Title (en)
Immortalized murine tenocyte cells: a novel and innovative tool for tendon research
Language
English
Description (en)
Primary tenocytes rapidly undergo senescence and a phenotypic drift upon in vitro monolayer culture, which limits tendon research. The Ink4a/Arf locus encodes the proteins p16Ink4a/Arf and p14ARF (p19ARF in mice) that regulate cell cycle progression and senescence. We here established an immortalized cell line using tenocytes isolated from Ink4a/Arf deficient mice (Ink4a/Arf-/-). These cells were investigated at three distinct time points, at low (2-5), intermediate (14-17) and high (35-44) passages. Wild-type cells at low passage (2-5) served as controls. Ink4a/Arf-/- tenocytes at all stages were comparable to wild-type cells regarding morphology, expression of tenogeneic genes (collagen type 1, 3 and 5, Scleraxis, Tenomodulin and Tenascin-C), and surface markers (CD29, CD44 and CD105) and form 3D tendon-like structures. Importantly, Ink4a/Arf-/- tenocytes maintained their phenotypic features and proliferation potential in culture for more than 40 passages and also following freeze-thaw cycles. In contrast, wild-type tenocytes underwent senescence starting in passage 6. These data define Ink4a/Arf-/- tenocytes as novel tool for in vitro tendon research and as valuable in vitro alternative to animal experiments.
DOI
10.1038/s41598-023-28318-4
Author of the digital object
Gil Lola Oreff  (University of Veterinary Medicine, Vienna)
Barbara Maurer  (University of Veterinary Medicine, Vienna)
Ahmed N El Khamary  (University of Veterinary Medicine, Vienna)
Iris Gerner  (University of Veterinary Medicine, Vienna)
Veronika Sexl  (University of Veterinary Medicine, Vienna)
Florien Jenner  (University of Veterinary Medicine, Vienna)
Format
application/pdf
Size
794.5 kB
Licence Selected
Type of publication
Article
Name of Publication (de)
Scientific Reports
Pages or Volume
10
Volume
13
Number
1
Publisher
Nature Publishing Group
Publication Date
2023