labels, thereby the pose of 
each robot could be obtained. 
 

 
Figure 1: One of the MrCollie robots. 
 
To determine odour detection events, only binary odour measurements are needed. As 
a typical MOS senor, the MICS-5521 sensor suffers from the problem of slow recovery 
time. To solve this problem, the odour detection event was determined by comparing 
the raw concentration measurement of MICS-5521, i.e., ck, with an adaptive threshold, 
i.e., 𝑐!, which is defined as (Li et al., 2011): 

ck =
λck−1 + (1−λ)ck ,    k ≥ 0

ck ,                           k = 0

#
$
%

&%
                            (1) 

 
where λ is a predefined constant parameter. The value of λ was set to 0.5 in (Li et al., 
2011). It was verified in (Cao et al., 2015) and (Neumann et al., 2013) that setting λ to 
0.5 can effectively reflect realistic chemical contact. Based on equation (1), the case of 
𝑐! > 𝑐!!! indicates an odour detection event at the k-th time step. Otherwise, a non-
detection event is considered. 

2.2 Odour source 
As shown in Fig. 2, a self-made odour source that can generate atomized ethyl alcohol 
was used in our experiments. The main body of the odour source is a plastic bucket. 
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Absolute ethyl alcohol is placed inside of the bucket and atomized by the eight 
ultrasonic transducers. Eight ultrasonic transducers are placed at the bottom of the 
bucket to atomize the ethyl alcohol. Then, atomized ethyl alcohol odour is drown out 
from the bucket by the electronic fan. The odour source (i.e., the fan and ultrasonic 
transducers) was powered on for only about ten seconds before each experiment. If 
the odour source was powered on through the whole process of experiments, ethanol 
odour would be dispersed all over the lab. In that case, it is quite easy for the robots to 
encounter the ethanol odour, while it is not conducive to test the efficiency of OF 
methods. 
 

 
Figure 2: The schematic of the electronic nose 

 

2.3 Test-bed scenario 
All experiments were conducted in our lab, which is shaped like an irregular polygon as 
shown in Fig. 3. The VSR is a 5 m-by-7 m rectangular area. The odour source was 
placed at the north-east corner of the VSR. To maximize the difficulty of finding the 
odour plume, the robots started from the diagonal corner of the VSR. Correspondingly, 
the initial heading of the robots were equally distributed in the right angle covering the 
VSR. 
 

 
Figure 3: The experimental scenario. 
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3. Methods 
Three search strategies were tested in this paper. To implement these search 
strategies for robot-based OF, the robot control architecture shown in Fig. 4 was 
utilized. As shown in Fig. 4, the search strategies output goal positions for the robots. If 
the robots move towards their goal positions along straight routes, they would collide 
with each other. Thus, the artificial potential field (APF) based motion planning method, 
which generates mutual repulsive force between nearby robots, is used for obstacle 
avoidance among the robots. Moreover, as long as the robot does not arrive at its goal 
position, the APF-based motion planning continuously generates attractive force for the 
robot from its goal position. Once the robot arrives at its goal position, a new goal 
position is generated according to the search strategies. 
 

 
Figure 4: Control architecture for robot-based OF. 
 
In the context of robot-based OF using random search strategies, new goal position of 
the robots are calculated as follows: 
 

 
xnew = xold + l ⋅cos(θ +Δθ )

ynew = yold + l ⋅sin(θ +Δθ )

#
$
%

&%
                                            (2) 

 
where xnew (ynew) and xold (yold) are the coordinates of the new and old goal positions, 
respectively; θ is the current heading angle of the robot; l and Δθ are the ML and TA, 
respectively.  

3.1 Brownian walk 

As a typical uncorrelated random search strategy, BW does not account for DP in the 
movement. Thus, BW was used as a benchmark strategy to reveal the impact of DP on 
the OF efficiency without wind information. BW involves a Gaussian distribution for the 
MLs and a uniform distribution for the TAs. In our experiments, the MLs and TAs of BW 
were sampled from N(1 m,1) and U(0,2π), respectively. 

