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5 Summary 
Tendinopathy is a common tendon disorder caused by overuse injury, resulting in chronic pain 

and impaired biomechanical tendon properties. Current treatments do not effectively restore 

tendon function, highlighting the need for better options. Regenerative medicine, which aims 

to restore damaged tissues and organs, offers potential solutions using approaches like stem 

cell therapy. Mesenchymal stem cells (MSCs) are a promising strategy due to their ability to 

differentiate into different cell types and secrete bioactive molecules. Recent studies suggest 

that the paracrine effect of MSCs, specifically their secretome (which includes growth factors, 

cytokines, and extracellular vesicles), plays a crucial role in tissue regeneration. 

This study focuses on evaluating the therapeutic effect of the secretome of equine MSCs and 

its sub-fractions, extracellular vesicles (EVs), and soluble proteins, on inflamed tenocytes. The 

author emphasizes the need for standardized methods for isolating and characterizing EVs in 

order to develop EV-based regenerative therapies. The similarity between tendinopathies in 

horses and humans suggests that the findings may have implications for both species. 

Various studies have shown the regenerative potential of MSC-conditioned media (CM) and 

EVs in tendon repair, promoting cell proliferation, tissue architecture restoration, and the 

expression of genes related to collagen and tendon matrix formation. However, the exact 

mechanisms of action and the specific bioactive molecules responsible for therapeutic effects 

remain unclear. Standardized purification and analytical methods are crucial for understanding 

and developing reliable EV-based regenerative therapies. 

The study also highlights the importance of optimal donor cells, their preconditioning status, 

and the age or passage number of MSCs in the secretome's therapeutic efficacy. Allogeneic 

MSCs offer a cell-free, off-the-shelf treatment option with scalable and standardized 

manufacturing. Additionally, future studies should focus not only on quantitative parameters 

but also on qualitative aspects, such as the identification of specific components and their 

regenerative effects. 

Overall, this research contributes to understanding the therapeutic potential of MSC 

secretomes and their sub-fractions in tendon repair, emphasizing the need for standardized 

methods, characterization, and dosage determination to advance EV-based regenerative 

therapies.  



 

6 Zusammenfassung 
Die Tendinopathie ist eine häufig auftretende Sehnenerkrankung, die durch 

Überlastungsverletzungen verursacht wird und zu chronischen Schmerzen sowie 

Beeinträchtigungen der biomechanischen Eigenschaften der Sehne führt. Aktuelle 

Behandlungen stellen keine effektive Wiederherstellung der Sehnenfunktion sicher, was den 

Bedarf nach besseren Optionen hervorhebt. Die regenerative Medizin, die darauf abzielt, 

geschädigtes Gewebe und Organe wiederherzustellen, bietet potenzielle Lösungen durch 

Ansätze wie die Stammzelltherapie. Mesenchymale Stammzellen (MSCs) sind eine 

vielversprechende Strategie aufgrund ihrer Fähigkeit, sich in verschiedene Zelltypen zu 

differenzieren und bioaktive Moleküle abzusondern. Aktuelle Studien deuten darauf hin, dass 

der parakrine Effekt von MSCs, insbesondere ihr Sekretom (zu dem Wachstumsfaktoren, 

Zytokine und extrazelluläre Vesikel gehören), eine entscheidende Rolle bei der 

Geweberegeneration spielt. Diese Studie konzentriert sich auf die Bewertung der 

therapeutischen Wirkung des Sekretoms von Pferde-MSCs und seiner Subfraktionen, 

extrazelluläre Vesikel (EVs) und lösliche Proteine, auf entzündete Tenocyten. Der Autor betont 

die Notwendigkeit standardisierter Methoden zur Isolierung und Charakterisierung von EVs, 

um EV-basierte regenerative Therapien zu entwickeln. Die Ähnlichkeit zwischen 

Tendinopathien bei Pferden und Menschen legt nahe, dass die Ergebnisse für beide Arten 

Bedeutung haben könnten. Verschiedene Studien haben das regenerative Potenzial von 

MSC-Konditionierungsmedien (CM) und EVs bei der Sehnenreparatur gezeigt, indem sie die 

Zellproliferation, die Wiederherstellung der Gewebearchitektur und die Expression von Genen, 

die mit der Kollagen- und Sehnenmatrixbildung in Verbindung stehen, fördern. Die genauen 

Wirkmechanismen und die spezifischen bioaktiven Moleküle, die für therapeutische Effekte 

verantwortlich sind, bleiben jedoch unklar. Standardisierte Reinigungs- und Analysemethoden 

sind entscheidend, um EV-basierte regenerative Therapien zu verstehen und zu entwickeln. 

Die Studie hebt auch die Bedeutung optimaler Spenderzellen, ihres Vorbedingungsstatus und 

des Alters oder der Passagenanzahl von MSCs für die therapeutische Wirksamkeit des 

Sekretoms hervor. Allogene MSCs bieten eine zellfreie, sofort verfügbare Behandlungsoption 

mit skalierbarer und standardisierter Herstellung. Darüber hinaus sollten zukünftige Studien 

nicht nur auf quantitativen Parametern, sondern auch auf qualitativen Aspekten wie der 

Identifizierung spezifischer Komponenten und ihrer regenerativen Wirkungen liegen. 

Insgesamt trägt diese Forschung dazu bei, das therapeutische Potenzial von MSC-

Sekretomen und ihren Subfraktionen bei der Sehnenreparatur zu verstehen, und unterstreicht 



 

die Notwendigkeit standardisierter Methoden, Charakterisierung und Dosierungsberechnung, 

um EV-basierte regenerative Therapien voranzutreiben. 
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7 Introduction 
Tendinopathy is a tendon disorder often resulting from overuse injury, which leads to impaired 

biomechanical tendon properties and chronic pain. It is the most common musculoskeletal 

complaint for which human patients seek medical attention and is prevalent in both 

occupational and athletic settings, afflicting 25 % of the adult population and accounting for 

30–50 % of all sports-related injuries 1. The Achilles tendon, the largest and strongest tendon 

in the human body, is involved in as many as half of all sports-related injuries 2. Tendon injuries 

are also a prevalent problem in horses especially in performance horses. The equine structure 

most at risk of suffering a tendon injury is the superficial digital flexor tendon (SDFT) with an 

incidence rate of up to 53 % and a re-injury rate of up to 80 % 3–10. However, no current 

treatment, neither in human nor veterinary medicine, restores the functional properties of 

injured tendons resulting in inferior scarring repair, reduced elasticity and consequently high 

re-injury rates. Better treatment options are therefore highly needed.  

Regenerative medicine is a multidisciplinary field that aims to restore, replace or regenerate 

damaged or lost tissues and organs by using different approaches such as stem cell therapy, 

tissue engineering, and gene therapy. Mesenchymal stem cell (MSC) therapy is one of the 

promising strategies in regenerative medicine because they are easy to obtain and due to their 

ability to differentiate into various cell types and secrete numerous bioactive molecules that 

modulate the immune response and promote tissue repair and regeneration 11. Promising 

advances have been made in the treatment of equine tendon injuries with MSCs as therapeutic 

agent which resulted in a reduced reinjury rate and better tendon echogenicity 12–15 

However, the exact mechanism of how MSCs exert their therapeutic effects is still unclear. 

