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Abstract: The association between vitamin D deficiency and cardiovascular disease remains
a controversial issue. This study aimed to further elucidate the role of vitamin D signaling in the
development of left ventricular (LV) hypertrophy and dysfunction. To ablate the vitamin D receptor
(VDR) specifically in cardiomyocytes, VDRfl/fl mice were crossed with Mlcv2-Cre mice. To induce
LV hypertrophy experimentally by increasing cardiac afterload, transverse aortic constriction (TAC)
was employed. Sham or TAC surgery was performed in 4-month-old, male, wild-type, VDRfl/fl,
Mlcv2-Cre, and cardiomyocyte-specific VDR knockout (VDRCM-KO) mice. As expected, TAC induced
profound LV hypertrophy and dysfunction, evidenced by echocardiography, aortic and cardiac
catheterization, cardiac histology, and LV expression profiling 4 weeks post-surgery. Sham-operated
mice showed no differences between genotypes. However, TAC VDRCM-KO mice, while having
comparable cardiomyocyte size and LV fibrosis to TAC VDRfl/fl controls, exhibited reduced fractional
shortening and ejection fraction as measured by echocardiography. Spatial transcriptomics of heart
cryosections revealed more pronounced pro-inflammatory and pro-fibrotic gene regulatory networks
in the stressed cardiac tissue niches of TAC VDRCM-KO compared to VDRfl/fl mice. Hence, our
study supports the notion that vitamin D signaling in cardiomyocytes plays a protective role in the
stressed heart.

Keywords: vitamin D; vitamin D receptor; left ventricular hypertrophy; cardiomyocytes; spatial
transcriptomics; inflammation; fibrosis

1. Introduction

The increasing burden of cardiovascular diseases, including left ventricular hyper-
trophy (LVH), hypertension, coronary artery disease, and diabetes, places a significant
strain on clinical resources and socioeconomic systems [1]. Despite remarkable progress
in cardiovascular research and improved therapeutic strategies against major risk factors,
morbidity and mortality due to heart failure complications are still a major concern.

Over the past three decades, a large number of clinical and preclinical studies have
supported a role of vitamin D signaling in cardiovascular health. In this context, large
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epidemiological studies have presented strong evidence linking vitamin D deficiency with
cardiovascular disease, even after adjusting for traditional cardiovascular risk factors [2–4].
However, it is still controversial whether vitamin D supplementation has a role in the
therapy of cardiovascular diseases, as large intervention trials failed to show a beneficial
effect on cardiovascular endpoints [5–7].

Apart from its well-established role in bone health and mineral metabolism [8,9],
vitamin D signaling has been observed in many tissues expressing the vitamin D recep-
tor (VDR), and it is thought that all direct regulatory actions of the vitamin D hormone,
1α,25-dihydroxyvitamin D3, are mediated via the VDR [10]. The expression of the VDR
in the heart and in blood vessels suggests possible direct effects of vitamin D signaling in
these tissues [10,11]. In the heart, the presence of the VDR has been demonstrated in car-
diomyocytes close to T tubuli as well as in fibroblasts, and cardiac hypertrophy leads to an
upregulation of VDR expression at the mRNA and protein levels [12,13]. Indeed, a plethora
of preclinical studies employing different animal models has unveiled a multitude of
mechanisms underlying the beneficial cardiovascular effects of vitamin D [14–18].

Nonetheless, inconsistencies in data, especially regarding the role of VDR signaling in
cardiomyocytes, persist. While Li et al. [19] reported cardiomyocyte hypertrophy, hyper-
tension, and upregulated renin secretion in global VDR knockout mice on a normal diet,
we failed to find hypertension, increased renin secretion, or LVH in 3-month-old global
VDR knockout mice on a rescue diet, which normalizes mineral homeostasis [20]. Chen
et al. [21] reported that deletion of the VDR specifically in cardiomyocytes results in LVH
under baseline conditions and upon induction with isoproterenol via the pro-hypertrophic
calcineurin/NFAT/MCIP 1 signaling pathway. In contrast, we observed no difference in the
hypertrophic response of wild-type (WT) mice and those lacking VDR globally subjected
to transverse aortic constriction (TAC), a standard model of experimental LVH induced by
chronically increased afterload [22]. In addition, we found no difference in heart function
between WT mice and global VDR knockout mice after myocardial infarction in an earlier
study [23].

A potential pitfall in studies addressing the cardiovascular role of vitamin D signaling
is the pleiotropic effects of vitamin D in many different tissues, making it difficult to
compare studies using global and conditional, tissue-specific VDR ablation models. The
VDR is expressed ubiquitously, and approximately 3% of the human genome is directly
regulated by vitamin D [10]. Hence, ablation of vitamin D signaling results in complex
changes in global VDR knockout models.

The objective of this study was to gain further insight into the role of the VDR in cardiac
hypertrophy and in LVH pathogenesis by specifically deleting the VDR in cardiomyocytes
of mice and employing TAC as an experimental model of LVH induction. To address the
complex effects of VDR signaling on gene regulatory networks in an unbiased, holistic
manner, we performed spatial transcriptomics on cryosections of TAC hearts from mice
with cardiomyocyte-specific deletion of the VDR and those of controls. We found that while
LVH developed independently of cardiomyocyte VDR presence, cardiomyocyte-specific
VDR deficiency was associated with LV functional impairment and more pronounced pro-
inflammatory and pro-fibrotic gene regulatory networks in stressed cardiac tissue niches.

