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ARTICLE INFO ABSTRACT

Keywords: Timor ponies (TP) were first shipped to Australia in the early 1800s and were highly valued as transport and pack
Breeding program animals, which resulted in TPs contributing to the development of Australian horse breeds. Today, while the
Genomics exact number of TPs in Australia is currently unknown, there has been recent interest in establishing a domestic
;—rllcl;)rrseee(rir:;agement breeding program for Australian TPs. The aim of this study was to evaluate the relatedness of a sample of TPs, as
Relationship well as provide estimates of genomic inbreeding levels to better inform the feasibility of using these animals as

founders for a domestic breeding program. Hair samples from each horse were genotyped using the Illumina 80K
Infinium Equine genotyping array and data were analysed using PLINK v1.90b7, KING 2.3.2 and R v4.3.1. The
results illustrate that there are distantly related and minimally inbred horses within the sampled TPs. Lengths of
the ROH segments also indicated that recent inbreeding events are likely to only have occurred in a third of the
horses. Overall, these results are promising for the success of a domestic TP breeding program; however,
considering the low number of domestic TPs known to reside in Australia, there would certainly still be sub-
stantial benefits to incorporating additional TPs either directly from Timor or from areas in Australia that are

believed to contain wild descendants of TPs.

1. Introduction

Timor ponies (TP) are a type of horse originally developed in Timor,
an island north of Australia [1,2]. In the early 1800s, TPs were shipped
to Australia as these horses were readily available to the early northern
settlements and were better suited to the harsh Australian climate
compared to traditional European horse breeds (e.g. Thoroughbreds,
Warmbloods) [1,3]. Although TPs are only 100 to 120 cm high at
withers, they are described as strong, resilient, willing, and speedy [1,4].
Consequently, this type of horse was historically used for transport,
packing, and pony races [5] and it is this multi-purpose ability that
resulted in TPs playing a role in the development of Australian horse
stock, such as the Waler Pony and the Brumby [1]. While the exact
number of TPs in Australia is currently unknown, there has been recent
interest in establishing a domestic breeding program for Australian TPs.
As such, the aim of the current study was to evaluate the relatedness of a
small sample of TPs, as well as provide estimates of genomic inbreeding
levels to better inform the feasibility of using these horses (H) as foun-
ders for a domestic breeding program.

2. Material and methods

Hair samples were collected from two captured TP stallions (H2,
H11) and one captured TP mare (H3) from the Cobourg Peninsula, as
well as five suspected descendants of these horses (H4-H6, H8-H9) and
15 TPs with varying origins. These 15 TPs were either from Timor and
the surrounding islands (H7, H12-H15, H17-H23) or from unknown
origins (H10, H16, H24) (Table 1). Additionally, a sample from a known
descendant (H1), which is the offspring of H2 and H3, was included.
Furthermore, H2, H3, H7 and H10-H24 were previously confirmed as TP
by breed testing performed by the current owners of these horses and/or
as part of a previous study [6]. All animal procedures were approved by
the University of Sydney’s Animal Ethics Committee (Project Number
2022/2138). Deoxyribonucleic acid (DNA) was extracted from all
samples using standard protocols for DNA extraction from hair samples
[6]. DNA from each horse was then genotyped using the Illumina 80K
Infinium Equine genotyping array. Genotype data were analysed using
PLINK v1.90b7, KING 2.3.2, and R v4.3.1 [7,8,9]. Quality control (QC)
was performed to remove poorly genotyped and noisy data wherein
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Table 1

Origins of the Timor ponies analysed in the current study.
Horse Origin
H1 Captive bred and born
H2 Cobourg Peninsula, NT, AUS
H3 Cobourg Peninsula, NT, AUS
H4 Queensland, AUS
H5 Queensland, AUS
H6 Queensland, AUS
H7 Timor and surrounding islands
H8 Northern Territory, AUS
H9 Queensland, AUS
H10 Unknown
H11 Cobourg Peninsula, NT, AUS
H12 Timor and surrounding islands
H13 Timor and surrounding islands
H14 Timor and surrounding islands
H15 Timor and surrounding islands
H16 Unknown
H17 Timor and surrounding islands
H18 Timor and surrounding islands
H19 Timor and surrounding islands
H20 Timor and surrounding islands
H21 Timor and surrounding islands
H22 Timor and surrounding islands
H23 Timor and surrounding islands
H24 Unknown