Recent studies have suggested that the paracrine effect of MSCs, specifically their secretome, 

may play a crucial role in tissue regeneration rather than their differentiation potential. The 

secretome of MSCs includes various bioactive molecules such as growth factors, cytokines, 

chemokines, and extracellular vesicles, which are involved in several physiological processes 

such as cell proliferation, differentiation, and immune modulation which bear regenerative 

potential. However, it is still not clear which components of the MSC secretome are responsible 

for its regenerative potential, whether it is the whole secretome or just fractions of it. Further 

studies are needed to identify the specific bioactive molecules that contribute to the therapeutic 

effect of MSCs. 
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This work evaluates the therapeutic effect of the secretome of equine MSCs and its sub-

fractions, extracellular vesicles (EVs) and the soluble proteins, on inflamed tenocytes to 

evaluate their potential as a future therapeutic agents. This required some preliminary work in 

order to properly characterize equine EVs. The International Society for Extracellular Vesicles 

(ISEV) published a position paper to provide minimal criteria (MISEV criteria) for the isolation 

and characterisation of human EVs to better exchange EV data and counteract methodological 

inconsistency 16. However, guidelines for equine EV work were still missing but standardised 

purification and analytical methods are a crucial prerequisite for the development of EV-based 

regenerative therapies. The importance of proper EV characterisation and standardize EV 

isolation methods is outlined and discussed in the first Paper of this PhD Thesis. 

The second paper examined the effects of different fractions of bone marrow-derived 

mesenchymal stem cell (MSC) secretome on inflamed tenocytes and found that the complete 

conditioned media (CM) had the most potent treatment effect, while the extracellular vesicle 

(EV) and protein fractions showed less influence on gene expression. However, 

standardization, dosage, route of administration, clearance of EVs, and other factors present 

challenges in comparing CM and its subfractions and need to be addressed for successful 

translation into clinical applications of cell-free therapies. 
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7.1 Tendons & Tendinopathies 

7.1.1 Tendon Biology 
Tendons are soft connective tissue structures responsible for joint movement by transmitting 

forces from the muscle to the bone. The biomechanical properties of tendons depend on the 

specialized biophysical and biochemical composition defined by the extracellular matrix (ECM) 

architecture, ECM biophysics, cell-matrix interactions and molecular gradients 17. The ECM 

consists of 60-80 % water, longitudinally aligned collagen fibers, proteoglycans, 

glycosaminoglycans, glycoproteins, elastin and other small molecules 18. The smallest 

component of tendons are collagen molecules which are arranged longitudinally. 

Intermolecular crosslinks bind groups of five collagen molecules together to form microfibrils 

which further pack together, forming fibrils 19,20. These fibrils are further stabilized by 

crosslinking and aggregate to form collagen fibers which are aligned longitudinally. This 

assures elasticity and the crimp pattern of the fibres provides additional energy storing 

capabilities 21. Each fascicle, which is the largest subunit of aggregated collagen fibers, is 

surrounded by a connective tissue compartment called the interfascicular matrix (IFM) 22. 

Collagen I which is arranged in tensile-resistant fibres is the main tendon collagen. Also, 

collagen types III, IV, V and VI are present 23–26 Proteoglycans (PGs), glucosaminoglycans and 

glycoproteins attract water and provide functional stability to the collagen structure 27. In 

addition, other small leucine-rich PGs such as fibromodulin, biglycan, and lumican, together 

with osteoadherin, tenascin-C, proline arginine rich and leucine-rich repeat protein, optican, 

keratocan, epiphycan, syndecan, perlecan, agrin, fibronectin, laminin, versican, and aggrecan 

are present in tendon tissue 26,28,29. 

The force transmission is dependent on the structural integrity between individual muscle fibers 

and the ECM as well as the fibrillar arrangement of the tendon which absorbs and loads energy 
30–32. Furthermore, the ECM serves as scaffold for adhesion of cell tyrosine kinase receptors 
33,34. This interaction leads to activation of intracellular signaling pathways and cytoskeletal 

rearrangement 35–37. Integrin molecules link the ECM to the cytoskeleton and establish a 

mechanical continuum along which forces can be transmitted from the outside to the inside of 

the cell and the other way round 38–41. Several studies describe the expression of ECM 

components and their receptors in fibroblasts under stretched or relaxed conditions in vitro and 

found out that collagen XII and tenascin-C increase their expression and synthesis when 

fibroblasts are stretched and are suppressed in cells that are left in a relaxed state 41,42. 
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7.1.2 Tendinopathy 
Tendinopathy is a tendon disorder often resulting from overuse injury which leads to impaired 

biomechanical tendon properties and chronic pain. No current treatment restores the functional 

properties of injured tendons resulting in significant impact on quality of life and high 

socioeconomic pressure with the annual health expenditure on human tendon injuries 

exceeding €145 billion 43,44.  

The prevalence of tendinopathies may increase due to extrinsic factors like mechanically 

demanding work or sports activities and intrinsic factors like age, obesity and diabetes 44. The 

Achilles tendon in humans is functionally and clinically equivalent to the superficial digital flexor 

tendon (SDFT) which is the structure most at risk for suffering an injury in horses with an 

incidence of as high as 53 % and re-injury rates of up to 80 % 3–10. Similar as in humans, horses 

show an age-related trend towards matrix degeneration which includes matrix fibrillation, 

chondroid metaplasia, chondrone formation, neovascularisation and fibroplasia 4. The 

prevalence of tendinopathies is increased by the same extrinsic factors as in humans. Due to 

the tendon tissue's poor intrinsic healing ability, matrix micro-damage may accumulate over 

time, overwhelming the capacity of cells to repair structural defects before subsequent loading 

cycles, lead to clinical injury 45,46. Another reason for the development of a tendinopathy is a 

single serious injury.  

Tendinopathies are characterized by alterations in tendon structure, composition, and 

cellularity which leads to pain and reduced tendon elasticity resulting from the formation of 

fibrovascular scar tissue in an attempt to repair the injured tendon 44. The resulting scar tissue 

precludes the tendon from regaining the biomechanical characteristics of normal tendons, 

which leads to chronic tendinopathies with an increased predisposition for mechanical failure 

and resulting in high re-injury rates 1,47. 

7.2 Tendon healing 
The repair process of tendons is highly orchestrated and can be divided into three overlapping 

phases characterized by specific cellular and molecular cascades involving extrinsic and 

intrinsic healing.  

In the initial inflammatory phase inflammatory cells, at first mainly neutrophils, are directed to 

the injury site by pro-inflammatory cytokines like interleukin -6 (IL-6) which in turn induce 

cytokine and matrix metalloproteinase-1 (MMP1) expression in tenocytes 48. Later on, 

macrophages represent the dominating leucocytes. The initial inflammatory response targets 
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the removal of necrotic tissue and the release of growth factors that induce neovascularization 

and further initiate chemotaxis of fibroblasts and tenocytes which pave the way for tissue repair 
49. There is growing evidence that inflammation (the first phase of the injury response), or the 

lack of its resolution, has a crucial role in disease progression, especially when shifting to a 

chronic state 2,43,44,47,50–55. The inflammatory milieu can modify tenocyte physiology by 

increasing metabolic activity and inducing an activated, proinflammatory phenotype with 

inflammation memory and the capacity for endogenous production of inflammatory cytokines 

such as tumor necrosis factor-α (TNF-α) and Interleukin-1β (IL-1β) 55. After a few days and 

peaking at three weeks post-injury tendon healing enters the proliferative phase. 