2. Results
2.1. Generation and Characterization of Cardiomyocyte-Specific VDR Knockout Mice

To decipher the effects of vitamin D deficiency on cardiac function, we generated
a cardiomyocyte-specific VDR knockout mouse model using Cre-LoxP technology. Mice
with a floxed VDR gene carrying loxP sequences surrounding exon 3 were previously
created [24]. For specific deletion of the VDR gene in ventricular cardiomyocytes, we mated
VDRfl/fl mice with mice expressing Cre recombinase under the ventricle-specific Mlc2v
promoter [25] (Figure 1A). The resulting genotypes included wild-type (WT), VDRfl/fl,
Mlc2vCre/wt, and VDRfl/fl/Mlc2vCre/wt mice, henceforth referred to as cardiomyocyte-
specific VDR knockout mice (VDRCM-KO). We observed germline VDR deletion when the
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Cre allele was maternally inherited and therefore solely used male Cre-expressing mice
for breeding in this study. To rule out effects of Mlc2v haploinsufficiency, we initially
performed TAC experiments in wt/wt, wt/Cre+, and VDRfl/fl mice. Wt/wt, wt/Cre+, and
VDRfl/fl mice showed comparable increases in systolic (SP) and pulse (PP) pressures as
well as similar values for fractional shortening (FS) and ejection fraction (EF) after TAC
(Supplementary Figure S1), corroborating earlier reports demonstrating that Mlc2v-Cre
mice do not show an altered cardiac response to TAC-induced pressure overload compared
with wt/wt mice [26].
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egy to generate cardiomyocyte-specific VDR knockout mice, showing the murine VDR allele with 
exons 1–3 and location of LoxP sites (triangles) surrounding exon 3. (B) Quantitative real-time PCR 
analysis reveals ~70% reduction of VDR mRNA levels at the whole heart level in VDRCM-KO relative 
to VDRfl/fl mice (n = 6 VDRfl/fl; n = 5 VDRCM-KO). (C) Serum concentration of calcium and phosphate 
(n = 6 VDRfl/fl; n = 5 VDRCM-KO) as well as (D) body weight and heart weight-to-body weight ratio 

Figure 1. Gene targeting strategy, cardiac VDR mRNA expression, as well as unaltered mineral
metabolism and cardiac phenotype in VDRCM-KO mice. (A) Schematic illustration of Cre-LoxP
strategy to generate cardiomyocyte-specific VDR knockout mice, showing the murine VDR allele with
exons 1–3 and location of LoxP sites (triangles) surrounding exon 3. (B) Quantitative real-time PCR
analysis reveals ~70% reduction of VDR mRNA levels at the whole heart level in VDRCM-KO relative
to VDRfl/fl mice (n = 6 VDRfl/fl; n = 5 VDRCM-KO). (C) Serum concentration of calcium and phosphate
(n = 6 VDRfl/fl; n = 5 VDRCM-KO) as well as (D) body weight and heart weight-to-body weight ratio
(HW/BW) in VDRCM-KO mice are comparable to those of VDRfl/fl controls (n = 6 VDRfl/fl; n = 5
VDRCM-KO). Data are given as bar dot plots with SEM. ** p < 0.01 by unpaired t-test; ns, not significant.
(A) was created with BioRender.com.

The VDRCM-KO mice were born at the anticipated Mendelian frequency without any
gross phenotypic abnormalities. Recombination efficacy was confirmed by a ~70% reduc-
tion of cardiac VDR mRNA expression in VDRCM-KO mice relative to controls (Figure 1B
and Supplementary Table S1). This level of reduction in VDR mRNA expression is expected
in VDRCM-KO mice at the whole heart level because VDR expression is ubiquitous and other
cell types, such as endothelial cells or fibroblasts, contribute to VDR expression in the heart.
Serum levels of calcium and phosphate remained unaltered in VDRCM-KO mice (Figure 1C).
Moreover, VDRCM-KO mice showed normal body weight and heart weight-to-body weight
(HW/BW) ratio, relative to age-matched VDRfl/fl controls (Figure 1D), suggesting that
cardiomyocyte-specific VDR inactivation does not lead to a pathologic cardiac phenotype
under standard resting conditions in 5-month-old male mice.
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2.2. Development of Afterload-Induced Cardiac Hypertrophy Is Not Modulated by Loss of VDR
in Cardiomyocytes

