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Alessia Schirripa, Veronika Sexl and Karoline Kollmann*

Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
The cell-cycle is a tightly orchestrated process where sequential steps guarantee

cellular growth linked to a correct DNA replication. The entire cell division is

controlled by cyclin-dependent kinases (CDKs). CDK activation is balanced by

the activating cyclins and CDK inhibitors whose correct expression,

accumulation and degradation schedule the time-flow through the cell cycle

phases. Dysregulation of the cell cycle regulatory proteins causes the loss of a

controlled cell division and is inevitably linked to neoplastic transformation. Due

to their function as cell-cycle brakes, CDK inhibitors are considered as tumor

suppressors. The CDK inhibitors p16INK4a and p15INK4b are among the most

frequently altered genes in cancer, including hematopoietic malignancies.

Aberrant cell cycle regulation in hematopoietic stem cells (HSCs) bears severe

consequences on hematopoiesis and provokes hematological disorders with a

broad array of symptoms. In this review, we focus on the importance and

prevalence of deregulated CDK inhibitors in hematological malignancies.

KEYWORDS
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1 Introduction

Cell-cycle progression is a fundamental biological process which requires tight

regulation to guarantee a correct cell division. Perturbations of cell cycle components

may provoke an uncontrolled cell proliferation. Dysregulated G1-S transition is a

common feature of tumor development and associated with genetic alterations of key

regulators of the cell-cycle machinery (1). Based on their function as a cell cycle brake,

CDK inhibitors (CKIs) mainly act as tumor suppressors and are frequently deactivated in

human neoplasia (2–4).
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2 CKIs regulate the cell cycle

Cyclin-dependent kinases (CDKs), their activating cyclins and

CDK inhibitors guide cells through the cell cycle (Figure 1).

Distinct cyclins are periodically produced and assemble to

cyclin-CDK complexes that drive the specific cell-cycle steps,

from G1 to M phase. Fine tuning is achieved by inhibitory

phosphorylation or binding of CDK inhibitory subunits (CKls)

(5–7).

Cyclin-dependent kinase 4 (CDK4) and CDK6 are closely

related serine/threonine kinases responsible for driving cells

through the G1 phase. Mitogenic signals induce transcription

of D-type cyclins (D1, D2 and D3). Their association with CDK4

and CDK6 leads to kinase activation and phosphorylation of the

retinoblastoma protein (Rb) (8). CDK-dependent Rb

phosphorylation releases Rb from E2F transcription factors

and induces transcription of E2F target genes required for S-

phase entry (9). G1-S transition is then initiated by CDK2-cyclin

E/A complexes, which are active during the entire S-phase (10–

12). CDK1 activity is low during G1/S transition but raises

during G2-M phase, controlling the initiation of mitosis (13, 14).

CDK-cyclin activity is counterbalanced by members of the

two CDK inhibitor families, the INK4 family and the Cip/Kip

family (8). p16INK4a, p15INK4b, p18INK4c and p19INK4d are the

members of the INK4 family and are specific for CDK4 and
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CDK6 (15). In response to anti-proliferative signals, INK4

proteins are transcribed and bind CDK4 and CDK6 causing a

conformational change which reduces their affinity for D-type

cyclins (16).

The Cip/Kip family consists of p21Cip1/Waf, p27Kip1 and

p57Kip2. In contrast to INK4 proteins,

Cip/Kip proteins have the ability to bind CDK4/6-cyclin D

and CDK-cyclin A/B/E complexes (8, 16–19). p21Cip1/Waf and

p27Kip1 are described to have a dual function in cell cycle

regulation. Whereas they mainly inhibit CDK-cyclin activity

they have been reported to also enhance the assembly of CDK4/

6-cyclin D complexes, resulting in a proliferative advantage for

the cell (18, 20, 21).

When present at low levels, p21Cip1/Waf preferentially binds

to CDK4/6-cyclin D complexes, facilitating complex formation,

nuclear localization and cell-cycle progression. In response to

DNA damage and p53 stimulation, p21Cip1/Waf accumulates at

high levels in a cell and provokes a robust cell cycle arrest by

inhibiting CDK2- cyclin E-A complexes (8, 22–25). The

mechanism behind these observations is given by in vitro

experiments showing that changes in p21Cip1/Waf stoichiometry

reflect the conversion of active to inactive cyclin-CDK

complexes. Active complexes contain a single p21Cip1/Waf

molecule, while two molecules are required for complex

inhibition (26, 27).
FIGURE 1

Overview of cell-cycle control and its main regulators. Progression through cell cycle phases is governed by different CDK-cyclin complexes
and the respective cyclin-dependent kinase inhibitors. Members of the INK4 family, p16INK4a, p15INK4b, p18INK4c and p19INK4d, specifically bind
and inhibit CDK4/6-cyclin D complexes promoting cell cycle arrest in the G1 phase. The Cip/Kip proteins including p21Cip1/Waf, p27kip1 and
p57Kip2, play their role as cell-cycle inhibitors by counteracting a broader spectrum of CDK-cyclin complexes. p21Cip1/Waf, p27kip1 and p57Kip2

restrain cell-cycle both during early and late G1 phase by binding either CDK4/6-cyclin D or CDK2-cyclin E complexes. Later in the cell-cycle,
they can bind and inhibit CDK2-cyclin A complex, thus imposing a brake during the S-phase. p21Cip1/Waf and p27kip1 are able to delay entry in
the M phase by inhibiting CDK1-cyclin A complex and thereby prevent the progression through mitosis counteracting CDK1-cyclin B complex.
frontiersin.org

https://doi.org/10.3389/fonc.2022.916682
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Schirripa et al. 10.3389/fonc.2022.916682
This double-faced role has been described also for p27Kip1.

On the one hand, p27Kip1 binds to the conserved cyclin box

residues thus promoting the subsequent complex formation

between p27Kip1-cyclin A and CDK2. Upon complex

formation, p27Kip1 induces a distortion on the CDK2 N-

terminal lobe in proximity of CDK2 catalytic site, thereby

preventing ATP binding. On the other hand, phosphorylated

p27 Kip1 binds to CDK4 leading to a remodeling of the ATP site

and results in increased RB phosphorylation. Data suggest a

similar mechanism for p21Cip1/Waf activating CDK4 via

phosphorylation sites (28).

p57Kip2 mainly functions during G1-S and G2-M transitions

where it blocks any CDK-cyclin complexes. No cell cycle

activating mechanisms have been described yet.