single nucleotide polymorphisms (SNPs) with a call rate lower than 0.9,
and SNPs located on chromosomes X and Y were excluded. For estima-
tion of relationship coefficients (r), SNPs with minor allele frequency
(MAF) < 0.05 were also removed [10,11]. Relationship coefficients, as
the proportion of the genome shared between two individuals based on
identical by descent (IBD), were estimated in both PLINK and KING [7,8,
12]. The proportion of IBD for each horse pair was evaluated using the
“genome” command in PLINK and the “ibdseg” command in KING. Two
programs were used to estimate relationship coefficients (r) as each
program utilizes a different estimation approach [7,8]. The calculation
in PLINK is based on the allele frequencies and is computed by the
equation:

r:%P(IBD:l) +P(IBD=2) @

where P(IBD=1) and P(IBD=2) are the probability of sharing 1 or 2
alleles IBD for two individuals from the same random-mating population
[7]. KING, on the other hand, utilizes the number of loci at which the
genotypes of two individuals are heterozygotes (Nj;) or different ho-
mozygotes (N o), with r estimated as:

Nl.] - NZ.U
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where N{Y and N{” are the sum of the heterozygous loci of each indi-
vidual [8]. Both programs reportedly have high accuracy for detecting
first- and second-degree relationships, but accuracy decreases for distant
relationships, with PLINK tending to underestimate and KING to over-
estimate distant relatedness [13]. The classification recommended by
Manichaikul et al. (2010) was used to derive the degree of relatedness
from the estimated r [8]. ROH analyses were carried out in PLINK using
the “homozyg” command [7]. Parameter settings were chosen according
to Meyermans et al. (2020), therefore minimal density for segments was
set to 38 kb/SNP, maximal gap length was 400 kb, minimal number of
SNPs for segments was calculated by the L-parameter and set to 57, and
scanning window threshold was 0.052 [14]. Additionally, parameter
settings included: length for segments > 500 kb, number of heterozy-
gotes allowed in a window = 0, and number of missing calls allowed in a
window = 1 [11,15,16]. Custom scripts in R were then used to deter-
mine ROH islands that were present in at least 50% of the analysed in-
dividuals [9,17]. ROH islands were compared to previously
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characterized quantitative trait loci (QTL) for reproduction and health
traits in the horse to identify any overlap with regions associated with
health traits or reproduction traits [18].

3. Results

In total, 24 individuals (n=9 female, n=15 male) were included in
the final analyses. 74,251 SNPs passed QC prior to filtering for MAF and
56,916 SNPs passed QC after the MAF threshold was included. Known
parent-offspring relationships between H1 and H1’s sire (H2) and dam
(H3) were validated in both PLINK and KING (Fig. 1). There was also
evidence to support clear first- and second-degree relationships between
the five suspected descendants (H4-H6, H8-H9), one TP with unknown
origin (H10), and all three of the original TPs from the Cobourg
Peninsula (H2, H3, H11). Overall, analyses in PLINK resulted in 17 first-,
54 second-, 51 third-, and 9 fourth-degree relationships, whereas the
analyses in KING detected 10 first-, 35 second-, 42 third-, and 75 fourth-
degree relationships. The remaining horse pairs were distantly related
(more than four degrees) or unrelated and made up 53% and 41% of all
horse pairs, respectively. As expected, results from both PLINK and KING
revealed two groups of horses (Group 1 = H1-H3, H6, H8-H11, Group 2
= H12-H22), where Group 1 (G1) included the three TPs from the
Cobourg Peninsula, and Group 2 (G2) consisted of 11 out of 15 TPs from
varying origins. Relationship estimates are consistent with the fact that
horses in G1 are from the same “family”, while the origins of the horses
in G2 are more scattered. Additionally, five horses were unable to be
allocated to either G1 or G2. Two of these (H23, H24) show only min-
imal relatedness with all horses analysed. The other three horses (H4,
H5, H7) show a high level of relatedness to horses in both G1 and G2,
with H4 and H5 being more closely related to horses from G1 and H7
being more closely related to horses from G2.