To examine the tissue-specific effects of vitamin D signaling in LVH, we employed
TAC, a pressure overload–induced cardiac hypertrophy model. In line with previous
studies, which show heart failure with reduced ejection fraction (HFrEF) development
after 4 weeks of TAC [27], we terminated our experiments at this timepoint. TAC signifi-
cantly increased the HW/BW ratio compared to sham-operated animals in all genotypes
(Figure 2A). Based on previous findings [21], we hypothesized that loss of VDR in car-
diomyocytes could accelerate cardiac pathology when subjected to pressure overload.
Despite a slight increase in HW/BW ratio observed in TAC VDRCM-KO compared to TAC
VDRfl/fl mice (Figure 2A), histological examination by FITC-labeled wheat germ agglutinin
(WGA) staining revealed a similar increase in mean cardiomyocyte cross-sectional area
post-TAC (Figure 2B). This indicates that cardiomyocytes respond to the afterload-induced
hypertrophic stimulus independent of VDR. In addition, cardiac mRNA expression of
the hypertrophy marker brain natriuretic peptide (BNP) was comparably increased after
TAC in VDRfl/fl and VDRCM-KO mice (Figure 2C). Moreover, TAC mice were characterized
by hyperphosphatemia, hypercalcemia, and increased serum aldosterone concentrations,
independent of genotype (Figure 2D,E). It is well known that TAC is associated with an
upregulation of cardiac mRNA expression of fibroblast growth factor-23 (FGF23) [22,28].
In line with these earlier reports, we observed approximately 50-fold upregulation of
cardiac Fgf23 transcription in response to TAC in both genotypes, with no differences
between the genotypes (Figure 2F). We also investigated collagen remodeling and cardiac
fibrosis, common LVH accompaniments, using picrosirius red (PSR) staining of paraffin
sections. TAC-induced LVH was associated with a profound increase in interstitial fibrosis
(Figure 2G). However, PSR staining did not demonstrate differences in cardiac fibrosis
between TAC VDRCM-KO and VDRfl/fl mice (Figure 2G). In contrast, collagen type I (Col1a1)
mRNA expression was upregulated in TAC VDRCM-KO mice, relative to TAC VDRfl/fl

controls (Figure 2G). Nonetheless, as shown in the left and upper right panels of Figure 2G,
this increase in Col1a1 transcription in TAC VDRCM-KO mice did not result in increased
fibrosis as evidenced by PSR staining at 4 weeks post-TAC. Collectively, our data suggest
that ablation of VDR expression in cardiomyocytes does not modulate afterload-induced
cardiac hypertrophy, but results in higher collagen 1 levels at the transcriptional, but not at
the histological level.

2.3. Lack of VDR Signaling in Cardiomyocytes Aggravates TAC-Induced LV Functional Impairment

To assess cardiac functionality in our experimental model, we performed intra-arterial
and intra-cardiac catheterization as well as echocardiography. TAC results in hypertension
upstream of the constriction site, thereby increasing LV afterload. Lack of VDR in cardiomy-
ocytes did not influence the TAC-induced increase in arterial systolic pressure (SP), diastolic
pressure (DP), mean arterial pressure (MAP), and pulse pressure (PP) (Figure 3A). In addi-
tion, both TAC VDRfl/fl and VDRCM-KO mice developed elevated end diastolic pressure
(EDP) relative to sham controls (Supplementary Figure S2A). Left ventricular catheter-
ization showed a comparable decline in cardiac contractility and increase of relaxation
time constant (Tau) in both TAC VDRfl/fl and VDRCM-KO mice, relative to sham controls
(Figure 3B). In contrast, echocardiography revealed a further reduction of ejection frac-
tion (EF) and fractional shortening (FS) in TAC VDRCM-KO mice, relative to TAC VDRfl/fl

controls, suggesting a more pronounced development of HFrEF in mice lacking VDR in car-
diomyocytes (Figure 3C). LV internal diameter in diastole and systole (LVIDd and LVIDs)
tended to be elevated in TAC VDRCM-KO mice in comparison with TAC VDRfl/fl mice
(Supplementary Figure S2B). However, the difference did not reach statistical significance.
Taken together, these data suggest that the absence of VDR signaling in cardiomyocytes
augments the TAC-induced reduction in cardiac functionality.
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Figure 2. Cardiomyocyte-specific VDR deletion does not aggravate left ventricular hyper-
trophy. (A) Heart weight-to-body weight (HW/BW) ratio in sham-operated and TAC VDRfl/fl

and VDRCM-KO mice (n = 8 VDRfl/fl sham; n = 6 VDRCM-KO sham; n = 9 VDRfl/fl TAC;
n = 8 VDRCM-KO TAC). (B) Representative histological images of FITC-WGA staining and quan-
tification of cardiomyocyte size reveal similar cardiomyocyte hypertrophy between the genotypes
post-TAC (n = 5 VDRfl/fl sham; n = 4 VDRCM-KOsham; n = 3 VDRfl/fl TAC; n = 5 VDRCM-KO TAC).
Scale bar = 50 µm. (C) Relative mRNA expression of brain natriuretic peptide (BNP) is unchanged
between TAC VDRfl/fl and VDRCM-KO mice (n = 6 VDRfl/fl sham; n = 6 VDRCM-KO sham; n = 5
VDRfl/fl TAC; n = 6 VDRCM-KO TAC). (D) Serum calcium and phosphate (n = 6 VDRfl/fl sham;
n = 6 VDRCM-KO sham; n = 5 VDRfl/fl TAC; n = 5 VDRCM-KO TAC), and (E) aldosterone concentra-
tions in sham-operated and TAC VDRfl/fl and VDRCM-KO mice (n = 6 VDRfl/fl sham; n = 5 VDRCM-KO

sham; n = 4 VDRfl/fl TAC; n = 6 VDRCM-KO TAC). (F) Relative cardiac Fgf23 mRNA expression (n
= 6 VDRfl/fl sham; n = 6 VDRCM-KO sham; n = 5 VDRfl/fl TAC; n = 5 VDRCM-KO TAC) and (G)
histological images of cardiac paraffin sections stained with picrosirius red (PSR) and quantification
of PSR-stained area (n = 6 VDRfl/fl sham; n = 5 VDRCM-KO sham; n = 5 VDRfl/fl TAC; n = 7 VDRCM-KO