The Cip/Kip members, p57Kip2 and p21Cip1/Waf are major

players in cellular stress responses, where they balance the

induction of cell cycle arrest, apoptosis and senescence (29).

p21Cip1/Waf has a unique role as it mediates cell cycle arrest

downstream of the tumor suppressor p53 (22). A variety of

cellular stresses, such as DNA damage and oncogene activation,

stimulate p53 expression, which in turn transactivates its targets

including the pro-apoptotic genes Bax, PUMA andNoxa as well as

p21Cip1/Waf (30–32). Therefore, p21Cip1/Waf might be an exploitable

candidate for therapeutic intervention in p53 mutated tumors.
3 CKIs in hematopoietic stem cells

Under homeostatic conditions, hematopoietic stem cells

(HSCs) reside in the hypoxic bone marrow niche in a
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quiescent state (33–35). When needed, HSCs rapidly enter the

cell cycle to replenish peripheral hematopoiesis. Self-renewal

and differentiation are tightly balanced to maintain the stem cell

pool while giving rise to hematopoietic progenitors, which

ultimately differentiate into mature blood cells (35, 36). The

delicate balance between quiescence and proliferation in HSCs

requires a strictly controlled cell cycle progression.

Cyclin dependent kinase inhibitors (CKIs) represent a major

break for cell cycle entry and the prevention of uncontrolled

proliferation. Several studies started to unravel the impact of

CKIs in HSCs (37–40).

p16INK4a is encoded by exons 1a, 2 and 3 of the INK4a locus

(Figure 2). A different transcript derived from the same locus,

encoded by the exons 1b, 2 and 3, encodes for the protein

p19ARF (Figure 2) which has the capacity to block the cell cycle

progression at the G1 and G2 phase (41–43). Thus, the INK4a

locus represents a master growth regulator through its capacity

to interface with both proliferation (Rb pathway via p16INK4a)

and apoptosis (p53 pathway via p19ARF) (4, 44).

The transcriptional repressor Bmi-1 is part of the Polycomb

group and it is present at high levels in HSCs (45–47). Bmi-1

represses the INK4a locus, thus limiting p16INK4a and p19ARF

expression (39, 48). Bmi-1 deficiency impairs HSCs self-renewal

as it increases p16INK4a and p19ARF levels thereby leading to

proliferative arrest and cell death (39). Mice lacking p16INK4a do

not show any dramatic effect on hematopoiesis, which could be

explained by the reported low p16INK4a expression in normal

HSCs (49, 50).

p16INK4a expression increases in HSCs with aging and this is

associated with lower HSC numbers. p16INK4a inhibition
FIGURE 2

The human/murine INK4a/ARF locus. The INK4a/ARF locus resides on chromosome 9p21 and encodes for two different proteins in human and
mouse: p16INK4a and p14ARF (named p19ARF in mouse). The INK4a gene is represented by exons 1a, 2, and 3 and it encodes for p16INK4a, a 168
amino acids protein in mouse and a 156 amino acids protein in human. The ARF gene is composed by exons 1b, 2, and 3. It encodes for p19ARF

in mouse (169 amino acids) and for p14ARF in human (132 amino acids). Upstream of the INK4a and ARF genes on the same chromosome, exons
1 and 2 represent the INK4b gene encoding for p15INK4b.
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counteracts the reduced HSC maintenance associated with

aging, improves their repopulation ability and mitigates

apoptosis (51).

The role of p16INK4a and p19ARF for the regulation of

hematopoietic progenitor cells becomes evident in mice

harboring a targeted deletion of the INK4a locus that

eliminates both proteins. Young p16INK4a-/-/p19ARF-/- mice

show extramedullary hematopoiesis in the spleen with a high

proportion of lymphoblasts and megakaryocytes in the red pulp

and proliferative expansion of the white pulp. Aging aggravates

this phenomenon and extends extramedullary hematopoiesis to

nonlymphoid organs (49).

Among the CKIs, p18INK4c is the most powerful player and

cell cycle inhibitor involved in murine HSC self-renewal (40, 52).

p18INK4c deficient mice show HSCs with enhanced self-renewal

ability which leads to the expansion of the HSC pool. This is also

evident in serial transplantation experiments where p18INK4c

deletion allows for an advanced HSC repopulation ability

(40, 53).

Information on p15INK4b and p19INK4d in regulating HSC

function is scarce. Characterization of the hematopoietic stem

and progenitor cells of p15INK4b deficient mice revealed an

increased frequency in common myeloid progenitors, but no

alterations in the HSC compartment (54, 55).

The need to get first insights into the role of p19INK4d in

HSCs leads to the characterization of the hematopoietic system

of mice lacking p19INK4d. Knockout mice do not reveal any

defect under homeostatic conditions (56). However, in vitro

s tudies highl ight the involvement of p19INK4d in

megakaryopoiesis, where it regulates the endomitotic cell cycle

arrest coupled to terminal differentiation (57).

Moreover, p19INK4d effects become evident when HSCs are

exposed to genotoxic stress. In this context, p19INK4d is required

to maintain HSCs in a quiescent state, protecting them from

apoptosis as genotoxic substances act during the S-phase (58).

The p53 induced CKI p21Cip1/Waf also regulates effects upon

stress. Bone marrow transplantation experiments, using cells

derived from mice after 2 Gy irradiation show that p21Cip1/Waf

deficiency leads to a significantly reduced repopulation ability

(37, 59).

In contrast, p27Kip1 knock-out mice lack any perturbations

in HSC number, self – renewal ability or cell-cycle state. The role

of p27Kip1 is restricted to more committed progenitor cells where

its deletion increases proliferation and the pool size of Sca1+Lin+

cells (38).

In quiescent HSCs p57Kip2 dominates as major CKI, where it

is expressed at high levels. p57Kip2 deficiency reduces the HSC

population, compromises the maintenance of quiescence and

impairs repopulation capacity (60).

