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Abstract: Malnutrition, which includes macro- and micronutrient deficiencies, is common in individ-
uals with allergic dermatitis, food allergies, rhinitis, and asthma. Prolonged deficiencies of proteins,
minerals, and vitamins promote Th2 inflammation, setting the stage for allergic sensitization. Conse-
quently, malnutrition, which includes micronutrient deficiencies, fosters the development of allergies,
while an adequate supply of micronutrients promotes immune cells with regulatory and tolerogenic
phenotypes. As protein and micronutrient deficiencies mimic an infection, the body’s innate response
limits access to these nutrients by reducing their dietary absorption. This review highlights our
current understanding of the physiological functions of allergenic proteins, iron, and vitamin A,
particularly regarding their reduced bioavailability under inflamed conditions, necessitating different
dietary approaches to improve their absorption. Additionally, the role of most allergens as nutrient
binders and their involvement in nutritional immunity will be briefly summarized. Their ability
to bind nutrients and their close association with immune cells can trigger exaggerated immune
responses and allergies in individuals with deficiencies. However, in nutrient-rich conditions, these
allergens can also provide nutrients to immune cells and promote health.

Keywords: allergens; iron; vitamin A; nutritional immunity; malnutrition; malabsorption; Th2;
micronutrient deficiencies; protein deficiencies; type 2 inflammation

An often overlooked aspect in the etiology of allergies is the fact that not everyone
becomes allergic despite being exposed to the same allergenic and environmental threats.
This suggests that certain intrinsic conditions promote allergies, making an individual
particularly sensitive to allergenic substances. The term “atopy” reflects the hypersensitive
predisposition of a person prone to allergies compared to a person with no such risk.

Here, we review the diet as a major contributor to “atopy”, highlighting how defi-
ciencies in specific proteins, minerals, and vitamins can shift the immune system toward
type 2 inflammation. We focus on three common deficiencies worldwide, protein, iron, and
vitamin A, and explore their impact on ameliorating the disease course.

1. Definition of Malnutrition

Though malnutrition often refers to undernutrition, encompassing protein–energy
malnutrition and micronutrient deficiencies, it also includes overnutrition, referring to
both deficiencies and excesses in nutrient intake. Obese individuals are often deficient in
micronutrients despite calorie excess [1]. Moreover, the World Health Organization (WHO)
also includes impaired nutrient utilization as one form of malnutrition.
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Malnutrition is not always the result of an inadequate intake of micro- and macronutri-
ents but may also arise from impaired nutrient utilization. While micronutrient deficiencies
are more frequent and severe among disadvantaged populations, they also represent a
public health problem in industrialized countries [2]. The NHANES study revealed in-
adequate intake of vitamins and minerals in about 40% of Americans [3–5], highlighting
that malnutrition is a problem in industrialized, developed countries. About 40% [6] of
all people with chronic illnesses and up to 90% of hospitalized people suffer from mal-
nutrition [7], which is an independent risk factor for increased morbidity and mortality.
Reasons for hospital-acquired malnutritionis beside poor appetite hospital meal refusal,
operation-related fasting, polypharmacy, and comorbidities [7], with malnutrition being
a predictor of postoperative morbidity and mortality [8]. The increased consumption of
highly processed, energy-dense but micronutrient-poor foods in industrialized countries,
and increasingly in those undergoing social and economic transition, adversely affects
micronutrient intake and status [9]. Certain lifestyle factors also increase the risk of malnu-
trition, such as frequent blood donations, smoking, vegan/vegetarian diets, excessive use
of some medication (e.g., antacids hindering dietary iron uptake), and greater nutritional
demands during specific life stages (growth, pregnancy, or endurance sports) [10].

1.1. Malabsorption Due to Inflammation and Nutritional Immunity

Both inflammation and malnutrition can evoke “nutritional immunity” [11], one of
the most evolutionary conserved innate mechanisms present in all living organisms. In
humans, nutritional immunity involves the redistribution of vitamins and minerals away
from circulation [11,12] to safer havens, such as the macrophages and liver cells, while it
also hinders the dietary uptake of micronutrients. Consequently, “nutritional immunity”
impairs nutrient utilization within the body and results in malabsorption, with “impaired
nutrient utilization” listed by the WHO as one form of malnutrition.

People at risk of nutritional deficiencies include obese people, due to low-grade in-
flammation, individuals with inadequate nutrient intake, and those suffering from chronic
diseases including congestive heart failure [13–15], chronic kidney diseases [16–18] autoim-
mune diseases [19–23], inflammatory bowel disease [24,25], cancer [26–28], and allergic
diseases [29–33] (Figure 1).

1.2. Physiological Pathways of Nutrient Absorption

Nutrient absorption is a complex process that depends on many variables, including
the interinfluence among them and one’s overall nutritional status [34]. Most nutrients are
absorbed in the jejunum, while B12 and bile salts are absorbed in the terminal ileum. Iron
and most minerals [35] are absorbed in the duodenum, while magnesium’s predominant
absorption site is the terminal ileum and proximal colon [36]. Once nutrients pass the gut
lining, they enter either directly into the bloodstream or via the lymphatic system, before
being released into circulation (Figure 2).

Micronutrients are assimilated via three major mechanisms:

(1) Direct bloodstream absorption: Simple sugars [37] (glucose, fructose), amino acids
(from digested proteins), short-chain fatty acids SCFA and medium-chain fatty acids
MCFA, water-soluble vitamin C, vitamin Bs (except B12) and folate [38], and most
minerals (iron, calcium, potassium) are readily absorbed into the bloodstream and
enter via the portal vein the liver.