3.2 Correlated random walk 

CRW utilizes a WCD of TAs, which is a non-uniform distribution, combining with a 
Gaussian distribution of MLs. In other words, DP is realized by controlling the 
probability distribution of TAs. The probability density function of the WCD is as follows 
(Pasternak et al., 2009): 
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+ − Δ                          (3) 

where 𝜌, 0 ≤ 𝜌 ≤ 1 is the shape parameter. Based on equation (3), the TAs in CRW are 
calculated as follows (Pasternak et al., 2009): 

( ) ( )( )1 tan 0.5
2arctan

1
rρ π

θ
ρ

⎛ ⎞− ⋅ ⋅ −
Δ = ⎜ ⎟

⎜ ⎟+⎝ ⎠                              (4) 

where r is a uniformly distributed random variable within the range of [0,1]. According to 
equation (4), the TAs in CRW are distributed around zero. Thus, new position is most 
likely generated at the same direction as in the previous step, which brings about DP. 
In our experiments, ρ was set to a medium value in its range: ρ = 0.5. 

3.3 Levy walk 
LW utilizes Levy distribution as the distribution of the MLs while still retaining the 
uniform distribution of the TAs as in BW. The probability of generating long MLs in LW 
is higher than that in BW. Obviously, long ML brings about DP with respect to the 
current moving direction, which is different from the DP realized by controlling the 
probabilistic distribution of TAs in the CRW. The ML in LW is calculated as follows 
(Pasternak et al., 2009): 

1
1

0l l r µ−= ⋅                                                             (5) 
where l0 is the minimal value of MLs, 𝜇(1 ≤ 𝜇 ≤ 3) is the Levy index, and 𝑟(𝑟 ∈ 0,1  is 
a uniformly distributed random variable. According to equation (5), smaller value of µ 
yields lower probability of long MLs and degree of DP. Conversely, the bigger the value 
of µ, the higher the probability of long MLs and the degree of DP. In our experiments, l0 

and µ were set to 1 m and 2, respectively. 
 

4. Results and Discussion 
Each of the BW, CRW, and LW strategies was tested for several times. Then, two 
criteria were used to summarize the experimental results. The first is success rate. If 
the robots detected the odour in four minutes after the start, the correlated trial is 
considered successful. The success rate was calculated as the ratio of successful trials 
in the corresponding group of experiments for each random search strategy. The 
second is the average time spent in each group of successful trials, which means the 
time spent in failed trials were not summarized in the average time. 
 
Table 1: Ratios of the standard deviations of the three wind components (σu, σv and σw) to the 
horizontal wind velocity u depending on the stability of the atmosphere (Robins, 1979). 

 BW CRW LW 

Success rate 2/13 12/14 13/14 
Average time (s) 227 156 104 

 
The success rates and average time spent in successful trials are shown in Tab. 1. BW 
succeeded in only 2 out of 13 trials, and the average time spent by BW is close to the 
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time limit, i.e., 240 seconds (four minutes). CRW and LW succeeded in most of the 
corresponding trials and yielded much higher success rates than BW. Moreover, LW 
spent less average time than CRW.  
 

 
Figure 5: Robotic trajectories obtained using BW, CRW, and LW. 
 
To further investigate the search processes, typical robotic trajectories obtained at 
different time points by BW, CRW, and LW are displayed in Fig. 5-a, 5-b, and 5-c, 
respectively. In Fig. 5-a, most MLs are about 1 m, moreover, the robots were trapped 
at the beginning stage in areas around the start point. This is because the robots 
started from the corner and most new goal positions generated using BW were 
repeatedly constrained by the left boundary of the VSR at the beginning. Even when 
the robots got into the central area of the VSR, the robots often return to the areas that 
have been passed by. In Fig. 5-b and 5-c, the search processes were seldom affected 
by the boundaries of the VSR. It is readily seen that several MLs much longer than 1 m 
were generated using CRW and LW in Fig. 5-b and 5-c, respectively. The robots in Fig. 
5-b appear to search along more or less the same direction, while those in Fig. 5-c tend 
to search in individual separated areas. Therefore, the trajectories in Fig. 5-b were 
more overlapped than those in Fig. 5-c. 
From the above experimental results, it can be deduced that DP is important for 
random search strategies to improve the search efficiency. Once the robot moved for a 
long distance along entirely or nearly the same direction, i.e., DP emerged, it usually 
got into a new area that is far from the visited area, and thus avoided being trapped or 
repeatedly searching within the visited areas. Moreover, it can be inferred that making 
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the robots search within different areas can improve the search efficiency. As 
mentioned, DP is realized in CRW and LW by controlling the distribution of TAs and 
MLs, respectively. In our experimental setup, the initial heading of the robots were 
equally distributed within an angle span of 90 degrees. Thus, the WCD in CRW, which 
generated TAs around 0 degree, caused the robots searching near each other. On the 
other hand, the uniform distribution of TAs in LW tends to make the robots leave each 
other. The higher time-efficiency of LW than CRW can be tentatively attributed to the 
higher diversity of robot positions during the search process. 

