The Combined Use of Automated Milking System and Sensor Data to Improve Detection of Mild Lameness in Dairy Cattle
Lena Lemmens University of Veterinary Medicine Vienna
University of Veterinary Medicine Vienna
Graz University of Technology / Austria and Complexity Science Hub Vienna
Lorenz Maurer University of Natural Resources and Life Sciences Vienna
ZuchtData EDV-Dienstleistungen GmbH
Martin Mayerhofer ZuchtData EDV-Dienstleistungen GmbH
Mary Phelan MSD Animal Health
Marlene Suntinger ZuchtData EDV-Dienstleistungen GmbH
Kristina Linke ZuchtData EDV-Dienstleistungen GmbH
Christa Egger-Danner ZuchtData EDV-Dienstleistungen GmbH
Hermann Schwarzenbacher ZuchtData EDV-Dienstleistungen GmbH
University of Natural Resources and Life Sciences Vienna
University of Natural Resources and Life Sciences Vienna
MDPI
This study aimed to develop a tool to detect mildly lame cows by combining already existing data from sensors, AMSs, and routinely recorded animal and farm data. For this purpose, ten dairy farms were visited every 30-42 days from January 2020 to May 2021. Locomotion scores (LCS, from one for nonlame to five for severely lame) and body condition scores (BCS) were assessed at each visit, resulting in a total of 594 recorded animals. A questionnaire about farm management and husbandry was completed for the inclusion of potential risk factors. A lameness incidence risk (LCS ≥ 2) was calculated and varied widely between farms with a range from 27.07 to 65.52%. Moreover, the impact of lameness on the derived sensor parameters was inspected and showed no significant impact of lameness on total rumination time. Behavioral patterns for eating, low activity, and medium activity differed significantly in lame cows compared to nonlame cows. Finally, random forest models for lameness detection were fit by including different combinations of influencing variables. The results of these models were compared according to accuracy, sensitivity, and specificity. The best performing model achieved an accuracy of 0.75 with a sensitivity of 0.72 and specificity of 0.78. These approaches with routinely available data and sensor data can deliver promising results for early lameness detection in dairy cattle. While experimental automated lameness detection systems have achieved improved predictive results, the benefit of this presented approach is that it uses results from existing, routinely recorded, and therefore widely available data.
English
2023
This work is licensed under a
CC BY 4.0 - Creative Commons Attribution 4.0 International License.
CC BY 4.0 International
http://creativecommons.org/licenses/by/4.0/
Behavioral-Changes; Feeding-Behavior; Foot Disorders; Scoring System; Lying Behavior; Cows; Health; Impact; Associations; Management