Growth factors such as basic fibroblast growth factor (bFGF), bone morphogenetic proteins 

(BMPs) -5, -6 and -7, -12, -13, and -14 also known as growth and differentiation factors (GDFs), 

transforming growth factor beta (TGFβ), insulin-like growth factor-1 (IGF-1), platelet-derived 

growth factor (PDGF) and vascular endothelial growth factor (VEGF) facilitate tissue repair 56. 

Tenocytes synthesize abundant ECM predominately consisting of randomly arranged collagen 

type III and proteoglycans.  

During the remodeling phase, which begins 6-8 weeks post injury, matrix synthesis decreases 

and collagen type III is replaced by collagen type I. Collagen fibers align along the longitudinal 

axis of the tendon to enhance tensile strength and elasticity 56. Unfortunately, the healed 

tendon does not regain the mechanical properties of an uninjured one which is mainly due to 

reduced integration of collagen fibers with a higher ratio of collagen type III to collagen type I 

and a lack of proper fibre alignment.  

 

7.3 Treatments in regenerative medicine 
Traditional treatments for equine and human tendon injuries include physical therapies, 

followed by slowly ascending exercise or anti-inflammatory drugs 57. In human medicine 

severely injured tendons can additionally be treated using tendon grafts and suture anchors 

however with various possible complications such as rejection, adhesion or disease 

transmission 58–60. Nevertheless, none of these treatments can fully restore the functional 

capabilities of a healthy tendon and they hence lead to the formation of biomechanically inferior 

scar or replacement tissue, causing high reinjury rates, degenerative disease progression and 

chronic morbidity. Hopes for the future lie on regenerative medicine approaches which may 

have the potential to improve outcomes compared to traditional therapies. 
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For the treatment of various musculoskeletal indications in equine medicine, multiple 

regenerative therapies, such as platelet-rich plasma (PRP), autologous conditioned serum 

(ACS), and MSCs are applied. Autologous blood products, such as PRP and ACS, exert their 

effect based on the secretome of the contained blood cells. The MSC secretome is the entity 

of released organic and anorganic molecules 61. The secretome mirrors the ability of the 

parental cells to condition and program the surrounding microenvironment, influencing a 

variety of endogenous responses, in injured tissues. It affects neighboring cells and may have 

substantial potential in regenerative medicine. The secretome comprises soluble and vesicular 

proteins, lipids, RNA (mRNA and non-coding RNAs), and DNA 62–69. 

The immunomodulatory and pro-regenerative effect of both PRP and ACS is based on growth 

factors and cytokines released from the platelet alpha granula, leucocytes and stem cells. The 

administration aims at reducing inflammation, protecting intact and newly formed tissue, 

recruiting cells such as MSCs, macrophages, and other pro-regenerative cells and at 

supporting neovascularization by supplying growth factors, cytokines, and nutrients 70. Still, the 

composition of these products is subject of high variation depending on the physiological state 

of the patient or the sample processing technique leading to difficulties in comparing study 

results 71–73. 

PRP is derived from anticoagulated blood through centrifugation to increase the platelet 

concentration. The spectrum of growth factors and cytokines of PRP includes platelet-derived 

growth factor (PDGF), insulin-like growth factor (IGF), transforming growth factor beta (TGF- 

β1), vascular endothelial growth factor (VEGF), fibroblast growths factor (FGF), platelet-

derived epidermal growth factor (PDEGF), osteocalcin, osteonectin, fibronectin and 

thrombospondin 74.  

ACS is a cell-free blood product derived from blood during and after coagulation which also 

contains active growth factors and cytokines similar to PRP but the concentration is different 

because the platelets are not enriched. Due to being a cell-free product, ACS can easily be 

frozen and stored as compared to PRP 75,76 

MSCs show great potential for regenerative medicine which will be explained in detail in the 

next chapter. Tendon treatment with MSCs has been employed in equine orthopaedics since 

2003 and has yielded promising results reducing reinjury rates in the equine SDFT from 56 % 

to 18 % 5,14,15,77–81. Yet, translational progress into human clinical practice so far is 

disappointing, partially due to the regulatory and manufacturing challenges inherent to all cell 
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therapies and safety concerns such as potential tumorigenicity 82. In brief, their therapeutic 

effect is based on the secretion of bioactive factors, referred to as the secretome, which 

modulate the immune response, reduce inflammation, inhibit cell death, and induce and 

stimulate endogenous regeneration. However, little is known about the components and sub-

fractions of the MSC secretome and whether the entire secretome, isolated membrane-bound 

extracellular vesicles (EVs) or soluble factors such as proteins are required to achieve a 

therapeutic effect. This work focuses on these open questions and tries to answer, how the 

secretome of MSCs and its sub-fractions, impact inflamed tenocytes. 

Stem cells can be classified into two groups, embryonic and adult. Embryonic stem cells are 

obtained from the inner cells mass of blastocytes and are pluripotent 83. In contrast, adult stem 

cells are obtained from peri-natal or post-natal sources and can be either multipotent or 

unipotent 83. Adult stem cells include both hematopoietic stem cells (HSC) and MSCs 84. A 

position paper by Dominici et al. was published in which the Mesenchymal and Tissue Stem 

Cell Committee of the International Society for Cellular Therapy proposed minimal criteria to 

define (human) MSCs to assure uniformity 85. Besides their capability to differentiate toward 

osteoblasts, adipocytes and chondroblasts, they must be plastic-adherent when maintained 

under standard culture conditions, and they must be positive for the surface markers CD105, 

CD73 and CD90, and lack expression of CD45, CD34, CD14 or CD11b, CD79α or CD19 and 

HLA-DR surface molecules 85. MSCs can be isolated from various sources like adipose tissue, 

bone marrow, umbilical cord matrix, peripheral blood, umbilical cord blood, synovial membrane 

and synovial fluid using different protocols 5,14,78,86–97. 

In vivo MSCs maintain homeostasis of the organism in normal conditions by replacing 

damaged cells in tissues and organs 98. Upon induction of an injury, they have 

immunomodulatory capacities and display several pro-regenerative characteristics like pro-

angiogenic, anti-inflammatory and anti-apoptotic properties after migrating to the site of injury 
99–102. 

The interest in MSCs is still ongoing, and they have become a popular cell source in 

regenerative medicine and immune modulation 103–105. In clinical applications, autologous and 

allogeneic MSCs are used to repair damaged tissues and enhance the function of damaged 

tissues and organs 106. Over 1.000 clinical studies are ongoing using MSCs to treat various 

clinical conditions (clinicaltrials.gov; search conducted March 16th, 2022). However, the 

administration of cells is not free of safety concerns, which include potential tumorigenicity and 
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their ability to elicit an immune response 82. Additional concerns about using MSCs for clinical 

applications include the lack of standardized protocols for their isolation and culture and the 

lack of evidence-based guidelines for the optimal delivery route and cell dosage 107,108. 