In summary this led us to conclude that CKIs have distinct

essential roles in hematopoietic stem and progenitor cells that

are only partially understood. Whereas Cip/Kip proteins are
Frontiers in Oncology 04
predominantly involved in stress responses, INK proteins

dominate in the control of hemostatic conditions.
4 Alterations in CKIs

In human cancers the INK4a-ARF-INK4b locus at

chromosome 9p21 is one of the most frequently mutated and

epigenetically silenced sites (61–63). This locus encodes for the

cyclin dependent kinase inhibitors p16INK4a and p15INK4b

and for the tumor suppressor protein p14ARF (p19ARF in the

mouse), which is induced upon p53 activation (Figure 2) (64,

65). Many solid tumors including melanoma, pancreatic

adenocarcinomas, esophageal and non-small cell lung

carcinoma, harbor mutations in the p16INK4a and p15INK4b

genes. In hematological malignancies p16INK4a and p15INK4b

are frequently deleted e.g. in chronic myeloid leukemia (CML)

and acute lymphoblastic leukemia (ALL) (66–70).

p18INK4c and p19INK4d, mapped on chromosome 1p32 and

19p13.2 respectively (71, 72), are involved in the development of a

more distinct set of tumors. Somatic mutations of p18INK4c are

associated with medullary thyroid carcinoma, hepatocellular

carcinoma and breast cancer (73–75). Only little information is

available regarding the role of p19INK4d in human malignancies;

frame shift mutations and rearrangements in the p19INK4d gene

have been documented in osteosarcoma (76), while its loss or

downregulation have been detected in hepatocellular carcinoma

(77) and testicular germ cell tumors (78).

The deletion of the Cip/Kip proteins in mice leads to an

increased development of malignancies (79–81), underlining

their main role as tumor suppressors. Contradictorily, in some

tumor types Cip/Kip proteins also display an oncogenic activity

when relocated to the cytoplasm (82–84).

Low p27Kip1 levels are associated with more aggressiveness

and poor prognosis in several human cancers (85–87). Control

of p27Kip1 levels involves a nuclear to cytoplasmic redistribution

which is regulated by phosphorylation sites on distinct residues.

Mitogenic signals induce p27Kip1 phosphorylation on Ser10,

inducing nuclear export (88, 89), while phosphorylation on

Thr198, mediated by PKB/Akt, promotes p27Kip1 association

with 14-3-3 proteins and its transport to the cytoplasm (90).

Whereas nuclear p27Kip1 inhibits cell proliferation and

suppresses tumor formation, cytoplasmatic p27Kip1 is involved

in cytoskeleton rearrangement and contributes to cell migration

(82, 89) and may promote metastasis. In some hematologic

malignancies (91–93) and carcinomas (such as breast,

esophagus, cervix and uterus tumors) (94–98), a positive

association of cytoplasmic p27Kip1 levels with a poor clinical

outcome has been reported.

p21Cip1/Waf acts as a tumor suppressor in breast, colorectal,

gastric, ovarian and oral cancers. Similar to p27Kip1 it may

display oncogenic activities when retained in the cytoplasm.
frontiersin.org

https://doi.org/10.3389/fonc.2022.916682
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Schirripa et al. 10.3389/fonc.2022.916682
p21Cip1/Waf cytoplasmic accumulation is caused by

phosphorylation at Thr145 by activated AKT1 (99). Through

the association with proteins involved in the apoptotic process,

cytoplasmatic p21Cip1/Waf mediates their inhibition, thus

exhibiting anti-apoptotic effects. As such, cytoplasmic p21Cip1/

Waf is indicative for aggressiveness and poor survival in prostate,

cervical, breast and squamous cell carcinomas (100).

In contrast, the role of p57Kip2 is limited at being a tumor

suppressor, as there is so far no evidence of an oncogenic role so

far (101–104).

Given the extensive knowledge regarding the role of CDK

inhibitors in tumor biology there is increasing interest in exploiting

them as potential target for cancer treatments. Here we review and

discuss the importance they play in hematopoietic malignancies.
5 CKIs in hematologic malignancies

Hematologic malignancies consist of a spectrum of

malignant neoplasms that affect bone marrow, blood and
Frontiers in Oncology 05
lymph nodes and originate from the uncontrolled proliferation

of hematopoietic cells. They are driven by genetic and epigenetic

aberrations, which can be exploited for diagnosis and

therapeutic decisions. The dominant alterations of CKIs are

reviewed below and illustrated in Figures 3, 4.
5.1 INK4 proteins in leukemia
and lymphoma

5.1.1 p16INK4a and p15INK4b

The CDKN2A/B locus encodes for p16INK4a, p14ARF (p19ARF

in mice) and p15INK4b. This locus is affected by deletion,

mutation or promoter hyper-methylation (62, 63) and

frequently altered in patients with hematologic malignancies

(4, 105, 106). The design of mouse strains with single or multiple

targeted disruptions of the p16INK4a, p19ARF and p15INK4b loci

shed light on their distinct roles.

p19ARF-/- mice spontaneously develop a variety of tumors

already by the age of 2 months. Analysis of diseased mice shows
FIGURE 3

Main alterations of the INK4 proteins in leukemia and lymphomas. Schematic representation of the hematopoietic tree and main alterations
affecting the INK4 proteins in different hematopoietic malignancies. Deletion of p15INK4b and p16INK4a together with their 5’ CpG islands
hypermethylation in their promoter regions are the most frequent modes of p15INK4b and of p16INK4a inactivation in various subtypes of
hematopoietic neoplasms including ALL and CLL. Deletion of p18INK4c has been rarely observed in ALL, whereas it is frequently deleted in MM.
p18INK4c is subjected to a transcriptional repression imposed by the oncofusion protein PML-RARa in APL blasts and it is similarly downregulated
by MLL-AF9 in cell lines derived from AML patients.
frontiersin.org

https://doi.org/10.3389/fonc.2022.916682
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Schirripa et al. 10.3389/fonc.2022.916682
that T cell lymphoma is the second most common tumor type

(107, 108). In line, p19ARF-/- newborn mice exposed either to X-ray

or to g-irradiation develop anaplastic T cell lymphoma (107, 108).

In an acute lymphoblastic leukemia (ALL) model, the loss of
Frontiers in Oncology 06
p19ARF initiates a more aggressive disease BCR-ABL1+