(2) Lymphatic absorption: Fat and fat-soluble compounds (including fat-soluble vita-
min A, D, E, and K) are taken up via the lymphatic vessels [39]. These nutrients
are emulsified in micelles composed of bile salts absorbed by the enterocytes and
packed into chylomicrons [40,41]. Chylomicrons are composed primarily of triglyc-
erides, phospholipids, cholesterol, and lipoproteins and enter the bloodstream near
the collarbone.

(3) Receptor-specific uptake: Digestion-resistant proteins serve as carriers for nutrients
(iron [2,42–51], calcium/magnesium [52,53], vitamins [43,44,47], carbohydrates [54,55],
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phenolics [48–50,56], and lipids [57–59]). This receptor-specific uptake occurs often,
typically exploiting the lacteals—the jejunal lymphatic vessels [60]—as shown with
the absorption of milk proteins (whey) [61] and egg proteins [62,63] but also for
plant-derived food, such as soy [64,65] and nut proteins [64,65].
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Notably, these nutrient-binding proteins are sensitive to heat and food processing,
which can impair their nutrient-carrying abilities. Minerals such as iron, zinc, selenium,
and calcium have reduced bioavailability in inflamed settings via a range of mechanisms,
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including the presence of a mucosal block for iron [66,67] and zinc [68,69], a compromised
epithelial barrier function affecting e.g., folate [70], as well as vitamin B12 [71–73] absorp-
tion. Iron and vitamin D deficiencies can affect calcium and magnesium [74] absorption,
while vitamin B6 deficiency increases zinc and lowers copper but not iron absorption [75].
Also, uptake of fat-solubilized vitamin A [76] can be compromised in an inflamed setting,
likely due to an altered bile secretion profile [77], and is exacerbated by zinc and iron
deficiency, with the bioavailability of vitamin D also being reduced in inflamed settings.
A lack of iron [78–80] and vitamin A [81–83] has detrimental health consequences and is
associated with increased morbidity and mortality [84,85].
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Figure 2. Nutritional Immunity promotes malabsorption. While in the normal steady state, water-and
fat-soluble compounds cross the epithelial barrier and enter the body via the blood system and/or
the lacteals, inflammation will trigger nutritional immunity. This results in impaired absorption of
minerals and vitamins, particularly in those following the blood route. In contrast the “lymph route”
remains accessible as it still allows monitoring of nutrients for potential pathogens.

2. General Immunological Implications of Malnutrition (Protein and Micronutrients): A
Shift towards Th2
2.1. Malnutrition and the Thymus

Particularly, protein and micronutrient deficiencies in minerals (iron, zinc, magnesium)
or vitamins (A, Bs, C, D) have a direct impact on our immune system and drive inflamma-
tion [11] via their effect on the thymus and other lymphoid organs. A lack of these proteins,
vitamins, and minerals causes atrophy of lymphoid tissues, and here, the thymus and the
lymph organs are the major organs particularly affected. The thymus was described as a
very sensitive barometer of malnutrition by Menkel 200 years ago [86,87], when its function
was not clear. The thymus is, beside the bone marrow, a primary lymphoid organ, which
is located in the upper chest area and is essential for lymphocyte production (though it
also contains macrophages, dendritic cells, and a small number of B cells, neutrophils, and
eosinophils). It is very sensitive to nutritional deprivation resulting in the depletion of
immature CD4+CD8+ cells [88,89] and is associated with a Th2 skewing [90].

Nutrient deficiencies induce similar cellular changes in the thymus, such as acute
infections. Already, mild malnutrition [88,91] induces the following changes in the thymus:
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An increase in the extracellular matrix, which contains fibronectin, laminin, and type IV
collagen (preceding thymocyte depletion), followed by thymocytic depletion. This goes
along with a relative rise in macrophages (phagocyting dead thymocytes) and less produc-
tion of thymulin-a zinc-containing thymic peptide hormones capable of downregulating
inflammatory mediators [89,92,93].

The depletion of thymocytes [89] is a consistent finding in individuals consuming a
diet deficient in proteins for a prolonged period (in in vivo models, deficits are seen from
two weeks on, despite calorie sufficiency) [94–97] but also when single nutrients, such
as iron [98,99], zinc [100], magnesium [101–103], or vitamin (B1/B2/B5/B6/C) [104,105],
are missing. Regarding the type of immune response generated during malnutrition, the
skewing of the immune system towards Th2 is well established [106] and already seen upon
“moderate malnutrition”. Moderate malnutrition is defined after the Global Leadership
Initiative on Malnutrition GLIM’s definition, with a weight loss of 5–10% within the past
6 months, BMI 18.5–20 m/kg2 (age < 70 years), and/or BMI < 22 m/kg2 (≥70 years).
Severe malnutrition includes weight loss >10% within the past 6 months, BMI <18.5 m/kg2

(<70 years), and/or BMI < 20 m/kg2 (≥70 years) [107]. Importantly, thymic atrophy is
reversible upon providing the missing nutrients.

One cannot overemphasize that nutritional deficits not only can elicit inflamma-
tion [108] but also lay the groundwork for a Th2 environment (typically characterized by
the presence of IL4, IL13, and/or IL5), which is the prerequisite for allergic sensitization.
In the acute phase, nutrient deficiencies usually manifest as a Th1/Th17 response, before
this changes to a Th2 response in the chronic phase [11,109]. Immunological changes
are reported in apparently healthy people with a low BMI (<18.5) showing subclinical
inflammation with elevated Th1 (IL2, IL12, TNFα,) and Th2 cytokines (IL4, IL5, IL13,
IL10) [110]. Malnourished children also show greater IL4 and IL10 levels [111], while
asthma risk seems to increase [112]. IL4 concentrations are significantly higher in school
children from Tanzania affected with stunting [113]. Thus, persistent malnutrition per se
results in the establishment of a Th2 milieu [90,112,114–118]. Importantly, these findings
are consistently reproduced in clinical settings, with inferior intake of several minerals and
vitamins correlating with higher IL4 and IL10 levels.