TAC) as well as relative cardiac collagen 1 (Col1a1) mRNA expression in sham-operated and TAC
VDRfl/fl and VDRCM-KO mice (n = 5 VDRfl/fl sham; n = 4 VDRCM-KO sham; n = 5 VDRfl/fl TAC; n = 5
VDRCM-KO TAC). Scale bar =100 µm. Data are given as bar dot plots with SEM. * p < 0.05, ** p < 0.01,
**** p < 0.0001 by one-way ANOVA followed by Student–Newman–Keuls multiple comparison test;
ns, not significant.
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Figure 3. Mice lacking VDR in cardiomyocytes display a more pronounced reduction in cardiac
functionality after TAC. (A) Systolic pressure (SP), diastolic pressure (DP), mean arterial pressure
(MAP), and pulse pressure (PP) are comparably increased in VDRfl/fl and VDRCM-KO mice following
TAC (SP, DP, PP: n = 8 VDRfl/fl sham; n = 9 VDRCM-KO sham; n = 9 VDRfl/fl TAC; n = 8 VDRCM-KO

TAC; MAP: n = 8 VDRfl/fl sham; n = 5 VDRCM-KO sham; n = 6 VDRfl/fl TAC; n = 6 VDRCM-KO TAC).
(B) LV contractility index (CI) and relaxation time (Tau) does not differ between TAC VDRCM-KO and
VDRfl/fl mice (n = 8 VDRfl/fl sham; n = 9 VDRCM-KO sham; n = 7 VDRfl/fl TAC; n = 8 VDRCM-KO TAC).
(C) Representative original echocardiograms in parasternal short axis M-mode (left). Parameters
of cardiac functionality fractional shortening (FS) and ejection fraction (EF) (right) are significantly
reduced in TAC VDRCM-KO mice in comparison to TAC VDRfl/fl controls (n = 5 VDRfl/fl sham;
n = 4 VDRCM-KO sham; n = 5 VDRfl/fl TAC; n = 5 VDRCM-KO TAC). Data are given as bar dot plots
with SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 by one-way ANOVA followed by Student–
Newman–Keuls post-hoc test. LVIDd and LVIDs, left ventricular internal diameter in diastole and
systole; ns, not significant.

2.4. Spatial Transcriptomics Reveal More Pronounced Pro-Inflammatory and Pro-Fibrotic Gene
Regulatory Networks in Hypertrophic Cardiac Tissue Niches of TAC VDRCM-KO Mice

To gain further insight into the molecular changes induced by lacking VDR signaling
in cardiomyocytes in our TAC model, we performed spatial transcriptomics on heart
cryosections, focusing on the comparison between TAC VDRfl/fl and VDRCM-KO mice.
The cross-sections were taken in the middle region of the ventricle. In agreement with
profoundly reduced VDR expression in cardiomyocytes of VDRCM-KO mice, we found
only one spot with detectable VDR expression in the VDRCM-KO mouse, whereas 44 spots
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were detected in the VDRfL/fl mouse (Supplementary Figure S3). In all spots with VDR
expression, we also detected cardiomyocyte-specific Myl2 expression in the ventricle of the
VDRfl/fl mouse. Using the SPIN algorithm [29], we identified two distinct region clusters
across TAC VDRfl/fl and VDRCM-KO samples, based on unique gene marker patterns that
define specific tissue regions (Figure 4A). This spatial integration revealed two primary
clusters corresponding to inner and outer tissue regions (cluster 0 representing the outer
region and cluster 1 the inner region), with an even distribution of spots among them (0_fl
(1649), 0_KO (1641), 1_fl (1414), and 1_KO (1327) (Figure 4B). The ‘outer’ region includes
the outer LV wall and the right ventricle, whereas the ‘inner’ region includes the LV inner
wall and septum (Figure 4B). For simplicity, we will refer to the two clusters as ‘inner’ and
‘outer’ regions henceforth.

The differential gene expression analysis identified the top ten signature genes dis-
tinguishing these clusters, with hierarchical clustering showing more similarities within
regions than between genotypes (Figure 4C). The outer regions, characterized by genes
such as Myh6, Cox6b1, Ckm, and Acta1, reflect typical heart function, underscoring their
roles in maintaining cardiac physiology [30–32] (Figure 4C). Conversely, the inner regions
showed elevated levels of myosin heavy chain-7 (Myh7) and ANP (Nppa), markers linked
to cardiac stress and hypertrophy, similar to findings from single-cell RNA-seq studies
in the same heart failure TAC model [33,34] (Figure 4D). The upregulation of Myh7 has
been linked to a transition from hypertrophy to heart failure, marked by an increase in
Myh7 mRNA and protein levels, particularly pronounced in severe cardiac stress [33].
Moreover, the variability in Myh7 and Nppa expression among cardiomyocytes indicated a
heterogeneous cellular response to pressure overload [34]. Noteworthy is the differential
expression pattern of Myh7 and Myh6 encoding for β-myosin heavy chain (MHC) and
α-MHC, respectively, representing distinct MHC isoforms critical for cardiac function [35–
37]. In the inner, more stressed heart regions in TAC mice, Myh7’s presence correlates
with its slower, more energy-efficient contractions, a beneficial adaptation during cardiac
stress [36]. Conversely, Myh6 predominates in the outer, more healthy areas, facilitating
rapid contractions and higher cardiac output, though at greater energy expense [35]. This
differential expression highlights the heart’s adaptability, with Myh7 optimizing energy
use under stress and Myh6 enabling swift responses in normal conditions.

