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1 Introduction and hypothesis 

 

 

1.1 Introduction: 
 

 

1.1.1 S. aureus main characteristics 
 

Staphylococcus aureus is a Gram-stain-positive, cocci-shaped, nonspore-forming bacterium 

belonging to the genus Staphylococcus of the family Staphylococcaceae. Staphylococcus 

aureus (S. aureus) was first described by Rosenbach in 1884 (Rosenbach et al., 1884)  and has 

a size of 0.5-1.0 μm forming pairs and clusters. This bacterium can be found in a variety of 

matrixes. Usually S. aureus is considered a skin and mucous membranes colonizer not only in 

humans, but also in domestic animals and wildlife. It can be found in healthy humans and 

animals as a commensal on skin, glands and mucous membranes, where it can persist 

asymptomatically (Schleifer and Bell., 2015). Nevertheless S. aureus can be involved in a 

variety of infections of mammals and birds and additionally it holds an important role in 

nosocomial infections as antibiotic resistance pathogen. 

One of the most frequent encounters of S. aureus in humans is the food-borne illness caused by 

the bacterium. S. aureus is considered to be quite aggressive due to the to the ability to product 

numerous virulence factors (Schleifer and Bell., 2015). It can grow in a vast temperature range, 

ranging from 7 to 48.5°C (optimum at 37°C), while it can withstand lower pH values (grows as 

low as a pH of 4.2). Furthermore this bacterium is considered halotolerant and can tolerate a 

concentration of NaCl up to 15% (Schleifer and Bell, 2015). It is quite clear that the bacterium 

can grow in various food matrixes, and when consumed by humans it is able to provoke the 

staphylococcal food-borne disease (Kadariya et al., 2014). Ingestion of S. aureus and its toxins 

results to numerous symptoms, with the first symptoms appearing at 3 to 5 hours after ingestion. 

Usual symptoms are hypersalivation, nausea, vomiting accompanied with abdominal cramps 

and diarrhea, with the latter two being recorded at a higher frequency in humans. Even though 

food-borne infections with S. aureus are quite common, usually they are not life-threatening 
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and they are self-limiting, but several cases have been recorded in the past, especially the 

elderly, infants and patients under immune-compromise (Balaban and Rasooly, 2000; Murray, 

2005; Argudín et al., 2010).  

Apart from the food-borne infections S. aureus which is considered a pathogen can result in 

infections also in humans and animals (Weese, 2005). Humans constitute an important reservoir 

for S. aureus with the bacterium being found on mucous membranes and the skin (Boucher and 

Corey, 2008). Recent estimates suggest that 30 % of adults are colonized by the S. aureus, while 

it is accepted that certain groups (health care providers, patients, and immunocompromised 

individuals) have higher rates of S. aureus colonization (Tong et al., 2015). As S. aureus can 

cause a huge range of infections in humans, such as skin and soft tissues, osteomyelitis and 

bursitis infection and may result in more serious conditions like endocarditis, pulmonary 

infection and/or infection of internal organs, if the bacterium accesses the bloodstream 

(Lakhundi and Zhang, 2018). Additionally, S. aureus in animals together with S. intermedius 

and S. hyicus is one of the most pathogenic species of the family (Hermans et al., 2004). It has 

been observed that S. aureus in can also cause pneumonia, joint infections, osteomyelitis as 

well as septicemia in poultry (McNamee and Smyth, 2000; Linares and Wigle, 2001; Alfonso 

and Barnes, 2006). Moreover, other studies have shown that even more species can get infected 

from S.aureus including subcutaneous abscesses, mastitis and pododermatitis in rabbits 

(Okerman et al., 1984; Hermans et al. 2003), dermatitis and cellulitis in horses (Middleton et 

al., 2005; Fjordbakk et al., 2008) as well as septicaemia in pigs (Devriese, 1990).  However, the 

most important infection caused by S. aureus in animals is described to be the intramammary 

infections in cattle which can lead to major economic losses (Waage et al., 1999; Hermans et 

al., 2004; Tenhagen et al., 2006). Moreover, in numerous of studies S. aureus has been detected 

also in samples collected from wildlife. More specifically S.aureus has been detected by 

European brown hares (Lepus europaeus) (Loncaric et al., 2014), squirrels (Campbell et al., 

1981; Simpson et al., 2010; Simpson et al.; 2013), hedgehogs (Monecke et al., 2013; Rasmussen 

et al.,2019) as well as by bats (Akobi et al., 2012). 

Therefore, it is important to explain the pathogenicity of the bacterium, as well as to clarify the 

potential transmission from domestic and wild animals to humans and the other way around. 

For that purpose, it is important to shed light on the virulence characteristics of the bacterium.  
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1.1.2 S. aureus virulence characteristics 
 

In order to be able to adapt in so many niches and exert pathogenicity, S. aureus owns a panoply 

of virulence factors that can be used to ensure bacterial survival (Richardson, 2018).  

Generally it is considered that virulence gene regulation in S. aureus is centralized and often 

controlled by the agr (accessory gene regulator) locus, as well as the staphylococcal accessory 

regulator (sarA, sae, sigB, arl), which controls many of the cell-wall associated, as well as 

extra-cellular proteins of S. aureus (Yarwood and Schlievert, 2003; Novick and Geisinger, 

2008  Pereira et al., 2009; Gomes-Fernandes et al., 2017). First of all, S. aureus is well known 

for its ability to produce proteins, such as the protein A, the chemotaxis-inhibitory protein, and 

the extracellular-adherence protein which enhance its survival within the host by blocking 

chemotactic signaling of the neutrophil recognition, as well as neutralizing the host opsonins 

(Foster, 2005; Rooijakkers et al., 2005; Sun et al., 2018).   