2.2. The Importance of Allergenic Proteins: Saviors or Dangers

Proteins are essential for human health, as inadequate protein consumption leads
to type 2 inflammation. Animal studies consistently demonstrate that a protein-poor
diet results in low-grade inflammation (IL4/IFNγ) [119], while increased dietary proteins
strongly correlate with the immune system’s abilities to combat parasites [120]. Mice fed
amino acids instead of proteins had poorly developed gut-associated lymphoid tissue [121]
and normal IgM but reduced circulating IgG and IgA, and they showed a predominant
Th2 profile [122]. In pigs, a high protein diet results in an improved barrier in the ileum
and decreased glucose and glutamine transport [123]. Protein–energy malnutrition is an
important cause of secondary immune deficiency and is associated with high TNFα, IFNγ,
and IL4 levels in moderate/severely malnourished children [124] and occurs in the [125]
Western world usually in the context of chronic diseases [126].

While most proteins are harmless, a few protein families tend to trigger allergic re-
actions. Indeed, these allergens are usually clustered in specific protein families (Table 1).
In mammals, the most important major allergens often belong to the “lipocalin” super-
family [66]. Allergens from plants originate from protein families that are often seed
proteins, including the pathogenesis-related proteins PR10 family; the prolamin superfam-
ily (including seed storage protein 2S albumins and the nonspecific lipid transfer proteins
nsLTPs) [127–129]; the cupin protein superfamily (including the legumins and vicilins);
and Ole e 1 families [130].

A key feature of most major allergens is their ability to bind to, transport, and enhance
the absorption of essential nutrients. This ability has been observed for iron (in lipocalins,
seed storage proteins 7S, 11S, and PR10 proteins, Alt a 1, 2S albumin) [2,42–51,56,131],
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zinc [132–136] (lipocalin, Ole e 1, nsLTPs), lipids (in lipocalins, PR10 and LTPs) [132,137,138],
and vitamin A (lipocalins, PR10, Alt a 1) [43–47,121]. Many plant proteins can bind iron
via antioxidative flavonoids, with the ligands for PR10, 2S protein, 7S proteins identified
in birch and hazelnut having quercetin as a common core structure [139,140], strawberry
proteins binding to catechins [141], peanut proteins Ara h 2 and Ara h 6 capable of binding
to the flavonoid epigallocatechin-3-gallate [142], quercetin, [143] epicatechin [144], or
proanthocyanidins [145], with binding decreasing their allergenicity [146].

Interestingly, studies suggest that iron binding may play a role in reducing the im-
munogenicity of these proteins, hence their ability to trigger an immune response. This
has been demonstrated with peanut allergens (Ara h 1–7S, Ara h 3 -11S protein) [51], egg
proteins (Gal d 3 [147]), lipocalin beta-lactoglobulin (Bos d 5) [48,50], and the birch allergen
Bet v 1 [49,56].

Food processing often changes mineral and vitamin content and alters the structures of
these proteins. For example, the pasteurization of milk promotes the aggregation of whey
proteins [61] and impairs the ligand-binding capacity of the whey protein beta-lactoglobulin,
shown with ligands such as retinol and palmitic acid [148], while simultaneously increasing
its antigenicity [61,148]. Similarly, pasteurization decreases copper and iron content [149]
in milk.

Studies by us and others suggest that their nutrient-binding features switch these proteins
from tolerogenic (with nutrients) to allergenic (without nutrients). Nutrient-poor conditions
turn birch, peanut, egg proteins, and milk proteins into potent allergens, while micronutrient-
adequate conditions appear to promote immune resilience [30,42–44,48–50,56,131].

Additionally, the function of these proteins should be considered, as the majority of
these protein families are known to act during the stress response and nutritional immunity
in their respective plants [150,151] and organisms [2,42,48,66,131,150,152–164].

These findings support an emerging principle that these proteins can deprive their
local environment of important nutrients such as iron, lipids, or vitamins and thereby have
a profound metabolic impact on our immune cells. This depletion triggers a danger signal
to the immune system, especially in atopic individuals. If, on the other hand, nutrients are
available in abundance, these same proteins act as carriers for micronutrients. They bind
and deliver essential nutrients (become “holo-proteins”) and contribute to immune cell
health by promoting tolerance.

Essentially, the allergenicity of these proteins appears to be a context-dependent phe-
nomenon. Their function can change depending on nutrient availability, from useful nutrient
carriers in a nutrient-rich environment to potential allergens under nutrient-poor conditions.
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Table 1. Summary of allergenic protein families on known ligands and biological function.

Protein Families Structure Examples Known Ligands Origin Function Ref

Pathogenesis-related class
seed storage protein

small protein with antiparallel
beta-strands and alpha-helices

Bet v 1, Pru a 1, Mal
d 1, Fra a 1

phytohormones,
siderophores, flavonoids,
alkaloids

plants
Pathogenesis-related proteins (PRPs): signature
genes for systemic acquired resistance in plants
Microbicidic, Kunitz type of protease inhibitor

[154–160]

Ole e 1 Family β-barrel fold, stabilized by
3 disulfide bond, heat stable

Ole e 1, Pla l 1, Che
a 1 2+ metals plants

Pollen tube development, leave senescence
Activated under ROS induction, contribute to
antioxidant production, plant defense responses.