A detailed examination of the top 500 differentially expressed genes revealed distinct
gene sets for each cluster, with minimal overlap, indicating unique molecular profiles
(Figure 4E). GO (Gene Ontology) enrichment analysis further differentiated these regions,
associating outer regions with normal heart function pathways, while inner regions showed
enrichment for inflammatory pathways, with the VDRfl/fl heart identified as the hypertro-
phy model (Figure 4F). The IL-9 and complement pathways specific for the inner region in
the VDRCM-KO heart hints at vitamin D’s regulatory impact on immune responses [38] in
the hypertrophic heart (Figure 4F).

Using DiNiro [39] to analyze differential regulatory disease mechanisms between
VDRCM-KO (1_KO) and VDRfl/fl TAC mice (1_fl) in the inner, more stressed hypertrophic
tissue niche, we uncovered 302 shared edges, with an additional 302 unique to 1_fl and
637 unique to 1_KO (Figure 5A). Among the significantly highly ranked gene regulatory
networks (GRNs), the Sox9-driven network stands out due to its impact in cardiomyocyte-
driven hypertrophic cascades [40]. The target genes of Sox9 for the 1_KO are associated
with extracellular matrix (ECM) and growth factor signaling (Sparc Prelp, Hbegf) indicative
of fibrotic responses, while in 1_fl the targets (H2afy, Ltbp2) hint at mechanisms potentially
protective against excessive fibrosis, involving genes in chromatin remodeling and TGF-
beta regulation (Figure 5B). CEBPB-driven GRN exclusively regulate genes in 1_KO, such as
Col1a1 (fibrosis) and Hsp90ab1 (stress response), as well as dynl2 and dbn3a (cytoskeletal
changes), suggesting a focus on structural and stress adaptations (Figure 5C). Additionally,
IRX1, a transcription factor associated with anti-fibrotic functions in myocardial health [41],
predominantly regulates genes in 1_fl including Fhl2 (modulating cardiac hypertrophy) [42],
Lpl (crucial for lipid metabolism and energy utilization) [43], Uba1 (key in protein degrada-
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tion and cardiac stress management) [44], and Usp2 (regulation of overload-induced cardiac
remodeling) [45] (Figure 5D). IRX1 is also the potential mechanistic regulator behind Myh7
for both 1_KO and 1_fl in the inner tissue niche (Figure 5D).
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and VDRfl/fl mice. (A) UMAP visualization of the integrated transcriptomic spots from cryosections
of VDRCM-KO and VDRfl/fl TAC mice, showing similarities and differences in gene expression profiles.
(B) Spatial mapping of clusters in heart sections of VDRCM-KO and VDRfl/fl TAC mice, revealing
the cluster distribution. (C) Dot plot of the top 10 differentially expressed genes (DEG) identified
across the combined clusters and conditions, highlighting key genes driving the distinction between
clusters. (D) Visualization of spatial expression patterns for the most significant DEG identified per
cluster (1_KO, 0_KO, 1_fl, 0_fl). (E) Venn diagram summarizing the overlap and uniqueness among
the top 500 DEG across all combined regions and conditions. (F) GO (Gene Ontology) enrichment
analysis for the top 500 DEGs, examining enriched pathways across the four identified clusters. KO,
VDRCM-KO; fl, VDRfl/fl.
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VDRCM-KO and VDRfl/fl mice. (A) Venn diagram of shared and unique regulatory edges within
the inner, stressed heart tissue region in TAC VDRfl/fl and VDRCM-KO mice. (B) SOX9-driven gene
regulatory network (GRN) with target genes specifically in the VDRCM-KO (1_KO, red) or in the
VDRfl/fl (1_fl, green) mouse. (C) CEBPB-driven GRN exclusively in 1_KO. (D) IRX1-driven GRN
primarily in 1_fl. TF, transcription factor.

Using SCANet, we analyzed co-expression gene modules across inner and outer tissue
regions of TAC VDRCM-KO and VDRfl/fl mice (0_fl, 0_KO, 1_fl, 1_KO) (Figure 6A). This
approach enabled de novo identification of genes exhibiting synchronized expression
patterns, thus facilitating an unbiased examination of distinct behavioral patterns and
their functional implications within specific tissue niches. Notably, modules M13 and
M15 showed a stronger correlation in 0_KO and 1_KO, respectively (Figure 6A). Module
M13 contains 154 genes, whereas M15 consists of 4038 genes (Figure 6B). Within the 0_KO
outer niche, the M13 module featured the major transcription factors RXRG and CEBPB,
which targeted the outer signature gene markers (Cox6b1, Acta1) (Figures 4C and 6C).
Conversely, the M15 module in the inner niche of 1_KO revealed smaller GRNs, driven by,
among others, the pro-inflammatory transcription factors Mafk and Mafg, targeting genes
such as C1qtnf1 (complement factor), Acvrl1 (TGF-beta signaling for vascular integrity and
fibrosis), Bmp1 (ECM organization, impacting fibrosis and tissue repair), Bik (pro-apoptotic),
Mcoln1 (lysosomal function and autophagy), Esrrb (energy metabolism and mitochondrial
function), and Prnnp (protective against oxidative stress) (Figure 6D,E). In addition, the
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transcription factor NR2F2 was connected to BMP6. Given that NR2F2 binding is very
flexible, including normally regulating VDR through competitive binding [46], our finding
of NR2F2 regulating BMP6 in VDRCM-KO tissue may be a strategic shift in response to
VDR’s absence (Figure 6E). Finally, Sox9, the potential regulator of cardiomyocyte-driven
hypertrophic pathways (Figure 5B), is regulated by the pro-inflammatory transcription
factor IR7 in KO_1 (Figure 6F).
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3. Discussion