 

Additionally, S. aureus produces a wide range of adhesins, which help the bacterium to adhere 

to the host cell surface. Major adhesins of S. aureus are the “microbial surface component 

recognizing adhesive matrix molecule” (MSCRAMM) (Foster and Höök, 1998). The most 

typical proteins of the family are the Staphylococcus protein A (SpA), the fibronectin-binding 

proteins A and B, as well as the collagen-binding protein and the clumping factor A and B 

proteins (Foster and Höök, 1998; Lowy, 1998). The proteins mentioned above work by 

recognizing and binding components of the blood plasma such as fibrinogen, fibronectin and 

collagens (Lowy, 1998; Cheung and Zhang, 2002; Haggar et al., 2004). 

One of the major virulence characteristics of S. aureus is the production of exotoxins. The most 

well-known of these toxins are the toxic shock syndrome toxin 1, the Staphylococcus 

enterotoxins, and the exfoliative toxins (Lina et al., 2004). These toxins are responsible for toxic 

shock and food poisoning caused by S. aureus.  

On the other hand the exfoliative toxins are involved mainly in skin syndromes caused by S. 

aureus (Melish and Glasgow, 1970). Additionally several S. aureus strains possess enzymes 

such as the staphylokinase or the hyaluronidase, which help the bacterium further survive and 

colonize the host (Bokarewa et al., 2006). 
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Finally, one of the most effective virulence factors of S. aureus is the ability to biofilm. Biofilms 

formation of S. aureus is usually complex and the characteristics of the biofilms are only 

recently elucidated (Lister and Horswill, 2014), nevertheless it seems that biofilms may play a 

role on the survival of the bacterium on the environment, as recent studies pinpoint that host-

adapted mastitis isolated of S. aureus have a greater capacity of producing biofilms (Marbach 

et al., 2019).  

 

 

1.1.3 Methicillin-resistant S. aureus (MRSA) 
 

Increased misuse of antibiotics in terms of application and dosage, is an additional promoting 

factor for the development of antibiotic resistance. (Kimang’a, 2012; Nosanchuk et al., 2015). 

S. aureus was firstly described as resistant to penicillin back in late 1950s (Stapleton and Taylor, 

2002). This resistance of the bacterium to penicillin led to the discovery of penicillin derivative, 

methicillin in 1959, which was the first semisynthetic β-lactamase-resistant penicillin against 

β-lactamase-producing staphylococci (Stapleton and Taylor, 2002). The methicillin-resistant S. 

aureus (MRSA) has increasingly been reported since the 1960s, with the first case and isolate 

observed in animals back in the early 1970s, in cows with mastitis (Devriese et al., 1972).   

Nowadays it has been observed that Staphylococcus aureus can not only evolve a methicillin-

resistance but a lot of S. aureus strains are capable of acquiring resistance to nearly all antibiotic 

classes. (Loncaric et al., 2014; Schauer et al., 2018; Soimala et al., 2018).  

De novo mutations in chromosomal genes as well as acquisition of horizontally transferred 

resistance determinants can lead to antibiotic resistance. (Vestergaard et al., 2019) 

MRSA is a very common human and animal pathogen and causes approximately 170.000 

infections in and more than 5000 fatalities in Europe each year (Köck et al., 2014) and is 

reported not only to affect humans, but also livestock, companion and wild animals. 

Depending on the origin of the strains, MRSA can be categorized as: community-acquired 

MRSA (CA-MRSA), found in the environment, healthcare-associated MRSA (HA-MRSA) 

which is associated with nosocomial infections and livestock-associated MRSA (LA-MRSA).  

Humans that are in contact with livestock are at higher risk of infection with LA-MRSA. 

(Anjum et al., 2019).  
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While nosocomial MRSA infections (HA MRSA) often occur in immune-compromised 

patients, the community-associated MRSA (CA-MRSA) is responsible for infections of the skin 

and soft tissues in healthy individuals without any prior disease and is associated with 

complications described before and connected with high morbidity and mortality. This 

differentiation on the pathogenic effect of HA-MRSA and CA-MRSA could be attributed to 

different pathogenicity mechanisms used by the different types of MRSA strains (Choo, 2017). 

The most important genes related to antibiotic resistance are the methicillin resistance genes 

such as mecA and mecC genes which are part of the staphylococcal cassette chromosome mec 

and encode the penicillin-binding protein 2a. That protein substitutes in the cell-wall synthesis 

when β-lactam antibiotics are present. And due to the low affinity to the β-lactam antibiotics, 

the bacterial cell wall construction is not interrupted (Pinho et al., 2001; Schwarz et al., 2017).  