5. Conclusions 
We have implemented three random search strategies, i.e., BW, CRW, and LW, in a 
multi-robot system for finding environmental odours. BW is a typical uncorrelated 
random search strategy. As two correlated ransom search strategies, CRW and LW 
incorporate DP by controlling the probability distribution of TAs and MLs, respectively. 
With the help of DP, CRW and LW yielded higher time-efficiency than BW. The robotic 
trajectories obtained by CRW are more overlapped than those obtained by LW. 
Consequently, the time-efficiency of multi-robot odour finding is higher for LW than for 
CRW. 
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Data was collected from three pharmaceutical industries (two Western pharmaceutical 
industries and one traditional Chinese pharmaceutical industry). Odour concentration 
was measured by the triangular odour bag method; compounds were quantified by gas 
chromatography-mass spectrometry. The specific objectives were to determine which 
compounds contributed most to the overall odour emanating from pharmaceutical 
industry, and develop equations for predicting odour concentration based on compound 
odour activity value (OAV). OAV is defined as the concentration of a single compound 
divided by the odour threshold for that compound. The larger the OAV, the more likely 
that compound would contribute to the overall odour of a complex odour mixture. 
According to the OAV and regression analyses, we concluded that acetaldehyde, 
acetone, ethanol and NH3 were the most likely contributors to the odour in 
Western pharmaceutical sites. While for the traditional Chinese pharmaceutical site, 
acetaldehyde, acetone, H2S, methanal and ethanol were the most likely contributors to 
the overall odor. Acetaldehyde and Acetone were the compounds with the highest OAV 
from both Western and Chinese pharmaceutical industries. The multivariate regression 
analyse results showed that individual OAV was a good predictor of odour 
concentration for traditional Chinese pharmaceutical industry, the R2 of the regression 
equations ranged from 0.85 to 0.93. While for Western pharmaceutical industry, the 
odour concentration predictions was poor with R2 ranged from 0.30 to 0.65. 
 

1. Introduction 
Environmental odors are inherent parts of most industrial sites and may be the cause 
of an array of reactions, frequently becoming a cause of public environmental 
discomfort (Carmo, 2010). Offensive odors are not only a direct threat for human health 
and welfare, but also represent a significant contribution to photochemical smog 
formation and particulate secondary contaminant emission (Belgiorno et al., 2012). In 
recent years, much attention was paid on waste disposal facilities such as sewage 
treatment plant, composting plant; landfill and so on, as well as animal feeding 
operation plants. Pharmaceutical industry is also an important type of  odour pollution 
source which often causes complaints by surrounding residents. But there is little study 
about odour characteristics from pharmaceutical industry.  
There are hundreds of odorous compounds emitted from pharmaceutical industry. 
However, it is unlikely that each of these compounds contributes equally to the aroma 
of a complex odour mixture. For environment management, it is vital to determine 
which compounds are most responsible for an odor. One of the methods proposed for 
assessing the relative importance of an individual compound in a complex odour 
mixture is the odour activity value (OAV). The OAV is defined as the ratio of the 
concentration of a single compound to the odour threshold for that compound (Friedrich 
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and Acree, 1998; Trabue et al., 2006). The idea of numerically adding individual OAV 
to assess overall odour potential was initially proposed by Guadagni (1963) and later 
by Leffingwell and Leffingwell (1991). When studying combinations of odorants, 
Audouin et al. (2001) found that OAV provided a poor estimate of odour at higher 
intensities but was better at lower intensities. Scientists in the food and beverage 
industries have used OAV to assess odorants. For example, OAV has been used to 
determine the most important aroma contributors to meat (G rosh, 1994), coffee 
(Semmelroch and Grosh, 1996), white wine (Guth, 1997), cheese (Qian and 
Reineccius, 2003), orange juice (Plotto et al., 2004), bread (Hansen and Sc hieberle, 
2005), beer (Fritsch and Schieberle, 2005). 
Despite the extensive use of OAV in the study of food and beverages, there has been 
limited use of OAV in assessment of odorants associated with pharmaceutical field. 
Conceptually, the larger the OAV, the more likely that compound will contribute to the 
overall odour of a complex odour mixture. In this research, three pharmaceutical 
industries were selected as the research objects based on the analyses of the 
complaint case in Tianjin. We used OAV and multivariate regression techniques for 
prediction of odors from pharmaceutical industries. 
 