transformation. In this model, p19ARF deletion also confers

resistance to the kinase inhibitor imatinib (109). These data

suggest a specific role for p19ARF in the lymphoid lineage.
FIGURE 4

Cip/Kip proteins main deregulations and functions in different hematopoietic malignancies. Schematic representation of the hematopoietic tree
and main functions exerted by Cip/Kip proteins in different hematopoietic malignancies. Increased p21Cip1/Waf levels have been reported in
AML1-ETO positive AML patients, where it is believed to support LSCs maintenance and self-renewal ability. p21Cip1/Waf anti-apoptotic functions
associated with its cytoplasmatic localization have been observed in AML blasts and in cell lines derived from human CML in blast crisis. In PML-
RARa LSCs, p21Cip1/Waf expression maintains self-renewal of LSCs and limits DNA damage, thus protecting them from functional exhaustion and
conferring chemoresistance. In MLL-AF10 induced AML, p21Cip1/Waf suppression mediated by miR-17-91 leads to decreased leukemia latency.
Elevated p27Kip1 levels in B-CLL where they confer protection against apoptosis, are associated with poor outcome. In hairy cell leukemia, a
form of B-CLL, CDKN1B gene encoding for p27Kip1 is the second most common altered gene by frame shift mutations. In MM, higher miR-148a
levels correlate with decreased CDKN1B expression leading to sustained proliferation. In CML, overexpression of miR-152-3p targets p27Kip1 and
promotes leukemia malignancy. In AML, p27Kip1 is subjected to FLT3-ITD phosphorylation (pY88- p27Kip1) which mediates p27Kip1 degradation.
BCR-ABL1+ CML can promote degradation of nuclear p27Kip1 and to increased cytoplasmatic p27Kip1, thus compromising p27Kip1 tumor
suppressor activity and promoting leukemic cell survival. p57Kip2 gene has been frequently found methylated in diffuse large B-cell lymphoma
patients, where the low-risk group it is associated with a more favorable overall survival.
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Therefore, it would be interesting to analyze if p19ARF could serve

as a marker for prognosis and therapeutic outcome.

Homozygous deletion of p16INK4a is not associated with an

increased spontaneous cancer development. Of note, the

concomitant heterozygous loss of p19ARF in p16INK4a-/- animals

increases tumorigenesis and provokes the development of a wide

spectrum of malignancies, including lymphoma (110).

Importantly, the spontaneous tumors originating from mice

harboring the heterozygous loss of p19ARF and p16INK4a

homozygous deletion, retain the second p19ARF allele.

However, the observed increased tumorigenesis in p16INK4a-/-

mice upon heterozygous p19ARF loss underlines the cooperation

of the two tumor suppressors.

Young mice show spontaneous tumorigenesis and a higher

sensitivity to carcinogenic treatments, especially B cell

lymphoma (49).

p15INK4b-/- mice show lymphoproliferative disorders

including lymphoid hyperplasia in the spleen and formation of

secondary follicles in lymph nodes but rarely develop

lymphoma. This suggests that p15INK4b controls homeostasis

of the hematopoietic compartment, rather than acting as a

tumor suppressor (111).

Although p15INK4b and p16INK4a function as repressors of

the cell cycle, in view of the phenotypes shown by the mouse

models described above, they seem to have roles in different

contexts. p15INK4b is mainly responsible for homeostasis and

p16INK4a, together with p19ARF, is more involved in regulating

the response to oncogenic stress. This suggests that p16INK4a

might function as a sensor of oncogenic signals thus

representing a safeguard against neoplasia.

CDK4R24C/CDK6R31C double knock-in mice have been used

to address the importance of INK4 inhibitors in regulating

CDK4 and CDK6. INK4 binding is prevented by introducing

point mutations in CDK4 (R24C) and CDK6 (R31C). The

CDK4R24C mutation has been initially identified in hereditary

melanoma and shows elevated CDK4 kinase activity (112). So far

the CDK6R31C mutation has not been found in patients but is

used to investigate CDK6-INK4 interactions. CDK4R24C/

CDK6R31C mice show a shortened survival caused by the onset

of primary endocrine epithelial or hematopoietic malignancies.

Mice injected with CDK4R24C/CDK6R31C BCR-ABL1 transformed

cell lines display accelerated tumor growth and reduced disease

latency (113). This analysis highlights the crucial importance of

INK4 binding to control CDK4/CDK6 activity in hematopoiesis.

Therefore, it is attractive to conclude that CDK4/6 inhibitors are

effective in patients that lack appropriate INK4-mediated control.

First evidence indicated that the CDKN2 locus in human

tumor cell lines derived from solid tumors is predominantly

homozygously deleted and thereby p16INK4a becomes

inactivated. This was later verified also for leukemia and

lymphoma; only a low frequency of point mutations has so far

been documented (114–118).
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Studies in primary leukemia also identified alterations in

p15INK4b. The highest frequency of homozygous deletions of

p16INK4a or p15INK4b occurs in ALL, while they are

heterozygously deleted in chronic lymphocytic leukemia (CLL)

(114, 119–121). T-ALL is most frequently associated with

p16INK4a loss, while p15INK4b deletions are more often observed

in pediatric ALL (70, 106, 119, 122–127). Initial studies focused

their attention on the frequency of p16INK4a and p15INK4b

mutations in adult and childhood ALL (70, 114, 120, 122,

128). Only at later stages the potential of these genes as

prognostic factors was taken into account.

The overall incidence of p16INK4a deletion is higher than

p15INK4b. Patients with p15INK4b deletions harbor p16INK4a co-

deletions, which is not consistently observed vice versa. Cases

with homozygous p16INK4a deletion either maintain an

unmutated p15INK4b gene or show a hemizygous p15INK4b

deletion. These findings point at p16INK4a as the central target

of deletions which play the central role for ALL leukemogenesis

(70, 119, 120, 123).

The prognostic significance of p16INK4a and p15INK4b

deletions remains a matter of debate with contradictory

reports: some studies showed an adverse prognostic effect

(122, 123, 127, 129–133), which was not confirmed by others

(70, 134–136).

Analysis of mixed leukemia types, small patient cohorts or

insensitive molecular techniques, like polymerase chain reaction

(PCR), immunocytochemistry and fluorescence in situ

hybridization (FISH) may have complicated the interpretation.

The conclusion of some studies still leaves the potential

implication of p16INK4a and p15INK4b deletions in patient

prognosis elusive.

Point mutations in the CDKN2A/CDKN2B genes, encoding

for p16INK4a and p15INK4b respectively, are sporadically found in

human hematopoietic disorders. A comprehensive analysis of 264

T-ALL cases, searching for mutations in cell cycle genes, found

CDKN2A/CDKN2B as the most mutated ones (137). Inactivation

of p15INK4b and p16INK4a genes can also be based on

hypermethylation of the 5’ CpG islands in their promoter

regions which induces transcriptional silencing (138). This

mode of p16INK4a inactivation is commonly found in breast and

colon cancer (139) but also in leukemia and lymphoma. Normal

hematopoietic cells lack p15INK4b and p16INK4a promoter

hypermethylation, which only occurs de novo upon malignant

transformation (140). Interestingly, p15INK4b or p16INK4a seem

unaffected at any stage of CML (140), whereas hypermethylation

of p15INK4b and p16INK4a is a common event in multiple myeloma

(MM) (141). Selective p15INK4b promoter hypermethylation,

without p16INK4a alterations, is observed in acute myeloid

leukemia (AML), myelodysplastic syndrome and ALL (140,

142–146), whereas Burkitt’s lymphoma and Hodgkin’s

lymphoma present p16INK4a hypermethylation (140, 141,

147–150).
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Overall, the current available data show that inactivation of

p15INK4b and p16INK4a in human hematopoietic malignancies is

caused by genetic deletion or promoter hypermethylation.