The resistance to penicillin derivatives, as well as the resistance to various antibiotics is 

attributed to the presence of different antibiotic resistance genes. In the following table (Table 

1) an overview of the genes encoding for antibiotic resistance can be seen. 
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Table 1: Genes encoding for antibiotic resistance in MRSA1 
 
Encoding 
genes 

mecA mecC blaZ blaI blaR aacA-aphD 

Resistance β-lactam methicillin β-lactam methicillin 
β-lactam 
penicillin 

β-lactam penicillin β-lactam penicillin 

Aminoglycosids 
(gentamicin, 
kanamycin, 

tobramycin, amikacin) 

Resistance 
mechanism 

Target site 
replacement 
(alternative 

penicillin binding 
proteins) 

Target site 
replacement 

(alternative penicillin 
binding proteins) 

Enzymatic 
inactivation 
(β-lactamase) 

Enzymatic 
inactivation 
(β-lactamase) 

Enzymatic 
inactivation 
(β-lactamase) 

Enzymatic 
inactivation 

(acetyltransferase and 
phospotransferase) 

       
Encoding 
genes 

aadD aph-A3 sat mph(C) vat(B) vga(A) 

Resistance 

Aminoglycosids 
(neomycin, 
kanamycin, 
tobramycin) 

Aminoglycosids 
(neomycin, 

kanamycin, amikacin) 
Streptothricin Macrolides Strepto-gramin A 

Lincosamides, 
pleuromutilines, 
streptogramin A 

Resistance 
mechanism 

Enzymatic 
inactivation 

(adenyltransferase) 

Enzymatic 
inactivation 

(phospotransferase) 

Enzymatic 
inactivation 

(acetyltransferase) 

Enzymatic 
inactivation 

(phospotransferase) 

Enzymatic 
inactivation 

(acetyltransferase) 

Target site protection 
(ribosome protective) 

 
1 Information on the table collected from (Ross et al., 1990; Schwarz et al., 1992, 1998, 2018; Roberts, 1996; Derbise et al., 1996; Allignet and El Solh, 1997; Matsuoka et 
al., 1998; Schnellmann et al., 2006; Lüthje and Schwarz, 2006; O’Neill et al., 2007; Norström et al., 2009; Hauschild and Schwarz, 2010; Perreten et al., 2010; Zakour et al., 
2011; Gómez-Sanz et al., 2011; Wendlandt et al., 2013; Soimala et al., 2018; Anjum et al., 2019). 
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Table 1 (Continued): Genes encoding for antibiotic resistance in MRSA 
 
Encoding 
genes 

vgb tet(K) tet(M) msr(A) fusC erm(A) 

Resistance Streptogramin B Tetracyclines Tetracyclines 
Macrolides, 
Streptogrmin B 

Fusidic acid 
Macrolides, 
Lincosamides, 
streptogramin B 

Resistance 
mechanism 

Enzymatic 
inactivation 
(hydrolase) 

Active efflux 
(major facilitator 
superfamily) 

Active efflux 
(major 
facilitator 
superfamily) 

Target site 
protection 
(ribosome 
protective 

ABC-F protein) 

Target site protection 
(ribosome protective 

protein) 

Target site modification 
(rRNA methylase) 

       
Encoding 
genes 

erm(B) erm(C) cfr lnu(A) mupA 

Resistance 
Macrolides, 
Lincosamides, 
streptogramin B 

Macrolides, 
Lincosamide, 
streptogramin 

B 

Phenicols,  
linosamides, 
pleuromutilines, 
Strepto-gramin 

A 

Lincosamides Mupirocin 

Resistance 
mechanism 

Target site 
modification 
(rRNA 

methylase) 

Target site 
modification 
(rRNA 

methylase) 

Target site 
modification 
(rRNA 

methylase) 

Enzymatic inactivation 
(nucleotidyltransferase) 

Target replacement 
(mupirocin-insensitive 
isoleucyl-tRNA 
synthase 
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1.1.4 Biocides and S. aureus  
 
Biocides are chemical agents that have been used for centuries as external decontamination 

agents. The term biocides cover a wide range of substances, with the most useful in veterinary 

medicine being antiseptics and disinfectants. The first are used for minimizing the risk for 

contamination before operation and for eliminating residual bacterial activity after washing, 

while the others are used mostly for objects in order to ensure bacterial sterility. 

(Wijesinghe et al., 2010; Conceição et al., 2015; Gupta et al., 2018). The susceptibility of the 

bacteria to these chemical agents differs between the bacteria species. (Ducel et al., 2002). 

Biocides exert their biocidal action using different mechanisms, for example chlorine-releasing 

biocides such as sodium hypochlorite, or hypochlorous acid are oxidizing agents which destroy 

the cellular activity of proteins, while iodine compounds alternate the proteins and fatty acids 

composition of bacteria leading to cell death (Gupta et al., 2018). 

Two of the most frequently used disinfectants are quaternary ammonium compounds (QACs) 

and alcohol derivatives. The first one affect the bacterial cytoplasmic membrane leading to cell 

damage, while the later ones result in a denaturation of proteins and nucleic acids (Block, 

2001). Due to the increased use of biocides such as quarternary ammonium compounds, 

alcohols and aldehydes as tool to reduce the resistant bacterial pathogens increased concerns 

have been observed about its impact on bacterial resistance (Morrissey et al., 2014). Therefore, 

the importance of the screening of bacterial isolates for decreased biocide susceptibility 

increases. The determination of biocide susceptibility is defined by its minimum inhibitory 

concentrations (MICs). MICs are the lowest antimicrobial concentrations needed to inhibit the 

macroscopic visible growth of a microorganism after overnight incubation. MICs are assumed 

to be the ‘gold standard’ for the determination of the susceptibility to antimicrobials and are 

mainly used to confirm resistance and to test the invitro activity of new antimicrobials 

(Andrews, 2001). Additionally, in a row of two recent studies is presented a newly developed 

broth microdilution method for biocide susceptibility testing (Feßler et al., 2018; Schug et al., 

2020).  