Following systemic application, the vast majority of administered MSCs are trapped in the 

lungs of the patients and do not reach their desired target 109,110. Upon local administration, 

they show low viability and poor engraftment 111–113. Furthermore, allogeneic MSCs potentially 

express disease candidate genes which can be transmitted from the donor to the patient as 

well as other potential pathogens.  
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7.4 Therapeutic potential of MSCs 
The efficacy of MSCs is highly donor dependent. Both ageing and disease are associated with 

perturbations at the genomic, epigenomic, and proteomic levels which negatively influence 

MSC proliferation, differentiation and paracrine signaling function and thus the therapeutic 

potential of cell therapies 112,114–118. A benefit of allogeneic MSC administration is the possibility 

of donor selection and off-the-shelf availability - the donor cells can be isolated and expanded 

in advance rather than at the timepoint when an injury occurred 119,120. 

In addition to donor age and disease, intrinsic properties of MSCs are highly dependent on 

their tissue of origin and its surrounding microenvironment, such as inflammation and disease 

status 5. In juvenile MSCs, higher proliferation rates, longer lifespans, and lower 

immunogenicity were demonstrated compared to cells from adult donors 121–125. On the other 

hand, it was recently discovered that in vitro expansion of adipose stem cells may affect the 

cells more than natural aging of their donor 126. MSCs derived from diverse tissue sources 

exhibit distinct differentiative and therapeutic capabilities, a phenomenon similarly observed in 

their paracrine factors. Consequently, this variance contributes to the heterogeneity of MSC 

populations, thereby influencing their therapeutic efficacy 127–129. One strategy to overcome this 

problem is the utilization of colonies derived from a single cell, however this requires optimized 

and standardized cell culture protocols 130. All the influencing factors listed above need to be 

considered when studying the therapeutic potential of MSCs and when using them for cell 

therapies to ensure comparability and consistency.  

In equine regenerative medicine MSCs have been used for almost two decades to treat 

musculoskeletal disorders like osteoarthritis and tendinopathies. Treating injuries of the SDFT 

with MSCs is not only a common approach but was also the first attempt of using MSC to 

regenerate a musculoskeletal tissue. Since then, various studies were performed using MSCs 

from different sources. The treatment effect of bone marrow (bmMSCs) and adipose tissue 

derived MSCs (ADSCs) on injured tendon tissue was evaluated in several studies with long 

and short-term follow up. Overall, the studies showed a considerable improvement of tendon 

regeneration following MCS application compared to the non-treated control group 87. Umbilical 

cord blood derived MSCs (ucbMSC) were also used to treat injured tendons with similar 

positive effects despite their allogeneic origin 88,131. Interestingly, other studies could not find 

significant differences in tendon healing between patients treated with MSCs and the serum 

receiving control groups 132. However, in most studies, the re-injury rate in horses with tendon 

or ligament injuries treated with MSCs was significantly lower compared to horses receiving 
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conventional treatments 78,91. MSC treatment seems to prevent the progression of the 

tendinopathies and promote a greater organization of collagen fibers, a decreased 

inflammatory infiltrate, higher fibroblastic density, more neovascularization, a higher 

echogenicity score and less collagen type III in the tendon tissue 87,133–136. 

The therapeutic potential of MSCs was initially thought to be based on their capability to 

differentiate into resident cell types of the injured host tissue and homing at the site of injury 
136. However, more recently, it was discovered that the pro-regenerative and 

immunomodulatory potential of MSCs is predominantly based on to their paracrine effect. 

MSCs secrete bioactive factors that reduce inflammation, modulate the immune response, 

inhibit cell death, promote wound healing and angiogenesis, and provide significant pro-

regenerative effects 62–64,137–139.  

The concerns related to cell therapies like low viability, poor engraftment after injection and 

potential immune rejection might be bypassed by using the secretome of MSCs, which has 

none of those adverse effects compared to using MSCs themselves. The secretome can be 

produced in large quantities which are storable and administered off-the-shelf. Nevertheless, 

it is still unclear whether components of the secretome act synergistically or redundantly and 

whether the entire secretome, isolated EVs or soluble factors are required to achieve a 

therapeutic effect 140,141 . The mechanisms of action and the optimal timepoint of administration 

of each component could enhance the success of cell-free therapies. 

Cell-free therapies have shown promising therapeutic and immunomodulatory potential in 

acute myocardial infarction (AMI) and acute kidney injury (AKI) models and were evaluated in 

various other conditions described below 63,142–150. Previous studies report, that rat tenocytes 

experience an improvement in proliferation rate and a reduction of inflammatory markers 

compared to the control group upon treatment with CM from MSCs. Positive therapeutic effects 

of human adipose derived MSC secretome was reported on various skin cells which 

experienced significant mitogenic effects 151. MSC-CM, stimulates axonal growth of neurons in 

rats and increased Schwann cell proliferation in humans 152,153. Immunomodulatory effects, like 

reduction of immune response in inflammatory arthritis in mice upon MSC-CM treatmentand 

the ability of CM from embryonic stem cells to restore macrophage function in spinal cord 

injury, were reported 154155. Interestingly, some studies found that the stem cell secretome is 

capable to reduce reactive oxygen species and oxidative stress 156,157. In addition, it was 

recently discovered that human MSC-CM has anti-apoptotic abilities in hepatocytes and can 
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down-regulate miR143 which plays a detrimental role in cell cycle arrest 158. Furthermore, CM 

of human embryonic MSCs reduces replicative senescence in adult MSCs and cardiomyocytes 
159,160. MSC-CM promotes tendon-bone healing of the rat rotator cuff via regulation of immune 

response 161. It further promoted rat tenocyte proliferation via activation of extracellular signal-

regulated kinase1/2 (ERK1/2) signal molecules compared to the untreated control group 162. 

Similarly, MSC-CM promoted tendon-bone healing of the rat rotator cuff by inhibiting M1 and 

supporting M2 macrophage polarization 161. In horses, CM of amniotic membrane-derived 

mesenchymal cells inhibited proliferation of PBMCs and are beneficial for tendon disease in 

vivo 163. A study of horse amniotic membrane-derived mesenchymal cells and its CM reports 

that the CM decreased peripheral blood mononuclear cells (PBMCs) proliferation significantly, 

which suggests immunosuppressing effects of the soluble factors. In addition, MSC-CM 

demonstrated an immunomodulatory effect by inhibiting proliferation of PBMC in vivo and 

induced neovascularization, which was not observed before treatment and declined during 

progression of the healing process characterized by a decrease of vessel size and quantity in 

horses 163. 

All these findings indicate the broad application range of CM for regenerative medicine. 