For the calculation of inbreeding coefficient (Froy), genome
coverage that resulted from the chosen parameter settings was 0.99,
which allows ROH detection for 99% of the autosomal genome (Gorssen
et al., 2021). Median Froy was 0.08 (Interquartile range = 0.06-0.18),
with the highest Froy (0.20) estimated in H3 (Fig. 2). There were five
animals with an estimated Frog < 0.01; however, four of these horses
(H4-H7) had a call rate < 86%. Segments of ROH > 16 Mb were found in
eight horses, with six of these horses coming from G1. Comparisons of
ROH regions between individuals yielded one ROH island that was
present in over 50% of the sampled horses. The ROH island was located
on equus caballus chromosome (ECA) 8 and had a total length of 887 kb.
There was no overlap detected between this region and any previously
characterized QTL for reproduction and health traits.

4. Discussion

While it is not possible to make precise statements regarding relat-
edness (e.g. parent-offspring vs. full-siblings) of individuals due to a lack
of birth records or pedigree information, by estimating the relationship
coefficient it is possible to evaluate the degree of the relationship and
hence gain insight into the sample population structure [19]. Since the
estimation was carried out with two programs, they provide a range for r
within the sampled horses [13]. Both programs yielded similar patterns
and show two subgroups of horses (G1, G2), three horses highly related
to the rest of the sample (H4, H5, H7), and two horses minimally related
to the rest of the sample (H23, H24) (Fig. 1). The minimally related
horses would be particularly valuable for any proposed domestic
breeding program. While low individual call rates (< 86%) for four
horses may have influenced estimates of r, estimates of r were based on
56,916 SNPs, thus any influence is expected to have been minimal [13].
Results from the current analyses also indicated that there are horses
with Froy close to zero. However, it must be noted that 4/5 of these
horses had call rates below what is generally considered as the minimum
threshold for individual call rates (i.e. 95%) [11,20,21]. This increase in
missing calls typically leads to segments not being classified as ROH
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I First-degree relationship: r=0.354 - 0.707

Second-degree relationship: r =0.177 - 0.354

Third-degree relationship: r =0.088 - 0.177

Fourth-degree relationship: r =0.044 - 0.088
Distant relationship or unrelated: r < 0.044

Fig. 1. Degree of relationships for 24 Timor ponies based on relationship coefficients (r) calculated in PLINK (a) and KING (b).
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Fig. 2. Inbreeding coefficients (Fron) of 24 Timor ponies stratified by length (Mb) of ROH segments.

segments in PLINK as it is highly probable that these segments are
interrupted by more than one missing call, placing them above the
maximal number of missing calls allowed per window. Thus, horses with
a reduced call rate may have an underestimated Fgroy. Although
increasing the number of missing calls permitted within a window may,
in part, help to resolve this, it can also artificially inflate Froy. Never-
theless, there are some horses (H21-H23) with individual call rates >
95% that have Froy < 7.5%. Within these horses, no ROH segments
greater than 16 Mb in length were identified, thus recent inbreeding
events are unlikely [21]. Horses with ROH segments greater than 16 Mb
in length were identified in eight horses and these individuals had Froy
above the sample average. Moreover, 6/8 of these horses fell within G1
(Figs, 1 and 2), thus horses from the Cobourg Peninsula and their

descendants appear to have more recent inbreeding than the horses from
G2.

5. Conclusion

Overall, lengths of the ROH segments indicate that recent inbreeding
events are likely to only have occurred in a third of the horses sampled
and the results illustrate that there are distantly related and minimally
inbred horses within the TPs sampled. Additionally, there was no
overlap between the ROH island on ECA 8 and any previously charac-
terized QTLs for reproduction and health traits [18]. In general, these
results are promising for the success of a domestic TP breeding program
as there is clear evidence of genetic variation within the sampled TPs
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and no obvious genomic regions of concern related to fertility and
health. However, considering the low number of horses sampled, there
would certainly still be substantial benefits to incorporating additional
TPs, either from Australia or from Timor into a domestic breeding
program.
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