Bacteria usually inherit resistance to bactericides through genes, which usually encode for 

efflux pumps, proteins which reduce cellular impermeability and cell wall damage and 

enzymes (Fraise, 2002; Costa et al., 2013; Conceição et al., 2016). Just like with antibiotic 

resistance, the misuse and overuse of biocides resulted in an increase of the antiseptic resistance 

of S.aureus against various antiseptic substances (Conceição et al., 2016).  
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One of the main mechanisms with which biocides resistance is acquired, is through efflux 

pumps. Efflux pumps are used by bacterial cells in order to draw out of the cell potentially 

toxic compounds such as antibiotics, heavy metals, or chemical compounds, like the biocides 

(as seen in Fig. 1). In Staphylococcus species, the encoding genes for the multidrug efflux pump 

are called qac genes (Conceição et al., 2016). These gene encode six different QAC efflux 

pump proteins, with QacA and QacB being among the ones that are conserved within the 

Staphylococcus species (Wassenaar et al. 2015).  The regulation of these proteins is under the 

control of numerous genes, which are involved in the expression of efflux pumps or other 

biocide resistance molecules. The most notorious genes are qacA, qacB, smr, norA, lmrS, 

mepA, and sepA, which have been detected in clinical S. aureus isolates from animals, humans 

and environment (Bjorland et al., 2001; Noguchi et al., 2005; Conceição et al., 2016). 

Interestingly previous studies have indicated that there could be a potential association between 

β-lactam resistance and QAC resistance in S. aureus (Akimitsu et al., 1999; Conceição et al., 

2016).  

Figure 1: Animation of efflux pump action, efflux pump draws out molecules such as antibiotics, or biocides 

when they enter the bacterial cell. 

Adapted and modified from mechanismsinmedicine.com 
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1.2 Hypothesis  
 
Through this study a comparison of the presence and prevalence of virulence factor genes as 

well as antibiotic and biocide resistance genes between MRSA isolates from companion 

animals from Austria and wild animals from the German North Frisian island of Pellworm, 

took place. 

 

The hypothesis was: Virulence factor genes as well as antibiotic and biocide resistance genes 

are less common in MRSA isolates recovered from wildlife than in those isolated from 

companion animals. 
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2. Material and methods  

 

2.1. Isolation of MRSA and antimicrobial susceptibility testing  

 

The collected MRSA strains consisted a considerable pool of isolates from different sources. 

Samples originating from companion animals (cats, dogs, horses, rabbits, and exotic birds) 

were collected over a period of five years from 2013 to 2018. In total 90 non-repetitive MRSA 

isolates were collected, 62 isolates originated from horses (68.9 %), 13 from cats (14.4 %), 10 

from dogs (11.0 %), two from rabbits (2.2 %), and one each of the remaining samples from a 

domestic canary, a zoo-kept hammer-headed bat (Hypsignathus monstrosus) and a semi-

captive northern bald ibis (Geronticus eremita) (n =1, 1.1% of the total samples each).                                                                                                         

Samples isolated from from wild European hares (Lepus europaeus) from the Pellworm 

islands, located in northern Germany (n = 78,non-repetitive MRSA isolates). The MRSA 

isolates have been collected from various bodily sites such as the nasal cavity (n = 49; 62,8 %) 

, the intestine (n = 20; 25,6 %), abscesses (n = 3;3,8 %), the liver (n = 1; 1,2 %) and the eye (n 

= 1; 1,2 %). The origin of four isolates (n = 4; 5,1 %) was not reported.  

 

All samples mentioned above have been cultivated, species-characterised and tested for 

antibiotic resistance by using the agar disk diffusion method. All MRSA isolates were stored 

at −80°C until further examination. The exact determination of the bacterial species has been 

achieved by using Matrix-Assisted Laser Desorption/ Ionization- Time of Flight (MALDI-

TOF) mass spectrometry. (Spergser et al., 2019) 

 

Agar disk diffusion was performed according to the recommendations given in the Clinical and 

Laboratory Standards Institute (CLSI). The following disks have been used (Beckton 

Dickinson, Heidelberg, Germany): penicillin (PEN, 10 IU), cefoxitin (FOX, 30μg), gentamicin 

(GEN, 10μg), erythromycin (ERY, 15μg), clindamycin (CLI, 2μg), tetracycline (TET, 30μg), 

ciprofloxacin (CIP, 5μg), trimethoprim sulfamethoxazole (SXT, 1.25/ 23.75 μg), 

chloramphenicol (CHL, 30 μg), and linezolid (LZD, 30 μg). The reference strain S. aureus 

ATCC®25923 served as a quality control strain (Loncaric et al., 2019). 
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2.2. Molecular characterization of MRSA  

Prior to DNA extraction, isolates were grown on BD Columbia III agar with 5% sheep blood 

(Beckton Dickinson) and incubated overnight at 37 °C. Bacterial cells were enzymatically 

lysed and DNA extraction was performed using commercially available spin columns 

(GenEluteTM Mammalian Genomic DNA Miniprep Kits, Sigma-Aldrich, Vienna, Austria) as 

previously described (Loncaric et al., 2014).  