Linking these alterations in a well-evaluated cohort of patients

would be extremely precious to finally define their role for

disease progression and their prognostic relevance. The

frequency of their alterations in leukemia and lymphoma is

indicative of a central role and renders them promising

candidates for novel therapeutic approaches.

5.1.2 p18INK4c

Being the functionally most relevant INK in HSC regulation

under stress conditions, it is not surprising that the absence of

p18INK4c provokes hematopoietic abnormalities and

extramedul lary hematopoies is (111) . Mice lacking

p18INK4cexperience the consequences of the absence of its

tumor suppressor function and its role in controlling

lymphocyte homeostasis (111, 151). p18INK4c-/- mice

spontaneously develop neoplasia including angiosarcoma,

testicular tumors, pituitary tumors and lymphoma.

p18INK4c mutations in human hematopoietic malignancies

are surprisingly rare in acute leukemias, as they have not been

identified in AML and deletions have been reported in just some

cases of adult ALL (70, 152, 153). p18INK4c maps on the

chromosomal region 1p32. In line with data showing no

involvement of p18INK4c in childhood AML (70), no

alterations of the 1p region in childhood ALL have been found

so far (154). Similarly, no evidence for p18INK4c promoter

hypermethylation in acute leukemia has been reported (155).

In MM, p18INK4c is frequently deleted, whereas no point

mutations have been detected (156, 157).

In normal B-cells, p18INK4c controls the cell cycle and is

involved in the terminal differentiation of B-cells into plasma

cells through the inhibition of CDK6 (158, 159). Despite that

role, p18INK4c expression is preserved in most lymphoid

malignancies (68, 118). The hemizygous loss of p18INK4c has

been reported in mantle cell lymphoma, but not in Hodgkin’s

lymphoma, where p18INK4c is frequently repressed due to

promoter hypermethylation (160–162).

The oncofusion protein PML-RARa which drives acute

promyelocytic leukemia (APL) directly suppresses p18INK4c

expression which is downregulated in APL blasts compared to

normal promyelocytes (163).

ChIP-seq experiments of MLL and AF9 in THP-1 cells reveal

the CDKN2C locus, encoding for p18INK4c, as a binding region.

This indicates that p18INK4c expression is subject to MLL-AF9

mediated regulation (164).

A detailed map of p18INK4c regulation in different leukemic

subtypes is still missing and would help clarifying the role of

p18INK4c in hematopoietic malignancies and leukemic stem cells

(LSCs). The data currently available are indicative for sporadic

alterations of p18INK4c in hematologic malignancies.
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5.1.3 p19INK4d

The analysis of p19INK4d knock-out mice failed to detect any

tumor suppressing effects of p19INK4d. Mice lacking p19INK4d do

not spontaneously develop tumors and no abnormalities of the

hematopoietic system are evident (56). In line, alterations of

p19INK4d are not general hallmarks of hematopoietic neoplasms

(76, 165) albeit the data available are scarce. The absence of a

mouse phenotype in terms of enhanced cell proliferation and

tumor development upon p19INK4d loss suggests a functional

compensation exerted by the other INK4 or Cip/Kip proteins.
5.2 Cip/Kip proteins in leukemia
and lymphoma

5.2.1 p21Cip1/Waf

p21Cip1/Waf is a key mediator of p53-dependent tumor

suppressor functions (22) and acts as a negative regulator of

cell cycle progression. p21Cip1/Waf and its role in cellular

proliferation have been described in a vast body of literature.

Its negative function on cell cycle progression indicates that

p21Cip1/Waf may exert tumor suppressive roles and participates

in leukemia development even under wild type p53 conditions.

p21Cip1/Waf deficient mice are viable and fertile (166, 167). In

those mice, harboring wild type p53, spontaneous tumor

development occurs late in life at an average age of 16 months.

The variety of malignancies includes tumors of hematopoietic,

vascular and epithelial origin. For instance, 14% of all tumors are

B-cell lymphoma (168).

The tumor spectrum developed by p21Cip1/Waf deficient mice

is remarkably similar to the one observed in p53 deficient mice,

which is not surprising keeping in mind the p21Cip1/Waf

activation by p53. However, p53 deficient mice are

characterized by longer latency. However, p21Cip1/Waf deficient

mice do not develop T-cell lymphoma, one of the most frequent

tumors arising in p53 deficient mice.

The clinical relevance and potential as a prognostic marker

of aberrant p21Cip1/Waf expression has been assessed in various

types of human cancers.

Loss of p21Cip1/Waf protein levels correlates with a more

advanced tumor stage and worse prognosis in pancreatic cancer

(169), while its overexpression has been shown to be associated

with poor prognosis in non-small cell lung cancer (170) and in

esophageal squamous cell carcinoma patients (171).

Interestingly, other studies report low p21Cip1/Waf expression

being associated with reduced survival in patients affected by

esophageal carcinoma (172, 173).

The relationship between p21Cip1/Waf expression and gastric

cancer remains controversial as well. Some authors reported a

positive correlation between p21Cip1/Waf expression and

favorable prognosis (174, 175), whereas others observed that

p21Cip1/Waf expression is associated with poor survival (176).
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Analysis of deletions and mutations of p21Cip1/Waf has been

carried out in few human hematological malignancies and could

be mapped in few subtypes. p21Cip1/Waf alterations are rare in

typical mantle cell lymphoma (MCL), but loss of p21Cip1/Waf

expression is present in aggressive MCLs harboring wild-type

p53 gene (177).

In a large cohort of AML patient blasts, high p21Cip1/Waf

expression was found in AML1-ETO positive leukemia (178)

with unknown significance. Given its role in maintaining the

HSC-pool during normal hematopoiesis (37), one may speculate

that it plays a role for LSCs by supporting their self-

renewal capacity.

p21Cip1/Wafmutations appear to be not involved in childhood

T-ALL pathogenesis, despite extensive studies no mutations

were detected (179).

p21Cip1/Waf methylation status in leukemia still remains a

debated topic. p21Cip1/Waf hypermethylation was observed in

bone marrow cells derived from ALL patients, where it is

indicative of a poor prognosis (180). Other studies failed to

find any evidence for p21Cip1/Waf methylation in ALL and AML

(155, 181, 182).