Characterizing the various components of the secretome and their effector molecules will 

contribute significantly to the understanding of the mode of actions of this promising treatment. 
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7.5 Extracellular Vesicles  
In addition to a number of soluble factors, cells secrete various membrane-bound EVs which 

are categorized according to their diameter into apoptotic bodies (>1000 nm), microvesicles 

(100–1000 nm) and exosomes (30–150 nm) 164. Exosomes (30-150nm) have a defined mode 

of biogenesis and are highly interesting for regenerative applications because they have been 

shown to play essential roles in intercellular communication 165,166. EVs above that size are 

less homogenous in origin e.g. particles above 500 nm are either apoptotic bodies, 

conglomerates of proteins or other contaminants which are not desired and are characteristic 

for poor EV isolates 16. The international society for extracellular vesicles (ISEV) propose 

additional parameters for the classification of EVs like biomarkers and cells of origin 16. 

Prominent membrane-bound and cytosolic biomarker proteins found in or on exosomes are 

members of the tetraspanin family (CD9, CD63 and CD81), an endosomal sorting complex 

required for transport (ESCRT) of proteins (Alix, TSG101), integrins, heat shock proteins (Hsp) 

and actin 167,168. 

Various studies reported that cells release large amounts of exosomes into the extracellular 

environment. Exosomes act as essential mediators of cell communication. Released from 

parental cells they have a subsequent influence on the target cell, which is highly dependent 

on the characteristics of the parental cell 169. This influence is mediated through direct 

stimulation of target cells, transfer of activated receptors to recipient cells and epigenetic 

reprogramming via delivery of functional proteins, lipids, and RNAs 170. Reports indicate that 

different exosome subpopulations with unique characteristics and cargo may be distinguished 

based on their size and surface but little is known about the underlying processes responsible 

for cargo selection 171,172. Cargo sorting is possibly dependent on a combination of internal and 

external factors influencing the donor cell 173,174. 

In addition to the properties explained above, exosomes can be further distinguished by their 

distinctive biogenesis pathways 174. 

 

7.5.1 Biogenesis 
Exosome biogenesis is a complex process dependent on the cellular environment, cell 

differentiation and maturation status 175,176 Upon formation, exosomes are released from 

endosomes either via inward-budding of the endosomal membrane to form intraluminal 

vesicles (ILVs), generating multivesicular bodies (MVBs) or via outward-budding at the plasma 
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membrane. Both principles function either via direct budding of the plasma membrane or 

through the Endosomal Sorting Complexes Required for the Transport (ESCRT)-dependent 

pathway and the ESCRT-independent pathway 177–180. 

The best characterized mechanism involves the ESCRT machinery to ubiquitinate proteins in 

the early endosome 177. Each ESCRT complex consists of multiple proteins with various 

functions. ESCRT-0 recruits ESCRT-I, and together with ESCRT-II, they promote inward 

budding by recognizing and sequestering ubiquitinated membrane proteins and initiating 

intraluminal membrane budding. The ESCRT-III complex completes membrane budding by 

sequestrating MVB proteins and actual scission of ILVs into the extracellular milieu as 

exosomes 181–183. 

An alternative pathway of exosome formation involves synthesis of ceramide as a mechanism 

to induce vesicle curvature and budding 184. The third mechanism which mediates exosome 

biogenesis is tetraspanin-mediated organization of specific proteins 185. 

 

7.5.2 Exosome uptake 
Recent studies suggest that exosome uptake is not a random process but rather a highly 

orchestrated process based on proper receptor and ligand interaction as well as on origin and 

status of the exosome and its donor cell, the environment, and the recipient cell's status 186–

191. 

Exosomes can transmit intercellular signals by direct contact via their surface ligands or 

internalization through direct membrane fusion or endocytosis in order to release their cargo 

into the target cell 192–194. Direct contact between the exosome and recipient cell lipid bilayers 

can lead to membrane fusion induced by SNARE proteins 195,196. Docking and subsequent 

endocytosis of exosomes are dependent on protein-protein interactions: Tetraspanins are 

membrane proteins that can form tetraspanin-enriched microdomains (TEMs), which mediate 

vesicular fusion 197. 

Exosomes are internalized by the target cells via various pathways. The clathrin-mediated 

endocytic pathway uses transmembrane receptors and ligands which form clathrin-coated 

vesicles that fuse with endosomes, followed by cargo release 198. An alternative pathway is the 

lipid raft-mediated endocytosis pathway which shifts the cargo into the early endosome 199. 

Phagocytosis is typically involved in engulfing bacteria or dead cells but can also internalize 
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exosomes. It is a stepwise process during which the cell membrane encircles the particles and 

forms phagosomes 199. 

After cellular uptake, exosomes travel along intracellular filamentous structures to the site of 

their destination 200. They follow the endosomal pathway to lysosomes and eventual 

degradation 201,202. However, cargoes avoid degradation by exploiting the gradual acidification 

through the endosomal compartments, and some cargoes can passively diffuse across the 

cytoplasm 203–206. The Endoplasmic reticulum (ER) is the target site for exosomes carrying 

mRNA and miRNAs to unload their cargo leading to immediate translation. This route is 

potentially possible as ER scanning can occur after exosome sorting into the endosome 

trafficking circuit 207. Micro-RNAs (miRNAs) are a class of tissue-specific, non-coding RNAs, 

with an average length of 22 nucleotides, that interact with the 3' untranslated region (UTR) of 

target messenger-RNAs (mRNAs) to negatively regulate gene expression or, under certain 

circumstances, activate gene expression 208,209. Recent studies suggested that miRNAs are 

transported between cells and subcellular to control the rate of translation and transcription 210. 

MiRNAs are therefore highly promising biomarker candidates which may be utilized to 

influence regulatory processes in target cells or tissues 211,212. Another possible method of 

delivering exosome cargoes is nuclear envelope associated invagination which are is linked 

with the late endosomes allowing delivery of exosome components into the nucleoplasm 213,214. 

Other possible routes of exosomes to escape lysosomal degradation include using pathways 

similar to viruses, redirection of exosome cargoes from endosomal pathway to trans-Golgi 

network through retrograde trafficking or membrane fusion between exosomes and the 

endosomal membrane 198,215,216. 

 

7.5.3 Isolation methods 
There are different methods to isolate exosomes from cell culture supernatants and body fluids. 

The most frequently performed is the differential ultracentrifugation (dUC) approach, which 

separates particles by sedimentation using different centrifugation forces and durations 217,218. 

The conditioned cell culture media or body fluid is typically centrifuged with 300-2000 x  g to 

remove cell debris and apoptotic cells. The resulting supernatant containing the exosomes is 

ultracentrifuged at 100 000 x g for 1.5-2 h, in order to pellet the desired exosomes 219,220. 

Various laboratories apply slightly different centrifugation protocols, which leads to problems 
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concerning the reproducibility of experiments. Furthermore, the isolation process is influenced 

by other variables like the rotor type, the acceleration and the K-factor 218,221. 

Another method to isolate exosomes is size exclusion chromatography which uses porous gel 

filtration as a stationary phase and a biofluid as a mobile phase for isolation. Size exclusion 

chromatography allows to separate exosomes of different size ranges by eluting bigger 

particles first, followed by smaller vesicles and finally, non-membrane-bound proteins 222. 