[135,161–164]

nsLTPs
seed storage proteins
Prolamin superfamily

cysteine-rich alpha-helical; rich in
proline and glutamine

Pru p 3, Ara h 9,
Fra a 3 Fatty acids, phospholipids plants

Antimicrobial, lipid utilization, plant stress
Regulate FAO, binds to calmodulin (central hub in
calcium-dependent cellular regulation)

[154,165]

2S albumin (conglutin)
seed storage proteins
prolamin superfamily

small cysteine-rich,
alpha-helical protein

Ara h 2, Ber e 1, Ses
I 1, Gly m 8 phenolics plants Nutrient reservoir, regulate germination

Antimicrobial, stress response [166] [154,165]

Albumin 2S
seed storage

hemopexin-like fold
no disulphide bonds
thermostabile, ß-propeller

heme, spermidine
thiamine plant

Stress response, antioxidative, agglutinate
erythrocytes; peroxidase activity or heme binding
Seed germination

[167–169]

cereal prolamins
prolamin superfamily

alpha-helical, conserved
cystein-skeleton; rich in proline
and glutamine

Tri a 19 (wheat), Sec
c 20
Hor v 21

copper, sugars,
fats, phenolics plants Nutrient reservoir, regulate germination

Antimicrobial, stress response [166,170]

prolamin
alpha-amylase inhibitors [171] alpha-helical, cystein-rich Tri a 28

Hor v 15 calcium plants Antimicrobial, stress response
Inhibit exogenous insect amylases [172]

7S/vicilin
CUPIN beta-barrel core [165] Ara h 1, Jug r 2, Ses

I 3
copper, sugars, fats,
phenolics plants Nutrient reservoir, regulate germination,

Antimicrobial, stress response [154,165,166]

11S/legumin-like
CUPIN beta-barrel core Ara h 3, Ber e 2, Ses

i 6
copper, sugars, fats,
phenolics plants Nutrient reservoir, regulate germination

Antimicrobial, stress response [166] [154,165]

Lipocalins symmetrical β-barrel fold, Can f 1, Fel d 4, Bos
d 5

siderophores, phenolics,
vitamin, heme products animal Stress response, microbicidic, nutritional immunity [66,173,174]

Serum Albumin globular, several long α helices Fel d 2, Gal d 5,
Can f 3, Equ c 3

Cu2+, Zn2+, hormones,
vitamins, minerals, drugs,
hemin

animal
Carrier protein, nutritional immunity
Negative acute phase protein
Anti-inflammatory

[175–177]

Parvalbumin calcium-binding, long α helices,
EF-hand superfamily Cyp c 1, Gad c 1 Ca2+, phosphatidylcholine,

phospatidylethanolamine
animal

Calcium buffer, immunomodulatory
Protective against reactive oxygen
species, antibacterial

[178,179]

Tropomyosin two-chained, α-helical coiled
coil protein

Bla g 7, Lep s 1, Der
f 10 actin animal

Regulates stress fiber assembly
Regulatea calcium-dependent interaction of
actin/myosin during muscle contraction
Host defense, immunomodulatory

[180–182]

Uteroglobin homodimeric, alpha helical
strucure linked by disulfide bonde Fel d 1, Ory c 3

phosphatidylcholine,
phosphatidylinositol,
polychlorinated, steroids,
environmental toxins
progesterone

animal

Anti-inflammatory, antioxidant
Inhibitor of phospholipase A2
Increased vulnerability to oxygen toxicity in
uteroglobin-knock-out mice, defects in uteroglobin
are associated with a susceptibility to asthma;
protects epithelial linings

[183,184]
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Table 1. Cont.

Protein Families Structure Examples Known Ligands Origin Function Ref
NPC2 proteins
MD-2-related lipid
recognition family

immunoglobulin-like
β-sandwich fold

Der p 2, Gly d 2,
Tyr p 2

lipids cholesterol
other sterols, LPS animal Crucial for cholesterol transport and utilization

Arginin Kinase mainly α-helical Bla g 9, Pen m 2,
Der p 20

ATP and L-arginine
phosphoarginine animal

Immunomodulatory, stress response
Storage of phosphoarginine
Cell signaling, apoptosis

[185–187]
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2.3. Iron Deficiency

Iron deficiency is the most common deficiency worldwide and can lead to mucosal
inflammation, a weak immune system, anemia, cognitive deficits in children [188], preterm
birth, low birth weight [189], and increased mortality [78–80,190]. Even in healthy adults,
iron deficiency is a driver of low-grade chronic inflammation [191]. Notably, functional iron
deficiency has been linked to the highest risk for mortality in chronic kidney diseases [192].

There are different terms used to define a suboptimal iron status:

• Iron deficiency/functional iron deficiency

Due to a lack of international consensus, iron deficiency is often defined as (1) serum
ferritin < 100 ng/mL, or 100–299 ng/mL with transferrin saturation <20%, which is the
guideline definition for heart failure patients, (2) serum iron concentration ≤ 13 µmol/L, or
(3) transferrin saturation < 20% [193]. Iron deficiency, the most common nutrient deficiency
globally, is associated with increased mortality, even in seemingly healthy populations [194].
Children under five years old, adolescents, and women of childbearing age are particularly
at risk.

• Anemia/absolute iron deficiency

It is important to note that iron deficiency is not synonymous with anemia. Iron defi-
cient anemia, also known as absolute iron deficiency, is an extreme form of iron deficiency
characterized by a measurable lack of hemoglobin in red blood cells, which are the most
abundant cells in the human body, making up over 80% of all body cells. Absolute iron
deficiency is defined by severely reduced or absent iron stores, whereas functional iron
deficiency involves adequate iron stores but insufficient iron availability for incorporation
into erythroid precursors. This often results from immune activation and the retention
of iron in macrophages, the central hub for iron distribution and recycling in the human
body [195]. Markers such as ferritin, typically used to assess body iron, are elevated under
inflammatory conditions due to their role in the acute phase response, masking the presence
of iron deficiency. In 2022, the global pooled prevalence of iron deficiency anemia was 16%,
with 18% experiencing iron deficiency without anemia [196].