Taken together, our data indicate that vitamin D signaling in cardiomyocytes is dispens-
able for heart function under physiological conditions in 5-month-old mice. Additionally,
we found that the development of cardiomyocyte hypertrophy in response to chronic
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pressure overload is independent of VDR expression in cardiomyocytes. However, lack of
vitamin D signaling in cardiomyocytes aggravated TAC-induced LV functional impairment.
Spatial transcriptomics of heart cryosections revealed a more pronounced inflammatory
and pro-fibrotic phenotype in the inner, more stressed tissue niche of VDRCM-KO compared
with VDRfl/fl mice after TAC.

Our finding that cardiomyocyte-specific VDR deletion does not result in LVH under
basal conditions contrasts with the findings reported by Chen et al. [21]. The latter authors
suggested that ablation of the VDR in cardiomyocytes results in LVH, both at baseline
and after isoproterenol infusion in comparison to WT controls. Given that both studies
employed the same Cre driver mouse line, the difference cannot be explained by specificity
of Cre expression. The Cre driver mice used are a knock-in model in which parts of the
Mlc2v gene were replaced by a Cre cassette [25]. In line with prior studies [26], our data
show that Mlc2v (Myl2) haploinsufficiency does not result in a cardiac phenotype. In
contrast, homozygous Mlc2v mutant mice develop a severe phenotype and die before
birth [25]. The discrepancies between our findings and those of Chen et al. [21] might
stem from the use of different VDR floxed mice: our model targets exon 3 [24], whereas
theirs targets exon 4 of the VDR gene [21]. Nonetheless, both gene targeting strategies
are expected to result in complete VDR inactivation. A more plausible explanation for
the discrepancies could be differences in knockout approach: Chen et al. [21] used Mlc2v
Cre-expressing VDRfl/- mice as tissue-specific knockout model, i.e., VDR floxed mice on
a heterozygous global VDR deficient background. This is a major difference from our study,
and likely explains the more severe phenotype in their study [21] due to the interaction
between cardiomyocyte-specific VDR deletion and global VDR haploinsufficiency. In light
of our finding of an altered inflammatory cardiac phenotype in TAC mice lacking VDR in
cardiomyocytes, VDR haploinsufficiency in immune cells may have a major modulating
influence in these experiments.

In addition, we found germline deletion in our Mlc2v Cre model, a frequent problem
encountered with Cre driver mice, which can make tissue-specific conditional knockout
experiments uninterpretable [47]. Mating of Mlc2v Cre-positive VDRfl/wt females with
male VDRfl/wt mice frequently resulted in germline VDR deletion. Germline deletion was
not observed when male Cre-positive VDRfl/wt mice were crossed with female VDRfl/wt

mice. Therefore, we solely utilized paternal inheritance of the Cre allele for the present
study. Germline activation of Cre results in global deletion of the floxed allele. Hence,
depending on the breeding strategy, this problem can result in heterozygous or even
homozygous global deletion of the floxed gene, which in turn may bias the results.

Our finding that mice with a cardiomyocyte-specific deletion of the VDR exhibited
more pronounced LV functional impairment after TAC than controls aligns with a post-hoc
analysis of the EVITA (Effect of VITamin D on All-cause mortality in heart failure) trial. The
latter trial investigated the impact of daily vitamin D supplementation for up to 3 years on
various cardiac functional parameters in patients with advanced heart failure. Although
the trial did not demonstrate any significant correlation between treatment duration and all
examined functional parameters, a noteworthy improvement in cardiac function was noted
in aged patients, indicated by a modest, yet statistically significant, increase in EF [48].