Methicillin resistance was confirmed by PCRs with primers targeting mecA and mecC as 

described elsewhere (Loncaric et al., 2019). A DNA microarray (S. aureus Genotyping Kit 2.0, 

Alere, Jena, Germany) was used for the identification of more than 330 species-specific, 

virulence-associated, and resistance genes (Monecke et al., 2008; Loncaric et al., 2019). 

Microarray provides a basis for genotyping thousands different loci at the same time, which 

can be used for association and linkage studies to isolate chromosomal regions which are 

related to a particular gen or disease (Govindarajan et al., 2012). For visualization of the 

diversity between the DNA microarray results the program SplitsTree4 was used (Huson and 

Bryant, 2006; Coombs et al., 2010; Loncaric et al., 2019). The presence of antimicrobial 

resistance and virulence genes was extracted from WGS data via comparison with the 

Comprehensive Antibiotic Resistance Database (CARD) (Jia et al., 2017; Loncaric et al., 2019) 

or based on Alere Microarray data (Strauß et al., 2016; Loncaric et al., 2019). 

 

Further Details about the Materials and Methods used can be found in the published Papers or 

after contact with the supervisor of the project, Dr. Loncaric. 
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2 Results 
 

2.1 Prevalence of virulence factor genes and biocide resistance genes  

In general differences in the prevalence of virulence factor genes between isolates from wildlife 

and companion animals were observed (Figure 2). Both fnaA and fnaB were found in much 

higher rates in isolates originating from companion animals. Additionally, the cna gene was 

also more prevalent in companion animals (76 positives from companion animals, while 7 

positives from wildlife), while the efb/fib gene as found more frequently in wildlife isolates (73 
positive wildlife isolates in comparison to 15 from companion animals). The Panton–Valentine 

leukocidin (PVL) genes (lukF-PV, lukS-PV) genes were exclusively found in isolates from 

companion animals, with 3/90 and 4/90 of the tested isolates being positive in lukF-PV and 

lukS-PV respectively. On the contrary the leukotoxin gene lukD was found mostly in isolates 

originating from wildlife (56 positives from wildlife, in comparison to 16 from companion 

animals). Small differences accompanied by statistical significance were noted in the 

prevalence of lukY gene (86 samples positive from companion animals and 68 from wildlife), 

while no statistically significant difference was noted in the prevalence of lukE and lukX gene. 

The virulence of S.aureus is attributed to the presence of different virulence resistance genes. 

In the following table (Table 2) an overview of the genes encoding for virulence factors can be 

seen. 
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Figure 2: Comparison of the number of MRSA isolates between companion and wildlife animals which tested positive for 
various virulence resistance genes. On the current table are only represented the isolates showing significant differences in 
the prevalence.
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Encoding gene fnbA fnbB efb/fib 

Virulence factor Fibronectin binding Protein A Fibronectin binding Protein B Fibrinogen-binding proteins 

    

Encoding gene cna clfA clfB 

Virulence factor Collagen binding adhesin Clumping factor A Clumping factor B 

    

Encoding gene PVL lukF-PV lukS-PV 

Virulence factor Panton-Valentine leukocidin F- component of PVL S- component of PVL 

    

Encoding gene hlgA lukM,lukD,lukE, 
lukX,lukY 

sea,seb,sec,sed,see, 
seh,sej,sek,sel,seq, 

ser,seg,sei 

Virulence factor Gamma-γ-hemolysin A Leukotoxin SE- staphylococcal enterotoxins 

    

Encoding gene selm, seln, selo, selu egc  

Virulence factor SE-like, Staphylococcal like 
enterotoxins 

egc-encoded Superantigens  

 
Table 2: Genes encoding for virulence factors of S.aureus have been compared in this Study. 
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Biocides have been used for centuries to control and supress the growth of pathological 

microorganisms on humans and animals (Conceição et al. 2015, Gupta et al 2018). Just like 

antibiotic resistance, the mis-/ overuse of biocides, has created a concern that such intense 

usage could lead to decreased bacterial susceptibility to a product and maybe to cross-resistance 

to unrelated antimicrobials (Conceição et al. 2015). In our study we tested the qacC and qacA 
genes which confer resistance to quaternary ammonium compounds, but there has been 

observed only a very low prevalence of the qacC gene (n=2 of 90) by companion animals, 

while both qacC and qacA were negative in all wildlife isolates tested.  

 

2.2 Prevalence and differences of antibiotic resistance genes 
 

In general differences between the prevalence of antibiotic resistance genes between the two 

isolates populations were observed (as seen in Figure 3). Regarding the methicillin resistance, 

mecA was found mainly in companion animals, with all of the tested strains from companion 

animals being positive, on the other hand mecC gene was only found in wildlife samples, with 

71 samples collected from wildlife being positive. The contrary applies for the blaZ, blaI and 

blaR genes, all being found much more frequently in companion animal isolates rather to the 

ones originating from wildlife, while the difference in the prevalence of these genes between 

companion animals and wildlife was always highly statistically significant. Significant 

differences of the prevalence between wildlife and companion animals were also observed in 

other antibiotic resistance genes (Figure 3) 
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Figure 3: Comparison of the number of MRSA isolates between companion and wildlife animals which tested 
positive for various antibiotic resistance genes. On the current table are represented only the isolates 
showing significant differences in the prevalence. 
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3 Discussion 
 

3.1 Virulence factors and biocide resistance genes 

Staphylococcus aureus is being characterised as the most pathogenic member of the 

Staphylococcaceae due to the large arsenal of virulence factors that are regulated by a series of 

transcription factors (Richardson, 2018). Differences in the prevalence of virulence factor 

genes in isolates originating from wildlife and companion animals were recorded in our study. 