2.3.1. Iron Deficiency Shifts the System toward Th2

Iron deficiency per se is associated with low-grade inflammation [197–200] (measured
by low serum iron levels, low transferrin saturation, and elevated high-sensitivity C-reactive
protein, alpha1-acid glycoprotein CRP) [201], and more proinflammatory monocytes in
children [202] and infants [203]. Initially, inflammatory mediators like IL6 and TNFα
are induced, which then shifts toward elevated IL4 levels [198–200] in more severe iron-
deficient cases in children. Th1 cells, compared with Th2 cells, are particularly sensitive to
iron deprivation [204,205] (Figure 3).
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Figure 3. Protein- and micronutrient-poor conditions promote type 2 inflammation. Micronutrientrich
conditions foster a regulatory and anti-inflammatory phenotype in lymphocytes, macrophages, and
mast cells, while nutrient-poor conditions prime the immune system. A lack of micronutrients,
particularly of iron and vitamin A, initially mounts a Th1/Th17-dominated immune response, which
results in B cells transforming into plasma cells and secreting IgG-antibodies. When nutrient-poor
conditions persevere for longer time periods, the immune response shifts toward Th2 (due to the more
nutrient-sensitive nature of Th1 cells) and promotes eosinophils, as well as class switch toward IgE
antibodies. M2: regulatory macrophage, Treg: regulatory T cells, B: naïve B-cells, EOS: eosinophils,
MC: mast cells, PC: plasma cells.

2.3.2. Cell-Specific Alterations under Iron Deficiency
Macrophages

In humans, macrophages are not only central in the defense against pathogens, clear-
ance of senescent cells, and wound healing. They also represent the central hub for iron
distribution [206]. About 20–30 mg of iron is recycled daily from senescent red blood cells
by splenic macrophages, whereas only 1–2 mg of dietary iron is absorbed daily [174].

Iron is a key regulator for immune function. Primarily, regulatory M2 macrophages
can take up, recycle, and distribute iron. These cells are characterized by a large cytosolic
iron pool, also known as the labile iron pool, low ferritin levels, and high expression of iron
export/import proteins. The typical M2 marker is CD163, the hemoglobin/haptoglobin
receptor, which contributes to iron homeostasis [207]. In contrast, M1 macrophages have
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a low labile iron pool and high levels of ferritin, in which iron is hidden from potential
pathogenic invaders. M1 macrophages do not distribute iron, and under chronic inflam-
matory conditions, iron is retained by splenic macrophages resulting in anemia of chronic
disease [208–210].

A chronic lack of iron or immune activation will change the by-default regulatory
phenotype of macrophages, as iron turnover and the labile iron pool decrease [66]. The
mitochondrial metabolic function, which heavily relies on iron, is impaired (citrate cycle
and oxidative phosphorylation), causing a metabolic switch towards anaerobic glycolysis
and increasing glucose uptake [211]. As such, iron deficiency changes the phenotype of
macrophages, causing them to acquire characteristics of inflammatory cells. Infants [203]
and children [202] with iron deficiency have monocytes with a proinflammatory signature,
while a large labile iron pool is associated with an immature, regulatory macrophage
phenotype [48,56].

Macrophages/monocytes [212,213], neutrophils, and NK cells [214] need iron for mi-
crobial killing, where they act as a catalyst for the generation of reactive oxygen species
(ROS) [212–214]. A lack of bioavailable iron thus also impedes pathogen elimination, as
the local and precise generation of ROS is impaired [215]. This is despite the greater “in-
flammatory” but ineffective activity that may contribute to the characteristics of senescent
cells [216].

T Cells

An important aspect of iron deficiency is that lower red blood cell values often go
along with an expansion of white blood cells. The lymphocytic population is elevated [217];
despite that, CD4+ cells and the CD4/CD8 ratio under iron-deficient conditions are re-
duced [217,218]. Iron deficiency or iron chelation impairs T-cell proliferation and results
in apoptosis of proliferating activated T lymphocytes but not of resting peripheral blood
lymphocytes or granulocytes [219]. In contrast, when sufficient iron is present, Th1, Th2,
and Th17 differentiation [220] is repressed. Interestingly, T lymphocytes also partake in
iron homeostasis, as T cell deficiency results in iron accumulation in the liver and pan-
creas [221]. Particularly, Th1 cells are very sensitive to iron-deficient conditions as the
IFN-gamma/STAT1 signaling pathway is regulated by iron [204,222]. In contrast, Th2 cells
are more resistant under iron-poor conditions, resulting in a shift toward a Th2 response
and an increase in the cytokine IL-4 in humans with iron deficiency [198–200].

IgE Antibodies

In B cells, iron deficiency activates activation-induced cytidine deaminase (AID), an
enzyme responsible for class switching and the affinity maturation of antibodies [223].
The lack of iron hampers heme synthesis in the mitochondria and maintains Bach2 acti-
vation [224] in B cells. Iron fortification studies significantly improved hemoglobin and
serum ferritin levels, but also resulted in decreasing total IgE levels [225] in children and
women [226]. Increased IgE levels are also commonly observed, such as sickle cell ane-
mia [227] and autoimmune hemolytic anemia (where antibodies attack red blood cells [228]),
upon infections [229] such as plasmodium falciparum malaria digesting hemoglobin in red
blood cells, leading to anemia [230].