Another popular size-based separation technique used for exosomes isolation/purification are 

different filtration strategies. Ultrafiltration (UF) is a fast and convenient technique to isolate 

exosomes from highly diluted samples using membranes with defined molecular weight cut-

offs (MWCO) 223. The drawback of this method is a high loss of Exosomes which are trapped 

in the membrane and the insufficient depletion of proteins 224,225. Tangential flow filtration (TFF) 

enables concentration of exosomes from a fluid by tangentially flows across an UF membrane 

(hollow fiber membrane) but not directly through the membrane isolating only the particles 

within a defined MWCO 226,227. This method is particularly suitable for large-scale EV isolation 

from diluted samples because in contrast to SEC, TFF concentrates the isolated exosomes 
226.  

In contrast to the above mentioned size-based separation techniques, charge-based 

techniques exploit the interaction between the negatively charged EV membrane components 

and an anion exchanger with positively charged functional groups or cations 228. Examples for 

this principle are anion-exchange chromatography (AIEC), electrophoresis and di-

electrophoresis (DEP) 229–231. 

Affinity-based isolation of exosomes is also among the most popular techniques used in the 

field. It utilizes protein or receptor interaction of the Exosomes with antibodies. Immune-affinity 

capturing by employing antibodies which are covalently linked to magnetic beads via 

biotinylation is the most frequently used form of this approach 232. 

 

7.5.4 Detection and characterization methods 
Characterizing the exosome isolate is an important step to ensure the quality of the sample. 

There are various methods for visualizing exosomes such as transmission electron microscopy 

(TEM), scanning electron microscopy (SEM), cryo-electron microscopy (cryo-EM) or atomic 

force microscopy (AFM). However, these standard imaging techniques require elaborate 
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sample processing and fixation prior to imaging and only provide rough information about the 

size and the presence of the lipid-bilayer 233–237. Another possibility is to label EVs by using 

fluorescent antibodies against EV membrane proteins or by using various lipophilic dyes which 

directly stain the lipid bilayer of the EVs 238–240. The stained isolates can be analyzed using flow 

cytometry providing detailed information about the EV quantity, size distribution and 

characteristics regarding various exosome markers. Other fluorescent based methods to 

detect exosomes are digital PCR and digital enzyme-linked immunosorbent assay (ELISA) 238. 

The main difference to non-digital methods is that the samples are diluted to a concentration 

that allows to analyze only one molecule at a time which can offer insights into exosome 

heterogeneity and cargo variety. Nano tracking analysis (NTA) provides accurate information 

about size (10 nm – 2000 nm) and concentration of exosomes by tracking the Brownian motion 

of each particle 241. Moreover, NTA can detect the protein expression of EVs by measuring the 

fused fluorescent antibodies and incorporated fluorophores which holds additional information 

about the characteristics of the isolate 241. 

Cargo analysis can be performed qualitatively by western blotting or quantitatively by flow 

cytometry, mass spectrometry, and miRNA- and RNA-sequencing 242–244. Another strategy is 

to insert chemicals with fluorophores into the exosomes which provides the opportunity to track 

the cargo upon administration or detect miRNAs 245,246. 

7.5.5 Clinical applications of exosomes 
Exosomes are a promising tool for treating various diseases and clinical conditions. Upon 

injection, exosomes show minimal immune clearance and are efficient at entering other cells 

to deliver functional cargo 247.Plant- and human tissue-derived exosomes have been tested in 

clinical trials. 

New methods and strategies are emerging to enrich therapeutically valuable exosome 

subpopulations based on their surface ligand presentation. Different approaches and 

strategies for cell cultivation, purification, and quality control of exosomes are developed in 

order to comply with good manufacturing practice (GMP). However, it is mandatory to 

discriminate between exosomes with a therapeutic and reciprocal effect. Latter ones can 

modify for example tumor behavior by shuttling between MSC and tumor cells leading to higher 

proliferation and metastasis.  

The vast majority of ongoing exosome-based clinical trials aims at identifying diagnostic or 

prognostic biomarkers exploiting that different pathophysiological conditions release different 
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sets of exosome which can be used as biomarkers to diagnose various diseases 248–253. In 

addition, some trials are also investigating exosomes as therapeutic agents in a wide range of 

diseases including cancer, neurodegeneration and infectious diseases 254–260. Recent studies 

report that EV administration reduces the expression of pro-inflammatory cytokines such as 

IL-1β and IL-6 while the production of anti-inflammatory cytokines such as IL-10 and TGF-β1 

and expression of genes related to collagen and tendon matrix formation, such as COL1a1, 

and SCX are increased in vivo 261–264. Furthermore, MSC-EVs demonstrated their 

immunomodulatory capacity in a variety of tendon injury models in vivo by reducing 

macrophage NF-κB activity and the IL-1β and IFN-γ response, decreasing M1 and supporting 

M2 macrophage polarization and increasing the production of anti-inflammatory cytokines such 

as IL-4 and IL-10 261–263,265. 

EVs have a subsequent influence on the target cell, dependent on the encapsulated cargo and 

the origin and activation status of the donor cell and have potential benefits upon administration 

in horses 169,266–271. The regenerative potential of EVs in tendon and ligament repair was shown 

in vivo in various species including mice, rats, rabbits and humans 161,261–265,272–277. In vitro 

studies in horses have found anti-inflammatory properties of EVs and an in vivo study which 

was performed with EVs isolated from MSCs, showed reduced MMP 13 gene expression, 

which a marker of cartilage degradation, in chondrocytes 278–280. 

MSC-EVs administered into tendon defects of rats resulted in enhanced proliferation of tendon 

stem/progenitor cells (TSPCs), better restoration of the tendon architecture, an improved 

histological score, greater expression of genes related to collagen and tendon matrix 

formation, including collagen (Col) type I, mohawk (MKX), scleraxis (SCX), tenomodulin 

(TNMD) and tissue inhibitor of metalloproteinase‐3 (TIMP‐3) and decreased MMP 3 

expression 261,274,275,277. 

In humans EVs have been shown to elicit a therapeutic effect by themselves. They have an 

influence on the target cell, dependent on the encapsulated cargo and the origin and activation 

status of the donor cell 169,266–269. They potentially mediate inflammation between cells and 

have been linked to the induction of angiogenesis 270,271,281. Furthermore, the packed miRNAs 

are promising biomarker candidates because they carry out critical regulatory tasks in biofluids. 

They are tissue-specific and transported between cells and subcellular to control the rate of 

translation and even transcription 210–212. 
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Recently, proteomic analysis provided evidence of different protein compositions between the 

secretome and EVs 282,283. Several secreted proteins which exert cytoprotective and 

regenerative capacities were identified 50,284–292. However, clinical trials; in which single 

cytokines were administered for the treatment of cardiovascular diseases; led to poor outcome 
141. Lipids were linked to various cascades like modulation and induction of cell death or 

immune functions 293,294. Furthermore, lipid composition, either packed in exosomes or free 

floating, contributes to cell signaling and homeostasis 295.  
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9 Discussion and Conclusion 

MSC-derived secretomes have been shown to have therapeutic potential in a variety of 

disease models, such as sepsis, and to support the repair of the liver, lungs, skin and the heart 

while also possessing neuroprotective and neurotrophic abilities 296–301. 