The fnaA and fnaB genes which encode for the fibronectin-binding proteins were found both 

in wildlife and companion animals MRSA isolates. The prevalence of both genes ranged at 

97.8 % and 78.2 % for fnaA at companion and wildlife respectively, while it ranged at 34.4 % 

and 44.9 % respectively for fnaB.  This is higher than what it was described before for MRSA 

isolates originating from human specimens (Thompson and Brown, 2014) but in accordance 

with previous studies which report high prevalence of the genes in samples from dogs and cats 

(Asanin et al., 2019), as well as the veterinary clinic environment (Chen et al., 2020).   

The detection of the cna gene, which encodes for a collagen adhesion has been recovered 

mainly from MRSA isolates originating from companion animals. Previous studies has placed 

the prevalence of the cna gene at the MRSA population isolated from veterinary clinics 

specimens at 82.4 % (Chen et al., 2020), while it was found on 84.4 % of our samples of 

companion animal origin.  This is also in accordance with a previous study conducted on 

companion animals where 16,6% (1/6) of the isolates tested, were cna positive (Asanin et al., 

2019). Moreover, in a recent study the cna gene was absent from all wildlife animal (Wild 

Lagomorphs) isolates that have been tested (Moreno-Grua et al., 2020). 

The efb/fib gene is responsible for the production of an extracellular fibrinogen binding protein 

in S. aureus and in our study, it was found more frequently in the MRSA samples isolated from 

wildlife animals, rather than companion animals. This comes in contrast with previous studies 

which indicate a high prevalence of the gene in isolates originating from dogs, cats and the 

veterinary clinic environment (Chen et al., 2020). Although, the fib gene is also being described 

to be detected on a wildlife animal study conducted in Spain (Moreno-Grua et al., 2020). 

In our study differences in the prevalence of the Leukotoxin (luk) genes as well as in Panton-

Valentine-Leukocidin (PVL) were found. Panton-Valentine Leukocidin (PVL) is a pore-

forming toxin associated with the CA-MRSA and can lead to necrotizing pneumonia often with 

lethal ending (Rahman et al., 1991; Hoppe et al., 2019).  
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In this study the presence of lukF-PV and lukS-PV genes were only found in MRSA from 

domestic animals with 3% and 4% respectively, while there was no wild animal isolate tested 

positive for these genes. This is in accordance with several studies which indicate a high 

prevalence of the Panton-Valentine-toxins (lukF-PV and lukS-PV) on companion animal 

isolates (Rankin et al., 2005; Haenni et al., 2012; Gomez- Sanz et al., 2013) and the absence 

on all wild animal isolates tested (Monecke et al., 2013; Rasmussen et al., 2019; Moreno-Grua 

et al., 2020). However, the Leukotoxin gene lukD was isolated mostly from wildlife MRSA. 

On the contrary the lukY was more frequent in companion animals, while the prevalence of 

lukE and lukX genes was almost similar within the two MRSA populations. These results do 

not match with these of other studies, while it has been reported that lukD and lukE can mainly 

be found in companion animals (Gomez-Sanz et al., 2013; Chen et al., 2020). Concluding lukF, 

lukS and lukY genes were found mainly in MRSA isolates from companion animals. This is in 

accordance with previous studies which have recovered the aforementioned genes from all the 

tested human and animal origin samples (Jamrozy et al., 2012). 

Additionally, in our study the Staphylococcal enterotoxin (SEs) encoding genes sea, seb, sej, 

sei, seg, selm, seln, selo, selu were present only in companion animal MRSA isolates. This 

comes in concordance with several studies showing the presence of these genes in companion 

animals (Haenni et al., 2012; Gomez-Sanz et al., 2013; Asanin et al., 2019) as well as their 

absence from wild animal isolates (Moreno-Grua et al., 2020). 

In our study we also wanted to elucidate the presence the qacC and qacA genes which confer 

resistance to quaternary ammonium compounds and chlorhexidine, through encoding of efflux 

pumps. While no isolate irrespective from its origin was positive for the qacA gene, two of the 

MRSA isolates originating from companion animals were positive for the qacC gene. The low 

prevalence in which the gene was found in the pool of analyzed isolates is not a surprise. 

Previous studies have shown that the recovery rate of the gene is pretty low in MRSA samples 

originating from companion animals (Vincze et al., 2013; Haenni et al., 2017).  
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3.2 Antibiotic resistance genes  
 

Antimicrobial resistance rises up as an emerging public health threat and continues until today 

to be a major problem in healthcare units. Antibiotic resistant bacteria usually result in 

increased time of hospital stays, and often in serious life threating complications in elderly, 

pregnant or immune-compromised patients, therefore increasing the morbidity and mortality 

(Kraker et al., 2011; Chang et al., 2011). Additionally recent studies have shown that long-term 

care facilities, such as nursing homes, may also be a major source for infection for the elderly 

(Rowan-Nash et al., 2020). 