 

 Figure 1: Localization of pharmaceutical sites in Tianjin, China. 

 
The objectives of this study were to (1) analyze the main odorous pollutants at three 
pharmaceutical sites, (2) find the most significant odorants that contribute to odour 
concentrations of the site, (3) develop models for predicting odour concentration of 
pharmaceutical industries using multilinear regressions analyses compound OAV. 
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2. Materials and methods 
2.1 Sampling sites 
The study was carried out at three pharmaceutical sites located in Tianjin, China (as 
shown in Fig. 1). The trials took place in two different periods of the year, summer 
(2014) and autumn (2014), in order to guarantee the accuracy of the observation 
results by taking account of different meteorological conditions. Three pharmaceutical 
industries were selected. The sampling points were shown in Tab. 1. 

Table 1: Sampling points 

 
ID 

Location 
Western pharmaceutical industry Traditional Chinese medicine industry 

P1 first production workshops first extract workshop 
P2 second  production workshops second extract workshop 
P3 raw material storage preparation workshop 
P4 first synthetic workshop packing workshop 
P5 second synthetic workshop exhaust funnel 
P6 iron sludge treatment herb residue treatment 
P7 wastewater treatment wastewater treatment 
Note: For Western pharmaceutical industry sampling points, P1, P2, P3 were sampled in Zhong'an 
pharmaceutical industry, P4-P7  were sampled in the central pharmaceutical industry. For traditional 
Chinese  pharmaceutical industry, p1-p7 were sampled in Le Rentang pharmaceutical industry.  
 

2.2 Experimental method  
Odour concentration was measured by the triangular odour bag method. Compounds 
were quantified by gas chromatography-mass spectrometry. The quantitative analysis 
of the sample was according to EPA TO-15 method. Ammonia concentration analysis 
method referenced Ambient air and exhaust gas-Determination of ammonia-Nessler’s 
reagent spetcrophotomet (HJ 533-2009). Odour analysis method based on Air quality-
Determination of odor-Triangle odour bag method (GB/T14675-93). 

2.3 Odour activity values   
A comprehensive literature review of odour detection thresholds is presented by van 
Gemert (2003). The single-compound odour threshold (SCOT) is defined as the lowest 
concentration of a single compound in air that can be detected by the human olfactory 
sense when compared to a non-odorous sample (Parker et al., 2010). The 
concentration of the compound can be tested by gas chromatography and other 
analytical instruments, odour threshold can be obtained by database. Using the 
concentration of VOC in the air samples from three pharmaceutical industries, OAV 
were calculated for each individual compound. The geometric mean SCOT value was 
used for the calculation of OAV (eq.1):  
 
𝑂𝐴𝑉 = !

!"#$
     (1) 

 
Where OAV is the odour activity value for an individual compound (dimensionless), C is 
the concentration of the compound (µg m-3), and SCOT is the odour detection 
threshold for the individual compound (µg m-3). 
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2.4 Statistcial analysis   
Japanese researchers believed that compared with the odour concentration, odour 
index can reflect the human olfactive sensation better (Iwasaki et al., 1978). Odour 
concentration and odour index of the sample are calculated by eq. 2: 
 
𝑁 = 10 · 𝑙𝑜𝑔𝑂𝐶     (2) 
 
Where OC=odour concentration, N=odour index. 
Multilinear regressions between odour and individual gas OAV were investigated using 
eq. 3 (SPSS, 2008): 
 
N = A0+A1 OAV1 +A2 OAV2 +…+An(OAVn)   (3) 
 
Where OAV1 through OAVn are the calculated OAVs of the n individual compounds, A0, 
A1 … An are regression coefficients (i.e., weights applied to the OAV values) 
determined in the multilinear regression analyses. 
Accroding to eq. 1 and eq. 2, prediction equations were also developed using 
multilinear regression techniques (eq. 4) 
 
logOC=Bo+B1 OAV1 +B2 OAV2 +…+Bn(OAVn)    (4) 
 