In our spatial transcriptomics analysis, we first applied the SPIN algorithm [29] to
address autocorrelation issues between neighboring spots, enhancing the resolution of
spatial patterns and improving cluster identification between hypertrophic and healthy
heart tissues. This precision allowed for a detailed scrutiny of gene regulatory network
(GRN). The analysis differentiated heart regions into clusters with distinct gene expressions
indicative of normal heart function (outer regions) or stress-induced hypertrophy (inner
regions). Notably, Myh6 was prevalent in the outer, while Myh7 was upregulated in
the inner regions as adaptation to cardiac stress. In the inner region of the VDRCM-KO

TAC heart, a more inflammatory profile was evident compared to the VDRfl/fl TAC heart,
characterized by small regulatory differences and activation of unique complement and
IL-9 pathways through de novo mechanistic GRNs driven by Mafg, Mafk, and Irf7.
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VDR deficiency in the inner, stressed region also correlated with fibrosis-promoting
regulatory networks. This finding is in agreement with the upregulation of Col1a1 transcrip-
tion assessed by qRT-PCR (Figure 2G). Hence, the more pronounced fibrosis-promoting
regulatory networks in the inner region of VDRCM-KO TAC hearts may translate into aug-
mented cardiac fibrosis at later time points than the 4 weeks post-TAC used in the current
study. CEBPB-driven GRNs appeared to be characteristic of the VDRCM-KO TAC heart
across the tissue niches. Yet, the specific genes targeted by these GRNs differed, likely
reflecting the diverse microenvironmental influences. Given that CEBPB is influenced
by the vitamin D pathway [49], the absence of VDR may explain its aberrant regulatory
network. Conversely, the VDRfl/fl mouse had more protective regulatory patterns in the
inner, stressed region. We hypothesize that the LV functional impairment associated with
VDR deficiency in cardiomyocytes after TAC is the consequence of the more inflammatory
phenotype in the inner, stressed regions of the hypertrophic heart. This inflammatory
response, coupled with fibrosis-driving GRNs, could potentially explain the observed
exacerbation of HFrEF in VDRCM-KO TAC mice. It is conceivable that the loss of VDR sig-
naling in cardiomyocytes may lead to a more uncontrolled inflammatory response, which
in turn may worsen cardiac function. It is interesting to note in this context that CEBPB
expression in leukocytes has been linked to muscle function in observational studies [50],
corroborating the association between inflammatory processes and muscle function.

A limitation of the current study is that we could compare only one heart cryosection
of VDRCM-KO and VDRfl/fl TAC mice each in spatial transcriptomics analysis. Nevertheless,
our study has uncovered that conditional ablation of the VDR in cardiomyocytes leads
to a more pronounced pro-inflammatory and pro-fibrotic gene regulatory phenotype in
the inner, more stressed tissue niche in the TAC-induced LVH model. Future studies
will be needed to fully unravel the underlying molecular mechanisms of action. A better
understanding of the interaction between vitamin D signaling and heart function may
eventually lead to new treatment approaches in patients with heart failure.

4. Material and Methods
4.1. Animals

All animal procedures were approved by the Animal Welfare Committee of the Aus-
trian Federal Ministry of Education, Science and Research and were undertaken in ac-
cordance with prevailing guidelines for animal care and welfare (BMWFW-68.205/0188-
WF/V/3b/2017). All studies were carried out in male mice at 4–5 months of age. Genotype
was assessed by PCR on genomic DNA isolated from mouse ear punches. Throughout
the experiments, mice were housed at 24 ◦C with a 12 h light-dark cycle. They were fed
a commercial rodent chow (Sniff, Soest, Germany), and had free access to food pellets and
tap water. At necropsy, mice were euthanized by exsanguination from the abdominal
vena cava under general anesthesia with ketamine/medetomidine (100/0.25 mg/kg) for
serum collection.

4.2. Transverse Aortic Constriction (TAC)

The TAC procedure was performed to induce pressure overload and cardiac hypertrophy,
as previously described [22]. Briefly, mice were anesthetized with ketamine/medetomidine
(100/0.25 mg/kg i.p.), intubated, and ventilated using a small animal ventilator (Model 845,
Harvard Apparatus, Holliston, MA, USA). The chest was opened via a midline sternotomy,
and the transverse aorta was ligated using a 6-0 silk suture tied around a 27-gauge needle.
The needle was then promptly removed, creating a stenosis in the aortic arch. Sham-operated
animals underwent the same surgical procedure except that the ligature was not tied. After the
TAC or sham procedure, the chest was closed in layers and the animals were allowed to recover
on a warming pad. Buprenorphine (0.25 mg/kg s.c.) was administered subcutaneously every
24 h for four days to alleviate pain and enrofloxacin (10 mg/kg s.c.) for five days to prevent
infection. Four weeks after the surgery, mice were sacrificed as stated above.
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4.3. Doppler Echocardiography

Transthoracic in vivo echocardiography was performed to assess cardiac function
using a linear transducer system (Accuson s2000tm, Siemens, Munich, Germany) equipped
with a 14-MHz probe, as previously described [22]. Briefly, mice were anesthetized with
1.5% isoflurane and positioned in the supine position on a heating pad. M-mode images
were obtained from the parasternal short-axis view at the level of the papillary muscles
to measure left ventricular (LV) wall thickness and chamber dimensions (LVIDd, LVIDs,
LVAW, and LVPW thickness). Fractional shortening (FS) and ejection fraction (EF) were
calculated from these dimensions. At least five cardiac cycles were averaged for each
measured parameter.

4.4. Central Arterial and Cardiac Pressure Measurements

Central arterial pressure was measured by inserting a SPR-671 micro-tip catheter
(1.4 Millar Instruments, Houston, TX, USA) into the ascending aorta via the right carotid
artery under 1.5% isoflurane anesthesia. The catheter was then further advanced into the
left ventricle for cardiac pressure measurements. Pressure waveforms were recorded for
at least three minutes after stable hemodynamic parameters were achieved and analyzed
via LabChart7 software (V. 7.3.8, ADInstruments, Dunedin, New Zealand). Mean arterial
blood pressure was calculated as 2/3 diastolic pressure plus 1/3 systolic blood pressure.