 

In numerous studies it has been reported that antimicrobial resistant (AMR) bacteria are 

commonly detected in healthcare institutions, which makes these facilities a common 

acquisition place (Rowan-Nash et al., 2020). Moreover patient-to-patient transmission of AMR 

isolates can occur because of bad hygiene conditions or environmental contamination 

(Struelens, 1998; Cookson, 2005; Paterson, 2006b; Mulvey and Simor, 2009; Rowan-Nash et 

al., 2020). It is estimated that 35% of health care facility residents are colonized with multidrug 

resistant microorganisms (Pop-Vicas et al., 2008; O'Fallon et al., 2009; O'Fallon et al., 

2010;Cassone and Mody, 2015; Aliyu et al., 2017). The patient environment in nursing 

facilities is proved to harbor a reservoir of potentially harmful, and often lethal multidrug-

resistant organisms (MDROs) (Chemaly et al., 2014). Apart from that, it is accepted that 

animals may act as a reservoir for the transmission of antibiotic resistant S. aureus to humans. 

(Guardabassi et al., 2004). Resistant bacterial strains might be acquired by humans through 

pathways such as person-to-person transmission, environmental exposure and direct exposure 

to animals (Guardabassi et al., 2004).  Cats and dogs represent potential sources of spread of 

antimicrobial resistance due to the extensive use of antimicrobial agents in these animals and 

their close contact with humans and especially children. (Guardabassi et al., 2004). Moreover 

a potential of two-sided transmission route has been observed (Ferreira et al., 2011). 

The colonisation of healthcare workers is a common phenomenon and it is assumed to play a 

role in the nosocomial transmission (Albrich and Harbarth 2008). MRSA at low prevalence has 

been described to be found also in healthy horses. Although in equine hospitals a much higher 

prevalence has been observed (Van Balen et al., 2014; Tiroshlevy et al., 2015). Conserningly 

is the fact that such a high prevalence of MRSA constitutes a major risk factor not only for the 

horses, but also for the veterinary personnel (Koop, 2016). It has been described in previous 
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studies that veterinarians are at an increased risk of carrying MRSA compared to the general 

population (Jordan et al., 2011, Cuny et al., 2016; Koop, 2016). Moreover, in a study conducted 

in an equine clinic a possible transmission from the vet to, the equine patients, has been 

described (Koop, 2016). An older study has indicated that the source of infection for 

companion animals in clinics may be the colonized nasal cavities of surgeons and nurses which 

could act as a reservoir for the bacterium. Even though this mechanism of transmission through 

this route is not totally clarified, still it cannot be disregarded (McLean and Ness, 2008).   

Apart from the presence of MRSA in companion animals one should not disregard the presence 

of the bacterium in livestock and wild animals. Studies have already indicated that pig farming 

may be a potential source for LA-MRSA carryover from animals to humans and vice versa 

(Köck et al., 2009; Lozano et al., 2011). Moreover MRSA has been found in carcasses of pigs 

in slaughterhouses, therefore, hinting that there is also a potential of transmission of MRSA 

through the food chain (Ivbule et al., 2017). Additionally MRSA has been isolated from various 

wild animals in the past, such as red deer, ibex, and wild boars (Porrero et al., 2013).   

In our study we found a high prevalence of the mecA gene in isolates originating from 

companion animals, with all the isolates (n=90 out of 90; 100%) testing positive for the gene. 

This comes in accordance with two other studies in which the mecA gene was present in all 

isolates originating from companion animals, such as dogs, cats and horses (Baptiste et al., 

2005; Ruzauskas et al., 2015).  Previous studies have also shown that the mecA is frequently 

recovered from companion animals in neighboring countries, e.g. Germany (Walther et al., 

2012). On the other hand, the low prevalence of mecA gene detected in our study in isolates of 

European hares (Lepus europaeus) is not totally in accordance with previous studies. In our 

study we found the mecA gene in 9.0 % of the isolates originating from European hares (n = 

7/78), while previous studies have indicated that MRSA and other methicillin resistant 

staphylococcal species (such as S. sciuri, S. vitulinus etc.) collected from wild hares (Lepus 

granatensis), all harbored the mecA gene (Silva et al., 2020). On this point it should be noted 

that all wildlife samples in our study were collected from a small island in northern Germany 

from only one animal species (European hares-Lepus europaeus), which means that a direct 

comparison with other studies is not absolutely accurate and hardly comparable.  

On the other hand, we recorded a high prevalence of the mecC gene in the studied strains 

isolated from wildlife (n= 71 out of 78; 91.0 %), while no strain isolated from companion 

animals harbored the gene. These findings are in line with previous studies which describe the 
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presence of the mecC gene in isolates originating from wild animals, such as deers and wild 

boars (Concepción Porrero et al., 2014). On contrary to our results, the mecC gene has also 

been detected in isolates originating from companion animals such as dogs (Drougka et al., 

2016). Additionally, other research groups have identified only one positive mecC isolate 

(which incidentally originated from a pet rabbit) in samples originating from companion 

animals (Ruzauskas et al., 2015). 
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4 Summary 

Through this comparative study we tried to highlight the different potential of MRSA strains 

isolated from different origins. MRSA isolates originating from companion and wildlife 

animals, show different antibiotic resistance, as well as virulence factors profiles. Certain 

methicilline-resistance gene mecA, has been detected by far more frequently in MRSA samples 

originating from companion animals, while mecC gene was mainly found in wildlife MRSA 

isolates.  