Where OC is odour concentration,  B0, B1 … Bn are regression coefficients. “Backward 
method” were used for these analyses. The so-called “backward method” was used for 
these analyses. This is the most commonly used method. In the backward method, 
SPSS enters all independent variables into the model. Then the independent variable 
with the largest p-value (p > 0.1) is removed, and the regression is re-calculated. If this 
weakens the model significantly, the variable is re-entered; otherwise it is deleted. This 
procedure is repeated until only significant variables remain in the model.  
The statistical analyses were also conducted using the MaxR (maximum R2 
improvement) selection method in SAS version 9.2 (SAS Institute, Inc., Cary, N.C.). 
The MaxR selection method considers all possible variable combinations to find the 
best (i.e., the highest R2 per the MaxR selection method) one-variable model, the best 
two-variable model, the best three-variable model, and so on. 

3. Results and discussion  
3.1 Analyze the the main odorous compounds   
For the Zhong'an pharmaceutical industry, the main odorous pollutants were inorganic 
gas (3.7020 mg/m3) and organic compounds including alkane (0.3395 mg/m3), alkene 
(0.0215 mg/m3), halohydrocarbon (16.0765 mg/m3), arene (0.1055 mg/m3) and oxygen-
containing hydrocarbon (45.3246 mg/m3). The vast majority was oxygen-containing 
hydrocarbon accounting for 69.12% of the total mass concentration. There were total 
40 substances quantitatively detected, containing 8 alkanes, 3 alkene, 8 arene, 10 
halohydrocarbon, 9 oxygen-containing hydrocarbon and 2 inorganic gas.   
For the central pharmaceutical industry, the total detection concentration was higher in 
summer (66.5434 mg/m3) than that in autumn (143.3594 mg/m3). The main odorous 
pollutants were inorganic gas (0.4569 mg/m3) and organic inorganic compounds 
including alkane (3.8728 mg/m3), alkene (0.6250 mg/m3), arene (51.5933 mg/m3), 
halohydrocarbon (0.1773 mg/m3) and oxygen-containing hydrocarbon (153.1777 
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mg/m3). Oxygen-containing hydrocarbon was also the vast majority accounting for 73% 
of the total mass concentration. There were total 55 substances quantitatively detected, 
including 17 alkane, 4 alkene, 14 arene, 8 halohydrocarbon, 11 oxygen-containing 
hydrocarbon and ammonia. 
 

 

Figure 2: The proportion of pollutants concentration in Western pharmaceutical industry during 
summer and autumn. 

 

Figure 3: The proportion of pollutants concentration in Western pharmaceutical industry during 
summer and autumn. 

 
Seven compounds were detected as the major contributor to total detection 
concentration in Le Rentang pharmaceutical industry, a maximum of 93% of the total 
mass concentration was attributed to oxygen-containing hydrocarbon compounds 
(87.1791 mg/m3), 4% to alkane (3.6131 mg/m3), 1% to alkene (0.7834 mg/m3), arene 
(0.7455 mg/m3) and inorganic gas (0.9255 mg/m3), respectively, the proportion of 
halohydrocarbon and organic sulfur was slight. There were total 70 substances 
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quantitatively detected, including 17 alkane, 9 alkene, 10 arene, 17 halohydrocarbon, 
14 oxygen-containing hydrocarbon, 2 inorganic gas and 1 organic sulfur. 
Fig. 2 and Fig. 3 showed the proportion of pollutants concentration during summer and 
autumn in Western pharmaceutical industry and traditional Chinese pharmaceutical 
industry, respectively. It shown that the vast majority was oxygen-containing 
hydrocarbon compounds in both Western and traditional Chinese pharmaceutical 
industry. While for P7 in traditional Chinese pharmaceutical industry, inorganic gas 
accounting for about 99% of the total mass concentration, it mainly due to hydrogen 
sulfide was the most significant compounds in wastewater treatment. 

Table 2:  The top three OAVs of the compounds in each site. 