Various species including mice, rats, rabbits, horses, and humans have demonstrated the 

regenerative potential of MSC-CM and EVs in tendon and ligament repair, as evidenced in 

vitro and in vivo 161,261–265,272–277,302. In rat models, MSC-CM promoted tenocyte proliferation by 

activating ERK1/2 signal molecules, compared to untreated control groups 162. In addition, in 

rat rotator cuff models, MSC-CM inhibited M1 and supported M2 macrophage polarization, 

promoting tendon-bone healing 161. Furthermore, in horses, MSC-CM inhibited PBMC 

proliferation in vivo and induced neovascularization, which declined during the healing process 

as vessel size and quantity decreased 163. 

MSC-EVs demonstrated their immunomodulatory capacity in various in vivo tendon injury 

models, reducing macrophage NF-κB activity, as well as the IL-1β and IFN-γ response, while 

increasing the production of anti-inflammatory cytokines such as IL-4 and IL-10 261–263,265. 

Additionally, the administration of MSC-EVs into tendon defects enhanced the proliferation of 

TSPCs, improved the restoration of tendon architecture, histological score, and expression of 

genes related to collagen and tendon matrix formation. These genes included collagen (Col) 

type I, mohawk (MKX), scleraxis (SCX), tenomodulin (TNMD), and tissue inhibitor of 

metalloproteinase‐3 (TIMP‐3), while also decreasing MMP‐3 expression 261,274,275,277,302. 

The absence of replicating cells puts secretome-based therapies into a potentially preferred 

position over cell therapies with respect to patient safety concerns and facilitates product 

standardization and storage. Cell secretomes and their sub-fractions can be evaluated for 

dosage, potency, and efficacy analogous to conventional pharmaceuticals agents which may 

facilitate their use in clinical practice. However, the exciting and new field of secretome 

therapies, or therapies using subfractions of secretomes like e.g. EVs, is only at the very 

beginning of the road towards clinical applicability. 

In the presented work, we highlighted and addressed problems arising from the lack of 

standardized EV isolation, purification, characterization and quantification protocols. However, 

EVs isolated through UC reportedly have diminished functional capacity compared to EVs 
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isolated using SEC, potentially due to prolonged exposure to high centrifugal forces 303,304. UC 

and SEC was compared based on the minimal criteria (MISEV criteria) for EV isolation and 

characterization postulated by the ISEV using western blot, fluorescence-triggered flow 

cytometry (FT-FC), NTA measurements and TEM to address the limited availability of cross-

reacting markers for horses. Both methods led to successful EV isolation from equine MCS 

supernatants. The obtained particles expressed markers characteristic for EVs and showed a 

comparable size distribution pattern. However, UC yielded more particles per ml of MSC 

supernatant than SEC. Although a considerable difference in EV yields was found, it is not 

clear if the difference is truly method based or if it resulted from sample handling. Besides the 

obvious method difference, the impact of temperature differences on short-term storage of 

conditioned media is significant. SEC columns are stored at 4 °C and equilibrated at room 

temperature prior to use. The applied supernatant should have room temperature as well to 

achieve optimal isolation of EVs (according to the manufacturer). UC is performed in a 4 °C 

cooled centrifuge. Studies have shown that storing conditioned media at low temperatures, 

such as 4 °C, can preserve the stability and activity of the biomolecules for up to 48 hours. 

However, higher temperatures, such as room temperature or above, can lead to the rapid 

degradation of these biomolecules, resulting in decreased efficacy of the conditioned media. 

Additionally, temperature fluctuations during storage can also have a negative impact on the 

stability and activity of the biomolecules. 

Another important finding was a discrepancy in particle counts using different measurement 

approaches. NTA detected significantly more particles than FT-FC which can be explained by 

the principle of the measurement. NTA measures the size of particles and their concentration 

based on the physical principle of Brownian motion. In contrast to FT-FC, where lipid dyes or 

antibodies are used to specifically label EVs, NTA cannot discriminate between EVs and 

contaminants in the form of particles that might derive from external sources such as washing 

buffers. However, NTA devices are also available with lasers, which allow detection of labeled 

EVs like FT-FC. In addition, the measurements of the concentration and the size distribution 

are closely linked to the detection limit of the characterization method which leads to 

differences between the measured concentrations 305,306. 

The differences in EV isolation, characterization and dosage make it difficult to compare 

published work on EVs in general and specifically their therapeutic efficacy which hampers 

progress in the field. The therapeutic potential of EVs depends on their cargo, which differs 

based on the origin and activation status of the producer cell, and their surface- and 
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transmembrane molecules that govern target specificity and EV-uptake by recipient cells 
164,303,304,307–316. The resulting heterogeneity of EVs in both content and functionality, at the 

same time necessitates and impedes standardized, well-defined EV manufacturing processes. 

However, a defined therapeutic efficacy and reliable dosing are prerequisites for the 

application in routine clinical settings. In addition, EV purity is crucial to ensure that any 

observed effects are truly based on the applied EV and not co-purified contaminants like salts 

or soluble proteins and nucleic acids. Co-purified protein aggregates may lead to false positive 

counts and confound EV quantification. This may explain why protein concentrations do not 

correlate with particle numbers 312,314,315,317. A recent meta-review looking at dosing regimens, 

found that more than 50 % of all studies quantified EVs in total amount of protein and 18 % 

utilized NTA, whereas 21 % of the studies did not quantify EVs at all 314. Standardized 

purification and analytical methods will facilitate to determine the true potential of EVs, to 

discover of functional heterogeneity and to develop reliable EV-based regenerative therapies. 

In addition, it is crucial to increase the understanding of the physicochemical properties and 

functions of EVs based on donor cell conditions and isolation methods.  

Identification of optimal secretome donor cells and their preconditioning status are the fine-

tuning steps on the way to future treatments. Furthermore, age or passage number of the 

donor cells are of fundamental importance. Extensive culture expansion drives MSCs toward 

replicative senescence and a consequent decline in quality with diminished 

immunosuppressive and regenerative capacity and pro-inflammatory features 318,319. Indeed 

long-term in vitro culture (high passage) was recently shown to have a greater effect on MSCs 

(increased β-Galactosidase level) than the natural ageing process of their donor. Interestingly, 

the secretion of EVs by MSCs increases with donor age and late passage cultures maybe in 

order to dispose undesirable molecules or as distress signal 318,320. Furthermore, EVs released 

by senescent cells contain an altered cargo that may contribute to senescence propagation 

and chronic inflammation 318,320,321. The use of allogeneic MSCs to produce EVs offers an 

attractive cell-free, off-the shelf treatment option which allows for the selection of optimal donor 

cells as well as scalable and standardized manufacturing to target a specific disease.  

Most of the standardization and characterization approached discussed above are based on 

quantitative parameters. Others focus one type of cargo by quantifying a specific component 

such as nucleic acids, proteins or lipids in the EVs 16. Future studies should also focus on 

qualitative aspects such as the quantity of known effector molecules or EV potency units based 
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on standardized in vitro potency assay 315 A recent report claims to facilitate the reproducibility 

of EV isolations as well as CM by using Raman spectroscopy to identify both the soluble factors 

and the EV components that may provide a regenerative effect 322. 