Additionally, the qac genes (qacA, qacC) were found at a low prevalence, with only two of the 

companion animal isolates (n=90) being positive to qacC, while both qacA and qacC were 

absent of all wildlife animal isolates (n=78). Moreover, virulence factor patterns differed 

between the wildlife/companion animal groups with fnaA, fnaB as well as cna gene being more 

prevalent in MRSA isolates from companion animals. In contrast the efb/fib gene was more 
frequent in wildlife MRSA isolates. The luk genes, showed variability in their prevalence with 

lukD and lukE genes being found in higher frequency in MRSA isolates from wildlife. The 

Panton-Valentine-Leukocidin genes, lukF-PV und lukS-PV have been only detected in 

companion animal isolates. Additionally, in our study Staphylococcal enterotoxin (SEs) genes 

were tested, with all of them (sea, seb, sec, sed, see, seh, sej, sek, sel, seq, ser, seg and sei) 

being absent in all wildlife animal isolates tested, and present some companion animal isolates. 

5 Zusammenfassung 

 

Durch diese Vergleichsstudie haben wir versucht, das unterschiedliche Potenzial von MRSA-

Stämmen hervorzuheben, die aus Begleits- und Wildtieren stammten. MRSA-Isolate, die von 

Begleit- und Wildtieren stammen, zeigen unterschiedliche Virulenzfaktorprofile sowie 

unterschiedliche Antibiotikaresistenzen. Bestimmte Methicillin-Resistenzgene, wie mecA 

wurden weitaus häufiger in MRSA-Proben von Haustieren nachgewiesen, während das mecC-

Gen hauptsächlich in MRSA-Isolaten von Wildtieren gefunden wurde. 

Zusätzlich zeigten die qac-Gene (qacA, qacC) eine geringe Prävalenz, wobei nur zwei der 

Haustierisolaten (n = 90) positiv für qacC gefunden wurde, während sowohl qacA als auch 

qacC bei allen Isolaten von Wildtieren (n=78) abwesend waren.  

Darüber hinaus unterschieden sich die Muster der Virulenzfaktoren zwischen den Wildtier- 

und Begleittiergruppen, wobei die fnaA, fnaB und cna-Gene in MRSA-Isolaten von 

Begleittieren häufiger vorkamen. Im Gegensatz dazu kamm das efb / fib-Gen in MRSA- 
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Wildtierisolaten häufiger vor. Die luk-Gene zeigten Variabilität in ihrer Prävalenz. Die lukD- 

und lukE-Gene wurden in MRSA-Isolaten aus Wildtieren häufiger gefunden, während die 

Panton-Valentine-Leukocidin lukF-PV und lukS-PV- Gene lediglich bei Beigleittieren 

detektiert worden sind. 

 Zusätzlich wurden in unserer Studie Staphylokokken-Enterotoxin (SEs) -Gene getestet, wobei 

alle (sea, seb, sec, sed, see, seh, sej, sek, sel, seq, ser, seg und sei) in allen Wildtierisolaten 

abwesend waren, während sie bei einigen Begleittierisolaten nachgewiesen worden sind. 
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6 Abbreviations 
 
AMR- antimicrobial resistant  

CA-MRSA - Community-associated methicillin-resistant S. aureus  

EthBr- Ethidium Bromide 

fnaA- fibronectin-binding protein A  

fnaB- fibronectin-binding protein B 

HA-MRSA - Healthcare Associated MRSA strains 

LA-MRSA - Livestock –associated methicillin-resistant S. aureus  

MRSA – Methicillin-resistant S. aureus 

MSCRAMM- microbial surface component recognizing adhesive matrix molecule 

MSSA- Methicillin-sensitive S.aureus 

PVL-Panton–Valentine leukocidin  

SEs- Staphylococal-Enterotoxin  

PBP2a-penicillin-binding protein 2a 

QAC- quarternary ammonium compounds 

MICs-minimum inhibitory concentrations  
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8 Figure and table references 
 
Figure 1: Animation of efflux pump action, efflux pump draws out molecules such as 
antibiotics, or biocides when they enter the bacterial cell. 

Adapted and modified from mechanismsinmedicine.com 

 

Figure 2: Comparison of the number of MRSA isolates between companion and wildlife 
animals which tested positive for various virulence resistance genes. On the current table are 

only represented the isolates showing significant differences in the prevalence. Created by 

Nikolaos Bouchlis. 

 

Figure 3: Comparison of the number of MRSA isolates between companion and wildlife 
animals which tested positive for various antibiotic resistance genes. On the current table are 

represented only the isolates showing significant differences in the prevalence. Created by 

Nikolaos Bouchlis. 

 

Table 1: Genes encoding for antibiotic resistance in MRSA.  Created by Nikolaos Bouchlis. 

Information on the table collected from (Ross et al., 1990; Schwarz et al., 1992, 1998, 2018; 

Roberts, 1996; Derbise et al., 1996; Allignet and El Solh, 1997; Matsuoka et al., 1998; 

Schnellmann et al., 2006; Lüthje and Schwarz, 2006; O’Neill et al., 2007; Norström et al., 

2009; Hauschild and Schwarz, 2010; Perreten et al., 2010; Zakour et al., 2011; Gómez-Sanz 

et al., 2011; Wendlandt et al., 2013; Soimala et al., 2018; Anjum et al., 2019) 

 

Table 2:  Genes encoding for virulence factors of S.aureus have been compared in this Study. 
Created by Nikolaos Bouchlis. 
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