 Western medicine industry traditional Chinese medicine industry 
summer autumn summer autumn 

compound[a]  OAV compound OAV compound OAV compound OAV 
 
P
1 

1 Acet 261.31 m-xy 18.57 Acet 610.98 Acet 935.74 
2 Ace 153.59 Ace 17.39 Ace 58.29 Ace 78.37 

3 m-xy 18.46 Acet 17.10 H2S 26.69 H2S 65.49 
Odour                      41687                              309 741                                   550 

 
P
2 

1 Acet 170.28 Acet 177.75 Acet 624.15 Acet 933.41 
2 Ace 143.99 Buta 95.95 Prop 110.61 Isov 111.89 
3 m-xy 20.07 Acetone 62.07 H2S 53.67 Ace 111.66 
Odour                    13183                               741                         2344                                741 

 
P
3 

1 Acet 54.30 Acet 221.84 Acet 193.84 Acet 130.69 
2 Prop 49.60 Ace 63.21 Ace 62.99 Ace 20.15 
3 Acet 44.06 m-xy 4.59 Etha 3.07 Meth 0.26 
Odour                     41687                               417                         174                                174 

 
P
4 

1 Prop 14765 Acet 37.57 Acet 82.33 Acet 133.63 
2 Ace 50.04 Ace 8.11 H2S 26.41 Ace 27.89 
3 Acet 36.68 H2S 6.51 Ace 3.93 H2S 16.91 
Odour                     132                                   98                         417                                  309 

 
P
5 

1 Ace 229.22 Acet 35.81 Acet 1459 Isov 18950 
2 Acet 41.67 Isov 31.01 Acet 154.75 Acet 345.26 
3 NH3 0.48 Acet 22.84 H2S 25.37 Ace 35.18 
Odour                     234                                   174                         1318                                 234 

 
P
6 

1 Acet 42.17 Acet 29.63 Acet 174.68 Acet 105.86 
2 Ace 28.52 Ace 17.44 H2S 79.68 Ace 5.26 
3 NH3 0.73 NH3 0.36 Ace 54.49 Meth 0.43 
Odour                     977                                   74                         550                                 417 

 
P
7 

1 Acet 42.84 Acet 79.93 H2S 218906 H2S 876710 
2 Ace 21.95 H2S 31.18 Acet 108.87 Acet 36.02 
3 NH3 0.09 Ace 1.75 Ace 36.34 Ace 11.68 
Odour                     4169                                 417                        13183                             23442 

[a] Acet = acetaldehyde, Ace = acetone, m-xy = m-xylene, H2S = hydrogen sulfide, Buta = butanone, Prop 
= propanal, Isov = isovaleral, Etha=ethanol, Meth = meyhanal, NH3 = ammonia. 
 

3.2 Single-compound odour activity value  
The larger the OAV, the more likely that compound would contribute to the overall 
odour of a complex odour mixture. In order to compare the sensory stimulation strength 
of single-compound OAV and analyse their contribution, the top three OAV of the 
compounds were provided in Tab. 2. 
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The main odorous pollutants in Western pharmaceutical industry were inorganic gas 
and oxygen-containing hydrocarbon compounds. The compounds with highest 
frequency at each sampling point were acetaldehyde, acetone, followed by ethanol, 
ammonia. While the OAV value of ethanol and ammonia were lower, therefore, 
acetaldehyde and acetone were found as the most significant compounds in 
Western pharmaceutical industry. 
For traditional Chinese pharmaceutical industry, the main odorous pollutants were 
inorganic gas, oxygen-containing hydrocarbon compounds, and less alkene and arene 
compounds. Acetaldehyde, aceton, hydrogen sulfide were found as the most significant 
compounds in this sampling point due to their highest frequency. 
Odour concentration was found to be large difference in two seasons, the values in 
summer were larger than that in autumn, this was expected, odour and gas 
concentrations and emission rates were significantly different due to variations in the 
sampling point and management characteristics of the sites. It may be also due to the 
samples was interfered by other undetected gas compounds in summer. 

3.3 Single-compound odour activity value  
The multivariate regression analyses for the Western medicine industry and traditional 
Chinese medicine industry sites yielded numerous muli-parameter prediction models 
for odour concentration. 
The OAV was not a good predictor of odour concentration in Western pharmaceutical 
industry, that is one-parameter model (Acetaldehyde only, R2=0.30) to a 4-parameter 
model with R2=0.65 (Tab. 3). The most significant compounds were Acetaldehyde, 
Acetone, Ethanol and NH3. These particular compounds apparently can be used to 
account for up to 65% of the variance in odour concentrations. There was no serious 
collinearity among the independent variables.  The linear regression equation was as 
follows: 
 
log𝑂𝐶 =27.262+0.008X1+0.023X2+1.652X3-5.465X4   R2=0.65, P<0.05  (5) 
 