For instance, p21Cip1/Waf expression appears independent of

its promoter methylation status in AML cell lines but correlates

with demethylation of p73, a homologue of p53 and a known

upstream transcriptional activator of p21Cip1/Waf (183).

Treatment of AML cell lines with the methylation inhibitor 5-

Aza-2′-deoxycytidine (5-Aza-CdR) results in the induced

p21Cip1/Waf expression by p73 demethylation, provoking a cell

cycle arrest in the G1 phase (184, 185). Decreased p21Cip1/Waf

expression, without any signs of methylation, has been linked to

higher disease aggressiveness in myelodysplastic syndrome

(MDS). In line with the data from AML patients, reduced

p21Cip1/Waf expression was commonly correlated to p73

methylation (186).

More studies are required to precisely understand how the

p21Cip1/Waf methylation status interferes with disease

progression and if p73 methylation can be used as a marker

for the p21Cip1/Waf status.

In addition to growth arrest, p21Cip1/Waf is involved in

apoptosis, DNA repair and senescence. For instance, one of

the most extensively studied functions of p21Cip1/Waf is the

protection of cells against apoptosis.

An example is given by the usage of histone deacetylase

inhibitors (HDACI) to induce apoptosis (187–189). p21Cip1/Waf

expression is upregulated by an increased histone acetylation of

H3K4 at the p21Cip1/Waf promoter region, which is mediated by

the HDACI SAHA (suberoylanilide hydroxamic acid) (190).

p21Cip1/Waf overexpression confers resistance to SAHA-induced

apoptosis which was shown in human AML cells. SAHA

treatment promotes apoptotic cell death in leukemic cells by

inducing pro-apoptotic genes such as TRAIL (TNF-related

apoptosis-inducing ligand) and its downstream effector

caspase-8. One mechanism through which p21Cip1/Waf exerts
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anti-apoptotic effects in AML cell lines is the inhibition of

caspase-8 cleavage to suppress TRAIL-mediated apoptosis (191).

A second anti-apoptotic function of p21Cip1/Waf was also

reported for AML blasts. There, high cytoplasmatic p21Cip1/Waf

protein levels provide protection against cytotoxic agents. Blasts

with cytoplasmatic p21Cip1/Waf levels show reduced etoposide

(VP-16) mediated apoptosis (192). Similarly, the enforced

expression of p21Cip1/Waf in CML blast cells confers resistance

to Imatinib induced apoptosis (193). These studies suggest that

p21Cip1/Waf expression should be investigated to act as a marker

for therapeutic outcome.

p21Cip1/Waf expression is essential for the initiation and

maintenance of leukemogenesis induced by PML/RAR-

transformed HSCs. Under this condition p21Cip1/Waf is

required to maintain the self-renewal capacity of LSCs and to

limit DNA-damage. p21Cip1/Waf protects from functional

exhaustion (194). In line p21Cip1/Waf is crucial for the

maintenance of self-renewal and chemoresistance of LSCs in a

murine model of T-ALL (195).

In MLL-AF10-induced AML p21Cip1/Waf suppression is

achieved by the oncomir miR-17-91, that is associated with

enhanced LSC self-renewal and decreased leukemia latency

(196). Functional studies for the role of p21Cip1/Waf have been

mainly carried out in cell lines from different leukemia subtypes.

The literature on primary patient samples is scarce. It appears

that the involvement of p21Cip1/Waf is highly context dependent

and relies on the differentiation status of the cells and on the

driver oncogenes.

The fact that p21Cip1/Waf is important to maintain stem cell

self-renewal might provide a basis for novel attempts to target

p21Cip1/Waf to induce exhaustion.
5.2.2 p27Kip1

p27Kip1 regulates cell proliferation by inhibiting CDK

complexes and arresting cell proliferation in response to anti-

mitogenic signals (Figure 1) (8, 197–199).

Analysis of p27Kip1 knock-out mice highlighted the

importance of p27Kip1 as cell cycle regulator: p27Kip1 deficient

mice have an overall augmented cell proliferation which is

reflected in increased body size and hyperplastic organs.

Tumor formation becomes manifested spontaneously; pituitary

and parathyroid tumors evolve and the mice show an increased

susceptibility to tumorigenesis upon g-irradiation or treatment

by the chemical carcinogen N-ethyl-N-nitrosourea (ENU) (79,

80, 200). These studies defined p27Kip1 as tumor suppressor.

Mutations in the p27Kip1 gene and its homozygous

inactivation are generally rare in human cancers. In people

CDKN1B, encoding for p27Kip1, has been identified as the

second most common altered gene by frame-shift mutations in

heterozygosity in hairy cell leukemia (HCL), a form of B-cell

CLL. In most patients the CDKN1B mutation is clonal, thereby

suggesting an early role in the pathogenesis of HCL (201, 202).
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The subcellular location of p27Kip1 and its concentration

determine the impact on malignant transformation. On the one

hand, p27Kip1 acts as a tumor suppressor by inhibiting CDK-

cyclin complexes and cell cycle progression when present in the

nucleus. On the other hand, a localization shift of p27Kip1 from

the nucleus to the cytoplasm, may promote tumor formation by

regulating cytoskeletal structure and cell migration (89).

Augmented levels of p27Kip1 and its cytoplasmic localization

have been correlated with poor prognosis and increased

metastasis in diverse solid tumors including breast (94), cervix

(97) and esophagus (95) carcinomas, as well as in some

lymphoma and leukemia (91–93).

Despite a rare mutation rate, p27Kip1 deregulation is one of

the key events promoting leukemogenesis. Several mechanisms

altering p27Kip1 expression and localization have been described.

miRNAs play a prominent role and abundance of p27Kip1

subjected to miRNA-mediated regulation: oncogenic

expression of miRNA targeting p27Kip1 translation can cause

p27Kip1 loss (203). In CML patients, increased miR-152-3p

promotes aggressive behavior of CML cells by targeting

p27Kip1 (204). Similarly, miR-148a correlates with low p27Kip1

expression and increased proliferation in MM cells (205).

In lymphoma, low p27Kip1 levels correlate with a poor

prognosis (206). Vice versa, high p27Kip1 levels are associated

with enhanced disease-free survival in AML, indicative for

disease progression (207).

In contrast, AML patients with low p27Kip1 due to deletion of

the chromosomal region 12p13, have a better overall survival.