Epithelial Cells and Hair

Iron deficiency can disrupt the tight junctions in the gut epithelium, leading to in-
creased permeability [231]. It also contributes to hair loss in Tmprss6 mask mice (with a
defect in iron sensing), with fur regrowing with a high-iron diet [232]. An iron-restricted
diet results in hair loss in IL10-deficient mice [233]. In humans, iron deficiency has been
suggested as a contributor to nonscarring alopecia [234], telogen effluvium [235], and
androgenic alopecia [236].
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Mast Cells and Eosinophils

Lastly, mast cells are primed under iron-deficient conditions. The intradermal applica-
tion of the iron binder desferrioxamine can activate connective-tissue-type mast cells and
has been suggested as a positive control in intradermal skin tests. This induces a local iron
deficiency, a concentration-dependent histamine release [237], and wheal formation, both
in vitro and in vivo [237]. Conversely, the activation of mast cells can be hampered by the
addition of iron-containing proteins such as transferrin, lactoferrin, and the iron-loaded
whey protein beta-lactoglobulin [238–242]. Iron deficiency has been reported to cause and
increase the prevalence of chronic generalized pruritus [243] and contribute to uremic
pruritis in patients with chronic kidney diseases. Vice versa, in a clinical study, oral iron
supplementation for 2 months was able to ameliorate chronic idiopathic urticaria in all
81 patients with mild hyposideremia [244]. The rare but described symptoms of anemia
rashes in people afflicted with iron-deficient or aplastic anemia may further hint toward the
priming of mast cells under iron deficiency. Eosinophils also seem to be promoted under
iron-deficient conditions and repressed under iron-sufficient conditions in a murine model
of allergic asthma [245]. In asthmatics, serum iron is negatively correlated with eosinophil
counts [246], and poor fetal iron is speculated to be a risk factor for infant eosinophilia [247].

Thus, the extent of iron repletion in mast cells determines their priming state to release
mediators such as histamine that are responsible for allergy symptoms, and eosinophils
seem to be promoted under iron deficiency as well (Figure 3).

2.4. Vitamin A Deficiency

Vitamin A deficiency is the second most common deficiency worldwide. The WHO es-
timates that about 250 million preschool-aged children globally have subclinical or clinically
relevant low serum vitamin A levels [248,249]. Importantly, vitamin A supplementation
has repeatedly been shown to reduce “all-cause mortality” [81–83] and is also linked with
iron homeostasis. Vitamin A supplementation alone can improve hemoglobin levels [250].
Vitamin A deficiency results in the impairment of vision, epithelial integrity, and inflam-
mation [45,251], manifesting in its extreme forms in xerophthalmia and night blindness.
Even subclinical vitamin A deficiency is associated with inflammation, iron deficiency, and
increased all-cause morbidity [252,253]. During infection or inflammation, serum retinol
levels decline [254,255], complicating the accurate assessment of vitamin A status when
based solely on serum retinol levels due to concurrent rises in C-reactive protein [256].

2.4.1. Vitamin A Deficiency Results in Type 2 Inflammation

Vitamin A is essential for the mucosal immune system and the epithelial barrier,
regulating the transcription of many genes. In apparently healthy people, low retinol levels
are associated with elevated CRP levels [257].

2.4.2. Cell-Specific Alterations under Vitamin A Deficiency
Macrophages

In macrophages, vitamin-A-rich conditions suppress macrophage activation, differen-
tiation [258], and inflammation cascade [259–261], while promoting a regulatory phenotype
via STAT6 [262]. Similarly, IL4 can induce retinol production and excretion in macrophages
via STAT6 [263].

Lymphoid Cells

As with iron, acute vitamin A deficiency will initially result in a Th1 response and
IFNγ production [264,265], with a shift toward Th2 in the chronic phase [266,267], leading
to elevated IgE levels in vivo [266]. In contrast, conditions with sufficient retinoic acid
promote innate lymphoid cell ILC3s and T-regulatory cells [268]. A lack of vitamin A also
results in a dramatic expansion of IL13-producing innate lymphoid cells [267,269].
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Epithelial Cells

Vitamin A is essential for the skin and gut barrier function. Topical retinol appli-
cation improves epithelial cell integrity and filaggrin expression [270] in UV-damaged
skin, while retinoic acid intake improves intestinal epithelial cell differentiation and bar-
rier function [271]. Vitamin A deficiency promotes squamous epithelial cell differentia-
tion [272,273] and hyperkeratosis [274], which can be corrected by vitamin A supplemen-
tation in vivo [275]. Similarly, lung epithelial cell proliferation is suppressed by vitamin A
intake [276].

Mast Cells

Vitamin A deficiency potentiates mast cell activation [277], while retinol absorption
improves atopic dermatitis symptoms [278]. A concentration-dependent stabilizing effect
on mast cells and histamine release has been reported in vitro [279] and in vivo [45,280,281]
(Figure 3).

3. Malnutrition in Allergic Diseases

Both a high as well as a low body mass index (BMI) are associated with allergic
diseases. As such, a high BMI contributes to disability-adjusted life years and death
in asthma [282,283], and a low BMI is associated with allergic sensitization [284], food
allergies [285–288], and allergic rhinitis [32,289].

Several studies have reported reduced intake of macronutrients, particularly pro-
teins [290], and micronutrient deficiencies [285], such as vitamin A [291] and iron [285,287],
in populations with food allergies. Interestingly, cow milk allergy is associated with malnu-
trition [286,288], with a large retrospective study confirming that children with cow milk
allergies are significantly shorter and weigh less than nonallergic children [292]. Food
restriction in children with atopic dermatitis and/or food allergy was also linked with
stunting, underweight, and increased disease severity [293,294].

3.1. Iron Deficiency/Anemia and Atopic Diseases

Large epidemiological studies in the US [295], Korea [296,297], and Japan [298] con-
sistently reported that people [295–297,299] with atopic diseases [295,296] are much more
likely to be anemic—and lack iron—compared with those without any allergy. Children
with atopic dermatitis [300] are more likely to have iron and zinc deficiencies [299], and
low serum iron is associated with lower lung function [301]. Among food allergies, cow
milk allergies are particularly a risk factor for iron-deficient anemia [302–305]. Additionally,
maternal iron status during pregnancy affects children’s health outcomes. A lower iron
status during pregnancy is associated with childhood wheezing, decreased lung function,
and allergic sensitization [306–309]. Low cord blood iron levels at birth are associated with
atopic urticaria, infantile eosinophilia, and wheezing by age four [247,306]. Conversely, a
good iron status during pregnancy lowers the risk of developing atopic dermatitis [247]
and asthma [247,306,307,309–311] in children. Low serum iron levels are inversely related
to blood eosinophil counts in asthmatic adults [246], with adequate iron stores decreasing
the odds of lifetime asthma, current asthma, and asthma attacks/episodes [312].