The second paper investigated the effects of the secretome and its subfractions, the EV 

fraction and the protein fraction (PF), of bmMSCs on chemically inflamed tenocytes. Our study 

found that complete CM had the most potent treatment effect on inflamed tenocytes. Although 

all three treatments showed significant differences compared to the untreated inflamed control, 

the EV fraction and the PF) did not exert the same level of influence on gene expression as 

the CM fraction. 

Similar findings have been reported in previous studies, demonstrating the synergistic effects 

of the secretome's EVs and soluble proteins, highlighting the therapeutic superiority of 

complete CM over its subfractions in various cell types and assays 323–327. For example, when 

comparing the effects of CM and EVs from adipose-derived MSCs (aMSCs) on muscle 

regeneration, both CM and EVs protected against cellular senescence, but CM showed higher 

proliferation and differentiation, while only EVs reduced inflammation 325. Similarly, in an in vitro 

model of osteoarthritis, CM and EVs derived from human ADSCs reduced hypertrophic 

collagen 10, but only CM significantly decreased MMP activity and prostaglandin 2 (PGE2) 

expression 326. Moreover, in a study evaluating the effects of CM, EVs, and PF fractions on 

inflamed nucleus pulposus and annulus fibrosus cells, whole CM demonstrated superior 

immunomodulatory and MMP inhibitory effects compared to its subfractions 324. Comparing the 

effects of PBMCs-derived secretome and its subfractions also revealed that the complete 

secretome induced better neo-angiogenesis than its individual components 327. 

However, divergent results have been observed in studies investigating CM and EVs from 

human aMSCs. In some cases, EVs alone, like whole CM, promoted cell proliferation and 

migration in skeletal muscle cells. Additionally, small extracellular EVs outperformed 

conditioned media of adipose tissue in terms of migration and regeneration potential, although 

these studies standardized EVs and CM based on equivalent protein concentrations and did 

not consider unpacked proteins 326. Another explanation for EVs outperforming CM in migration 

is the more efficient recruitment of host cells through EVs compared to other paracrine factors 

present in CM 328,329. 

On the other hand, when comparing the therapeutic efficacy of amniotic MSCs-derived CM, 

PF, and EV fractions on immune cell proliferation and differentiation, whole CM and its PF 
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fraction decreased PBMC proliferation, reduced inflammatory polarization of T-cells, enhanced 

regulatory T-cell and M2 macrophage polarization, and reduced B-cell activation, while EVs 

showed no immunomodulatory effect 323. 

The divergent results observed in these studies comparing complete CM and its EV fraction 

can be attributed to differences in the donor cells, culture media, substrates, cell confluence, 

preconditioning, isolation and concentration procedures, dosage, and the treated cells. The 

properties of CM and EV isolates highly depend on the donor cell type, as different cell sources 

secrete various signals suitable for different downstream applications 282,330. Isolation methods, 

especially for EVs, also influence the type and properties of the enriched EVs 331,332. 

Furthermore, cell culture parameters such as seeding density and passaging frequency can 

further affect the regenerative potential 333,334. Additionally, differences in secretome 

composition can be significant when comparing fetal and adult donors, and pre-conditioning of 

donor cells can alter secretome profiles 335,336. 

Standardization strategies, optimal dosage, and the number of doses also pose challenges 

when comparing CM and its subfractions. CM is typically standardized based on protein 

concentration, while EV treatments are often quantified based on the number of particles using 

NTA. Cargo-specific quantification of nucleic acids, proteins, or lipids in EVs or using Raman 

spectroscopy can provide a more focused approach for quality control 322. 

Both EVs and the soluble fraction of CM contain factors potentially beneficial for regeneration, 

and the presence of ribosomal proteins and translation factors in EVs directly impacts recipient 

cells by enabling de novo protein expression 337. Proteomic analysis has revealed diverging 

protein compositions between CM and EVs, emphasizing the need to analyze different parts 

of the secretome independently to gain better insights into the therapeutic mechanisms. 

Understanding these processes would inform tailored therapeutic options for the secretome 
262,265,274. 

Although promising in vitro results have been obtained from this study and others, several 

questions remain unanswered before translation into clinical applications. Factors such as the 

route of administration, absorption profile, distribution throughout the body, metabolism rate, 

and clearance of EVs need to be addressed, as clearance of EVs poses a significant challenge 
338–340. Future studies should aim to resolve these issues and establish reproducible and 

optimized protocols for cell-free treatment approaches. 
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It is important to note some limitations of our study. While we standardized the EV or protein 

concentration within each treatment, it was not possible to standardize the concentrations 

between treatments due to the potential loss of material during enrichment, causing differences 

in protein concentration and EV yield. The filtration process during SEC may lead to the loss 

of EVs and proteins 151. Additionally, the differentially expressed gene data revealed that none 

of the three treatments fully restored the healthy status of the inflamed cells. However, 

treatment with complete CM resulted in the highest number of differentially expressed genes 

compared to the inflamed control, suggesting a superior therapeutic effect and a possible 

synergistic effect of the different secretome fractions. 

It is imperative to highlight our decision to employ SEC rather than UC for the isolation of EVs. 

This preference is rooted in the reported reduction in functional capacity observed in EVs 

isolated through UC compared to those isolated using SEC. This disparity is attributed to the 

potential deleterious effects of prolonged exposure to high centrifugal forces in UC. 

Additionally, the utilization of UC demands more intricate sample handling, involves complex 

equipment, and necessitates a higher level of expertise to achieve optimal EV yield when 

compared to SEC. Notably, diverse UC protocols and parameters, including rotor type, UC-

tube quality, centrifugation speed, acceleration, and deceleration, present customization 

opportunities that, while enhancing purity and yield, concurrently introduce challenges related 

to reproducibility and inter-laboratory variation. Furthermore, drawbacks associated with UC 

encompass the likelihood of contamination with exosomal aggregates, thereby diminishing 

purity and potentially compromising the accuracy of EV quantification. Additionally, the cost of 

equipment is a pertinent consideration in the evaluation of UC. In contrast, SEC offers distinct 

advantages, notably its simplified technique and the attainment of higher EV purity with minimal 

artifacts such as EV aggregates. These attributes enhance the clinical applicability of SEC in 

EV isolation. 

There are still a lot of challenges with cell-free therapies in numerous clinical applications. In 

addition to the technological aspects of EV isolation and quantification which our recent paper 

focuses on, also biological factors, such as CM-producing cell type, cell culture, confluence 

and stimulation, influence CM and EV quality and quantity 341. The resulting EV heterogeneity 

and differences in EV cargo impedes reproducibility and comparability of studies 342. Another 

big obstacle when comparing CM and its subfraction is the standardization strategy for studies, 

the optimal dosage of the treatment and the number of doses 343. The most common way to 
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determine the therapeutic dose of an EV treatment is by quantifying the number of particles 

using NTA in an isolate 16.  

Another topic that needs to be investigated is the route of administration. Potential therapeutic 

effects of secretomes, EVs or soluble proteins influenced by their absorption characteristics, 

the distribution in the body, the metabolic status of the patient and the clearance 338. In 

particular, clearance of EVs is a big problem - e.g it was shown that EVs are quickly cleared 

from the circulating blood and discharged from the body 338,339.  

Finally, studies focusing on an optimal administration frequency are essential to implement the 

successful translation of secretome- based treatments into the clinical setting. 
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