Where OC was the predicted odour concentration; X1, X2, X3, X4 were the OAV of 
Acetaldehyde, Acetone, Ethanol, NH3, respectively. P-value(p<0.05) suggested the 
equation had a  good statistical significance. 
While for traditional Chinese medicine industry site, the multilinear regression results 
ranged from a best one-parameter model (Acetaldehyde only, R2=0.85) to a 5-
parameter model with maximum R2=0.93 (Table 4). The most significant compounds 
were Acetaldehyde, Acetone, Methanol, Ethanol and H2S. These particular compounds 
apparently can be used to account for up to 93% of the variance in odour 
concentrations. The collinearity was good among the independent variables. The linear 
regression equation is as follows: 
 
log𝑂𝐶 =29.867+0.007x1-0.068x2-8.994x3-0.214x4-0.001x   R2=0.93, P<0.05 (6) 
 
Where OC was the predicted odour concentration; x1, x2, x3, x4, x5 were the OAV of 
Acetaldehyde, Acetone, Methanol, Ethanol, H2S, respectively. P-value(p<0.05) 
suggested the equation had a  good statistical significance. 
According to these results, all correlations were statistically significant (p<0.05), but a 
maximum of 65% of the variation in odour concentrations could be predicted by using 
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OAV in Western medicine industry, and a maximum of 93% of the variation in 
traditional Chinese medicine industry. It was concluded that OAV can be used to 
predict odour concentrations from Pharmaceutical Industry, but these OAV will not 
always yield high coefficients of determination. It was mainly because odour was 
sampled in different site and the effect of seasonal changes on odour and gas 
concentrations. 

Table 3:  Regression coefficients and corresponding R2 values for the model in eq. 5 
(Western medicine industry site). Shown are coefficients for n = 1 to 4 parameter models. 

No. of 
parameters 

 
Intercept 

Compound 

Acetaldehyde Acetone Ethanol NH3 R2 P 
1 24.255 0.058 - - - 0.30 0.12 
2 23.654 0.051 0.020 - - 0.34 0.21 
3 24.396 0.021 0.018 1.866 - 0.56 0.03 
4 27.262 0.008 0.023 1.652 -5.465 0.65 0.03 

 
Based on OAV analysis and the regression analyses, we noticed that Acetaldehyde 
and Acetone had the highest frequency and their OAV were higher, there was no doubt 
that they were the highest contributors to odour in pharmaceutical industry. 

Table 4: Regression coefficients and corresponding R2 values for the model in equation 6 
(traditional Chinese medicine industry site). Shown are coefficients for n = 1 to 5 parameter 
models. 

No. of 
parameter
s 

 
Intercept 

Compound 

Acetaldehyde Acetone Methanol Ethanol H2S R2 P 

1 29.250 -4.55 - - - - 0.85 0.31 
2 29.311 0.001 -0.013 - - - 0.85 0.61 
3 31.555 -0.029 -0.002 -11.162 - - 0.92 0.00 
4 36.870 0.008 -0.142 -19.315 -0.643 - 0.93 0.00 
5 29.867 0.007 -0.068 -8.994 -0.214 -0.001 0.93 0.00 

 

4. Conclusions 
The following conclusions were drawn from this research: 
From analyzing the total detection concentration, it shown that oxygen-containing 
hydrocarbon compounds had the largest proportion in both Western medicine 
industries and traditional Chinese medicine industry. 
When odour activity values were taken into account, the most significant compounds 
were propanal acetaldehyde and acetone for Western pharmaceutical industry, 
acetaldehyde, acetone, isovaleral and hydrogen sulphide for traditional Chinese 
pharmaceutical industry. Both Western pharmaceutical and traditional Chinese 
pharmaceutical industry had the same two compounds with the highest OAVs (ranked 
high to low: acetaldehyde, acetone). 
Although the odour concentration predictions was generally poor (R2=0.30 to 0.65) in 
Western pharmaceutical industry, individual OAVs was a good predictor of odour 
concentration using multivariate regression analyses for traditional Chinese 
pharmaceutical industry (R2=0.85 to 0.93). 
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Based on the OAV and regression analyses, we concluded that acetaldehyde, acetone, 
ethanol and NH3 were the most likely contributors to the Western pharmaceutical sites. 
While for the traditional Chinese pharmaceutical sites, acetaldehyde, acetone, H2S, 
methanal and ethanol were the most likely contributors. 
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