Allergic diseases are also more common in patients with anemic diseases, in which
elevated IgE is commonly observed and not related to parasitic infestations [225]. Pa-
tients with beta-thalassemia major (Cooley’s anemia), who develop chronic anemia due
to impaired hemoglobin synthesis and possess often enlarged spleens, livers, and hearts,
are more likely to have allergic diseases [313,314] and suffer from asthma [313,315–317].
Similarly, also atopic dermatitis subjects have a greater risk of suffering from coronary
heart disease, angina, peripheral artery disease, and anemia [318].

Anemia may precede allergy or may be the result of allergies, as both scenarios seem to
be true. People with allergies are more likely to be anemic, and the incidence of developing
anemia is higher among atopic subjects. Studies report that asthmatics without anemia
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have a fivefold greater risk of developing anemia within 5 years [319], and 2-year-old
allergic children will nearly double their risk for anemia within a year [298].

Thus, iron deficiency is common in allergic individuals [320], with allergic individuals
being at greater risk for anemia. Importantly, an improved iron status has been consistently
associated with a decrease in symptoms and allergic diseases.

3.1.1. Iron Interventions

Iron supplementation during pregnancy, combined with folic acid, significantly re-
duces the risk of atopic dermatitis in children by age six [310]. A Finnish study showed
that prenatal iron supplementation reduced the risk of asthma in the offspring of asthmatic
mothers by nearly 70% [321]. Providing dietary iron for lymphoid uptake in pollen-allergic
women improved their iron status and allergic rhinitis symptoms [30]. Oral iron sup-
plementation for 2 months improved chronic idiopathic urticaria in patients with mild
hyposideremia [244]. Clinical trials indicate that iron supplementation, rather than de-
worming strategies, decreases IgE levels.

3.1.2. Improving the Bioavailability of Iron

A person’s health status, the form of iron, and the presence of antioxidants markedly
influence the uptake of iron. Multiple uptake mechanisms for protein-bound iron, heme-
iron, and nonheme iron have been described [66,174]. Vitamin C can vastly improve
iron absorption, with vitamin C deficiency (scurvy) always resulting in anemia. Phytates
and tannins form large complexes with iron that are not bioavailable, thus hindering its
uptake [322]. Only excessively high amounts of calcium have some modest capacity to
impede iron absorption [323], which is greatly improved by vitamin C [324,325] in clinical
trials. Consequently, iron-fortified milk products with high calcium levels have been
successfully used to improve the iron status of preterm babies [326,327], children [328],
adolescents [329], and pregnant women [330]. Clinical trials have shown that in the
presence of low-grade inflammation, the addition of vitamin A [329], vitamin C [331,332],
and lipids [333,334] improves dietary iron uptake in inflamed settings due to rerouting
absorption to the lymph.

3.2. Vitamin A Deficiency and Atopic Diseases

Both the insufficient and excessive intake of bioavailable vitamin A can be detrimental
and lead to inflammation. Insufficient vitamin A during infancy and early childhood is as-
sociated with allergic sensitization, allergic rhinoconjunctivitis, wheezing, and food hyper-
sensitivity [335]. Children with atopic dermatitis exhibit significantly lower serum retinol
levels and impaired retinoid-mediated signaling in the skin compared with nonatopic
controls [336,337], and children and adults with asthma also have lower circulating vitamin
A levels [338–340]. As a lack of retinol is associated with increased morbidity, retinol
deficiency worsens asthma [341], allergic rhinitis [342], and atopic dermatitis [277,343].
Conversely, retinol supplementation during infancy did not increase the risk of atopy at age
7 [344], and the intake of the carotenoids beta-cryptoxanthin and alpha-carotene is inversely
associated with allergic skin sensitization [345]. However, persons with protein–energy
malnutrition are particularly sensitive to retinol toxicity, with intakes as low as 1500 IU/kg
occurring in children and pregnant women [346]. Excess intake of bioavailable lipophilic
vitamin A (≥2.5 times the recommended intake of 800 RAEs/d in Nordic countries) was
associated with increased asthma risk in school-age children [347]. Vitamin A deficiency
potentiates Th2 inflammation and mast cell activation in atopic dermatitis [277], with an
increase in serum retinol improving atopic dermatitis symptoms [278].

Improving the Bioavailability of Vitamin A

The bioavailability of vitamin A as a fat-soluble vitamin differs vastly, with the
addition of oil being essential when consuming carotenoids for retinol uptake via the
lymph [348,349]. Without oil, these carotenoids are basically not absorbed, as the conversion
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rate for provitamin A to retinol is 24:1, and for beta-carotene to retinol, it is approximately
12:1. [350–352] As such, people at risk are particularly those who consume carotenoids
without added oil.

The importance of bioavailable vitamin A has been very clearly demonstrated in a
prospective birth cohort study, in which supplementation of children in the first year of
life with vitamins A and D in the water-soluble form doubled the risk of food allergy and
asthma at the age of four compared with children receiving the same formulation in oil
suspension [353]. Similarly, in children, a high intake of dietary preformed vitamin A,
but not ß-carotene intake, was associated with improved lung function and lower asthma
risk [354].