Although together with CDKN1B, nine other genes are located in

the 12p13 chromosomal region, the reported improved clinical

outcome can be ascribed to reduced CDKN1B expression levels

which might lead to higher cell proliferation which makes

leukemic cells more susceptible to cytotoxic agents (208).

Besides the genomic alterations, also the phosphorylation

sites play an important role for p27Kip1 levels. p27Kip1 is a

substrate of FLT3 and FLT3-ITD in AML patient samples,

where they phosphorylate p27Kip1 at the residue Y88 which is

required for subsequent p27Kip1 phosphorylation at T187 by the

CDK2-cyclin complex marking p27Kip1 for SCFSkp2-mediated

degradation. FLT3 inhibition reduces pY88-p27Kip1 and

increases p27Kip1 levels leading to cell cycle arrest (209).

High p27Kip1 levels are associated with a poor outcome in B-

cell chronic lymphocytic leukemia (B-CLL). In B-CLL disease

progression does not result from uncontrolled cell proliferation

but is the result of defective apoptosis and enhanced cell survival.

High p27Kip1 expression is discussed to contribute to the

protection against apoptotic stimuli like p21Cip1/Waf (93).

The presence of high p27Kip1 levels in CLL was confirmed by

others who also found an inverse correlation with c-Myc protein

levels. C-Myc deregulation is a frequent event in leukemia and

lymphoma (210, 211). Low Myc levels are associated with low

expression of its target gene Skp2, a component of the SCFSkp2
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ubiquitin ligase complex that degrades p27Kip1. The reduced

Skp2-mediated degradation leads to the p27Kip1 accumulation

which confers resistance to apoptosis (210).

In untransformed CD34+ progenitor cells, b1-integrin
engagement increases p27Kip1 nuclear levels, which in turn

decrease CDK2 activity thus restraining G1/S-phase

progression. BCR-ABL expression in CML CD34+ cells

induces elevated cytoplasmatic p27Kip1 levels. In this context,

such high p27Kip1 levels do not restrain CML cell proliferation

due to its cytoplasmatic relocation, thereby contributing to the

loss of integrin-mediated proliferation inhibition observed in

normal CD34+ cells (212).

More recent studies demonstrate that BCR-ABL1 promotes

leukemia by subverting nuclear p27Kip1 tumor-suppressor

function via two independent mechanisms. In a kinase-

dependent manner, BCR-ABL1 induces SCFSkp2 expression

through the PI3K pathway (213), promoting the degradation

of nuclear p27Kip1, thus compromising its tumor-suppressor

activity. In a kinase-independent fashion it increases

cytoplasmatic p27Kip1 abundance, preventing apoptosis and

thereby promoting leukemic cell survival (214, 215).

The overexpression of a stable p27Kip1 harboring two point

mutations which prevent its phosphorylation on sites

responsible for its SCFSkp2-mediated nuclear degradation

(T187A) and for its PI3K-directed cytoplasmatic sequestration

(T157A) causes a G1/S arrest, markedly inhibiting proliferation

of BCR-ABL+ cells (216).

The complexity of the regulation mechanism regulation

location and degradation require further investigations to define

disease entities where p27Kip1 may serve as clinical marker.

5.2.3 p57Kip2

Based on its ability to inhibit G1-S phase cyclin-CDK

complexes, p57Kip2 is considered a tumor suppressor. As

mentioned above for p21Cip1/Waf and p27Kip1, p57Kip2 is

involved in many cellular processes including apoptosis, and

cellular migration.

The fact that p57Kip2 has a crucial role during embryogenesis

and is required for normal embryonic development makes it

unique under der CKI family. p57Kip2 knock-out mice show

severe developmental defects and display increased embryonic

and perinatal lethality (217, 218) which complicated further

studies on tumorigenesis in mice and most studies rely on

human patient samples.

Reduced p57Kip2 expression is associated with high tumor

aggressiveness and poor prognosis in several types of tumors,

such as gastric, colorectal, pancreatic, breast and lung carcinoma

as well as leukemia (103, 104, 219–221). p57Kip2 expression is

decreased in MDS, in particular in patients with a poor

karyotype. Low expression results from an impaired response

to the SDF-1/CXCR4 signal which induces p57Kip2 expression

(222). p57Kip2 knock-out mice show hyperproliferation and
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differentiation delay in several tissues (218), which are features

associated with the pathogenesis of MDS (223).

Another described mechanism how p57Kip2 expression is

altered is promoter methylation. Hypermethylation of the

CDKN1C gene, encoding for p57Kip2, occurs in diffuse large B-

cell lymphoma (DLBCL), follicular lymphoma, ALL (224, 225)

and nodal DLBCL (226). In the low-risk group of DLBCL,

CDKN1C methylation is associated with a more favorable

overall survival. The authors proposed aberrant CDKN1C

promoter methylation as a biological marker in patients with

DLBCL (226). Another study in DLBCL patients suggested that

the analysis of CDKN1C methylation status may serve as a

biomarker for the detection of minimal residual disease,

underlining the importance of p57Kip2 for determining

leukemia relapse risk (227).

Analysis of the p57Kip2 methylation status in adult and

childhood ALL found a rate of 50% CDKN1C hypermethylation

in adult ALL but only 7% hypermethylation in childhood

leukemia (226). Interestingly, in 53% of the childhood ALL

samples p57Kip2 was absent without methylation and overall

p57Kip2 levels were 8-fold lower compared to normal

lymphocytes. The low expression points at additional ways to

regulate p57Kip2 in this particular disease class (228). In line,

p57Kip2 methylation and protein expression in adult ALL patients

does not show any correlation as 10 out of 15 patients with

CDKN1C hypermethylation expressed p57Kip2 (229).

Overall, methylation status of p57Kip2 does not seem to be a

reliable marker for p57Kip2 levels. Conditional knockout mice

would be a useful tool to study the role of p57Kip2 in

hematopoietic diseases in more detail.
6 Pharmacologic CDK inhibition in
hematologic malignancies

CDK kinase inhibitors are under extensive investigation in

numerous preclinical and clinical studies in a variety of solid

tumors and they are currently tested in hematological neoplasms

(230, 231).

Pan-CDK inhibitors represented the very first generation of

CDK inhibitors with the function to restrain cell proliferation

via the inhibition of the CDK enzymatic activity. Flavopiridol

was the first CDK inhibitor used in clinical trials and tested for

the treatment of ALL, AML and CLL (232–234). Due to their low

selectivity causing severe cytotoxic effects in healthy cells and a

wide range of side effects, pan-CDK inhibitors have been

discontinued in clinical trials (113, 235).

Considering the key role of CDK6 in malignant

hematopoiesis it represents an effective therapeutic target

(236–238). This is underlined by the high frequency of

p15INK4b and p16INK4a inactivation in leukemia and

lymphoma. The development of more specific CDK inhibitors,
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turn over in the field (239).

Palbociclib is a CDK4/6 kinase inhibitor that acts by

blocking enzymatic functions by mimicking INK4 binding.

Palbociclib has been FDA approved to treat breast cancer

patients and clinical trials exploring its effects in hematological

malignancies are ongoing. Richter et al. present in their recent

work (231) an extensive and detailed collection of preclinical and

clinical studies conducted with several CDK4/6 inhibitors in

hematological diseases.

Palbociclib resistance is a common phenomenon in breast

cancer patients (240, 241). In breast cancer and AML high levels

of p16INK4a and p18INK4c are associated with resistance to

Palbociclib and to a CDK6 protein degrader that is based on

the structure of Palbociclib. Despite this correlation, low

p16INK4a levels are not predictive for Palbociclib sensitivity

(242). All INK4 proteins are in principle capable to prevent

Palbociclib binding to CDK6 and thereby capable to induce

resistance. Whether this fact is also true for other CDK

inhibitors needs to be investigated. The cell-type specific

expression of INK4 proteins needs also to be taken into

consideration when studying CDK-inhibitors resistance.

The challenge in the development of novel inhibitors is in

the design of molecules able to reduce the side effects and to

overcome drug resistance. An innovative approach of CDK

inhibition would consider the possibility to mimic the

functions of INK4 proteins for a selective inactivation of

CDKs. However, intensive research is needed to fill the need

of X-ray crystal structures of most of the CDKs and CDKs/

INK4/Cip/Kip complexes and to make this creative

approach possible.
7 Discussion

INK4 and Cip/Kip proteins were initially identified as CDK

inhibitors and negative regulators of cell cycle progression. Only

recently, the involvement in other cellular processes including

apoptosis and cell migration was uncovered. Thereby CKIs bridge

cell cycle regulation to other cellular functions. Under certain

circumstances CKIs may even promote cancer progression.

Tumor cells frequently display mutations in CKIs which

underscores the significance of these proteins for tumorigenesis.

We here summarize the dominant alterations of CKIs in

hematopoietic malignancies and discuss their consequences for

disease development, maintenance, and diagnosis.

Within the INK4 family, p15INK4b and p16INK4a are most

frequently inactivated in leukemia and lymphoma either by

deletion or hypermethylation of 5’ CpG islands in their

promoter regions (114–116, 118, 140–150). The prognostic

importance of these alterations in distinct disease entities

remains unclear. Considering the unique functions of each
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INK4 proteins, especially their role under stress conditions, one

could speculate that distinct expression patterns lead to different

disease subtypes and dictates therapeutic outcomes.

CDK4/6 specific inhibitors represent a promising valuable

choice for the treatment of hematological malignancies.

However, resistance to CDK inhibitor therapy has been

frequently observed. INK4 proteins are capable of inducing

resistance by binding to CDK6. Studies are needed to evaluate

whether this holds true for other CDK inhibitors.

As proliferation and cell cycle control are essential features

of a cell, the components of the cell cycle machinery are present

in multiple variants, which can substitute for each other. INK4

proteins share common tasks and, in a similar manner, CDKs

may substitute for each other. This complexity makes it

exceedingly difficult to generalize any consequence upon loss

or mutations of a single player. Effects will also be context and

cell type dependent.

This enormous plasticity of the cell cycle machinery to adapt

ensures cell proliferation and presents a major challenge when it

comes to predict therapeutic outcomes of drugs interfering with

CDKs or INKs. The removal or inhibition of a single player may

be rapidly compensated by a rearrangement of CDK complexes.

Another layer of complexity is induced by the emerging

CDK6 kinase- independent funct ions that regulate

transcriptional processes relevant for leukemia. The involvement

of CDK6 in LSCs biologymakes it an attractive target for leukemia

therapy (238, 243). It is unclear how CKIs binding to CDK6

interferes with the transcriptional role of CDK6. It is also

unknown whether INK4 or Cip/Kip binding to CDK6 alters the

composition of CDK6 containing transcriptional complexes and/

or chromatin location. We need to understand how CDK-CKIs

complexes interfere with cell cycle-independent functions to

reliable predict treatment outcomes. Moreover, effects of kinase

inhibitor treatment on the kinase-independent functions of CDK6

are still enigmatic. The frequent upregulation of CDK6 (237, 235)

in hematopoietic tumors (243, 244) and the fact that alterations of

INK4 proteins are commonly found in hematopoietic tumors

demands for the understanding of any CDK6-INK4 correlation in

leukemia/lymphoma to exploit CDK4/6 inhibitors in

hematopoietic malignancies.

Despite the importance of p18INK4d for HSC self-renewal

under homeostatic and stress conditions (40, 52,53),

p18INK4d mutations are not a hallmark of hematopoietic

malignancies. p18INK4d deregulation is rarely observed in

hematopoietic neoplasms. Alterations on the transcriptional/

translational level cannot be entirely excluded. As such the

oncogene MLL-AF9 regulates p18INK4d. In line, the

comparison of AML subtypes identified distinct INK4

expression patterns for different AML entities. The global

analysis of the protein levels of individual CIKs in respect to

their hematopoietic disease type is required to design

tailored treatment strategies.
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We are only starting to understand and appreciate functions

of the Cip/Kip proteins in regulating apoptosis and cell

migration. The involvement of Cip/Kip in tumorigenesis is an

attractive emerging field of research and will open novel

innovative therapeutic avenues.

p21Cip1/Waf has a dual context-dependent role in

leukemogenesis and acts as tumor suppressor and promoter.

In cell lines, the anti-apoptotic effect of cytoplasmatic p21Cip1/

Waf confers a survival advantage and mediates chemoresistance.

Inhibition of p21Cip1/Waf under these conditions bears the

potential to sensitize leukemic cells to chemotherapy.

Similarly, cytoplasmatic p27Kip1 prevents apoptosis and may

be exploited as potential therapeutic target. Most studies rely on

cell lines and this only partially reflects the in vivo situation. The

reality-check in patients is still missing to judge the clinical

relevance of these observations. Therapeutic strategies that

simultaneously target oncogenic Cip/Kip functions while

preserving tumor suppressive functions would represent an

innovative optimal approach.
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