However, many studies do not assess the bioavailability of vitamin A, which may
partly explain contradictory findings, in which some studies reported dietary beta-carotene
intake reduced the risk of allergic sensitization [355,356], while another study reported an
increased risk for hay fever [357]. To sum up, atopic individuals have lower retinol levels
with improving vitamin A deficiency, decreasing morbidity. Intervention trials have to be
interpreted carefully, taking dose and bioavailability into account.

4. Nutrition to Prevent Allergies

Allergic individuals suffer from numerous mineral and vitamin deficiencies [174,
247,277,295–297,303,306,310,338,358–372]. Importantly, adequate levels of some trace ele-
ments such as iron are known to be crucial for adequate lung functioning [373,374], with
lower serum iron levels being associated with lower lung function [301] and increased
asthma [312] severity [375]. Unnecessary food avoidance is often observed in people with
food allergies, increasing their risk of nutritional inadequacies. As such, food restriction
has been reported to lead to micronutritional deficiencies in children with atopic dermatitis
and was associated with disease severity [293,376,377]. Many allergy sufferers experience
cross-allergic symptoms, reacting not only to specific proteins like PR10 or LTP in a particu-
lar allergenic source but also to cross-reactive dietary sources such as fruit and vegetables.
Consequently, many allergic persons avoid a wide range of raw fruits, vegetables, and
animal products out of caution. This, however, is unwarranted and may aggravate the dis-
ease course. Only specific foods that have previously caused reactions need to be avoided.
When an entire food group is avoided, nutritional deficiencies are more likely to occur,
further exacerbating the disease. Additionally, misconceptions about avoiding certain
allergenic foods often fail to consider the stability of some allergenic proteins. For example,
people allergic to cow’s milk, even if they are allergic to bovine serum albumin, can still
consume cooked meat, as bovine serum albumin is thermolabile [378–380]. Several studies
emphasize that maternal food consumption may have an impact on the development of
allergic diseases, though randomized controlled trials of micronutrient supplementation
do not give clear consistent information, and randomized trials focusing on food and food
patterns are lacking [381]. Maternal consumption of allergenic foods such as milk and
peanuts has been linked to reduced allergy and asthma risk in the offspring of a prebirth
US cohort [382]. Similarly, maternal intake of fish and apples was found to be protective
against the onset of asthma [383]. In the Danish National birth cohort, maternal ingestion
of peanuts, tree nuts [384], and/or fish [385] decreased the risk of asthma. In contrast,
maternal fish oil consumption alone did not reduce atopy [386–388] but did seem to slightly
reduce the risk of asthma in offspring [389]. Maternal intake of vegetables and yogurt was
associated with the prevention of any allergy [390], while lower maternal egg intake was
linked with elevated serum total IgE and peripheral eosinophilia in children with atopic
dermatitis [391]. Moreover, better iron and vitamin status [381], as well as iron supple-
mentation during pregnancy, are associated with a lower risk of allergies and asthma in
children [306–311,321]. Despite the data from current studies and systematic reviews [392],
the only guidelines about maternal diet and food allergy prevention are that food allergens
do not need to be avoided and that vitamin D supplementation in pregnant women with
suboptimal levels may prevent offspring asthma [393–395].
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Supporting the role of nutrient-poor conditions promoting allergy development is that
numerous studies associate adequate nutrition with the prevention of atopy [30,396,397].
While not addressed in systematic reviews, several studies showed that frequent intake
of nuts [382,398,399], milk [382,398,400,401], butter [398,401] wheat [382], apples [383]
and other fruits [399,402–404], fish [383,385,399,403,405–407], vegetables [390,399,402], yo-
gurt [390], and meat (of high quality) [404,407] in childhood is associated with reduced
allergy and asthma risk in children. Meta-analyses revealed that probiotics alone or com-
bined with prebiotics can reduce atopic dermatitis symptoms in children without food
allergies [408].

In the Spanish ISAAC phase III, the intake of cow’s milk, butter, and nuts was found
to reduce the risk of atopic dermatitis in children [398]. In the GABRIELA cohort, raw
cow’s milk consumption was associated with a reduced risk of asthma and atopy, with
whey protein levels being inversely associated with asthma [400].

One-month consumption of a whey-based oral supplement was able to reduce total IgE
levels and improve lung function in asthmatic children [409]. In a randomized controlled
trial from Brazil, consumption of a micronutrient and a prebiotic-fortified milk beverage for
6 months decreased the risk of allergic manifestations by 36% [410]. Moreover, consumption
of a whey supplement fortified with iron, vitamin A, and zinc for 3–6 months ameliorated
symptoms of allergic rhinitis [30,411,412]. Additionally, drinking raw milk was better
tolerated in allergic children than highly processed milk in a pilot study [413].

5. Conclusions

Allergic individuals are at increased risk of malnutrition, particularly with deficiencies
of iron and vitamin A, compared with those without allergies. These nutrient deficiencies
have a profound impact, triggering nutritional immunity, type 2 inflammation, and restrict-
ing dietary uptake of micronutrients. Allergenic proteins can bind nutrients very effectively
and are able to evoke nutritional immunity in persons with protein or micronutritional
deficiencies. However, these same proteins in nutrient-adequate conditions act as carriers
for micronutrients and contribute to immune health. Despite the high prevalence of malnu-
trition and the impact of protein and micronutrient deficiencies on the development as well
as the severity of allergic diseases, nutritional care is many times inadequate, with many
in the medical/nursing field not being able to diagnose malnutrition and not including
dietary measurements to prevent the disease course.

Nutritional education for both people with allergies and health care professionals
plays a crucial role in preventing the atopic march. Consumption of allergenic food such
as milk, whey products, fish, nuts, fruits, and vegetables should be encouraged, as these
foods are rich in micronutrients and have been shown to be beneficial for the prevention
and amelioration of the atopic state. Malnutrition can be prevented through nutritional
education and the consumption of a healthy, varied diet, as well as by fortifying foods or
direct supplementation as needed.
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