4.5. Biochemical Analysis

Serum levels of phosphate and calcium were measured using a Cobas c111 analyzer
(Roche, Mannheim, Germany). Serum was extracted with diethylether and resuspended
in steroid-free serum (DRG Diagnostics, Marburg, Germany) for the aldosterone ELISA
(DRG Diagnostics).

4.6. Tissue Harvesting and Histological Analysis

Hearts were harvested and fixed in 4% formalin. Paraffin-embedded sections at 5-µm
thickness were stained with FITC-conjugated wheat germ agglutinin (WGA) to evaluate
cardiomyocyte size and picrosirius red (PSR) to assess collagen deposition and fibrosis in
the heart as described previously [51]. Images were taken using a Zeiss LSM 880 Airyscan
confocal microscope. Cardiomyocyte size and fibrotic areas were assessed with ImageJ
(National Institutes of Health) with the investigator blinded for the experimental conditions.

4.7. RNA Isolation and Quantitative Real-Time PCR

Hearts were harvested from mice and snap-frozen in liquid nitrogen. Total RNA was
extracted from heart tissue using a TRI Reagent solution (Applied Biosystems, Thermo
Fischer Scientific, Waltham, MA, USA) as described previously [51,52]. The purity and
integrity of the extracted RNA were assessed using electrophoresis (Agilent Tapestation,
Santa Clara, CA, USA). Purified RNA (2 µg) was synthesized into cDNA using the High-
Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Thermo Fisher Scientific,
USA). Quantitative RT-PCR was performed on the QTower device (Analytic Jena, Jena,
Germany) using Fast Eva Green Kit (Biotium, Fremont, CA, USA) or by TaqMan probe,
depending on the assay. All samples were measured in triplicate and normalized to either
one reference gene (Dpm1) for Fgf23, Col1a1, and Bnp expression, or two reference genes
(Txnl4a and Dpm1) for VDR expression. The 2−∆∆Ct standard method was employed to
calculate the relative expression level of genes.

4.8. Statistical Analysis of Phenotyping Data

All phenotyping data are expressed as mean ± standard error of the mean (SEM).
Sample sizes were determined by analysis based on data collected by our laboratory in
published studies [22,51,52]. Statistical analysis of the data was carried out using GraphPad
Prism software (GraphPad Software 8.3.0, San Diego, CA, USA). Comparison between
groups was made using one-way analysis of variance (ANOVA) followed by Student–
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Newman–Keuls test for multiple comparisons. Differences were considered statistically
significant at values of p < 0.05.

4.9. Spatial Transcriptomics and Bioinformatic Analysis

Heart cryosections were air-dried, fixed in methanol at −20 ◦C, and stained with
hematoxylin-eosin (HE) according to standard 10× Genomics protocols. Prior to hybridiza-
tion, high resolution images of the HE-stained sections were taken. Spatial transcrip-
tomics were performed according to standard procedures at the Genomics Core Facility
of the Medical University Vienna, using the mouse 10× Genomics Fresh-frozen v2 kit on
a CytAssist machine.

4.9.1. Spatial Transcriptomics Data Preprocessing

Spatially resolved transcriptomic datasets from heart sections of TAC VDRCM-KO and
VDRfl/fl mice were processed using Scanpy [53]. We performed quality control by filtering
out spatial spots with low and extreme total RNA counts (<2500 and >20,000 counts) and
genes detected in fewer than 20 spots (Supplementary Figure S4).

4.9.2. Data Integration

The SPIN algorithm [29] integrated TAC VDRCM-KO and VDRfl/fl datasets, address-
ing batch effects while retaining spatial information. Dimensionality reduction via PCA
and spatial pattern visualization through UMAP facilitated the identification of unique
expression domains through Leiden clustering.

4.9.3. Differential Expression and Marker Identification

We employed Scanpy’s differential expression analysis to find genes differentiating
spatial tissue niches across VDRCM-KO and VDRfl/fl conditions. Selected markers were
visualized across tissue sections, linking gene expression patterns to spatial regions.

4.9.4. Functional Enrichment Analysis

GO (Gene Ontology) enrichment analysis, conducted with GSEApy [54] against differ-
ent gene sets, such as comprehensive biological process, cellular component, and molecular
function databases, elucidated the functional landscapes of spatially variable genes, identi-
fying potential biological functions of observed spatial expression patterns.

4.9.5. Differential Gene Regulatory Network Analysis

We conducted a comparative analysis using DiNiro [39] to examine the differences
in gene regulatory networks between spots from the 1_KO region (region 1 in VDRCM-KO)
and those from 1_fl (region 1 in VDRfl/fl). DiNiro is a computational tool designed to
unravel regulatory mechanisms from single-cell data, providing valuable insights into gene
expression patterns. Our analysis utilized the following parameters: number of subsamples
= 10, sub-sampling size (%) = 80, occurrence threshold (%) = 100, significance cutoff = 0.05.
For further details regarding parameter selection and their implications, we refer to the
DiNiro publication [39].

4.9.6. Co-Expression Modules and Gene-Regulatory Networks (GRN)

We employed SCANet [55] to investigate differences in gene co-expression networks
(GCNs) among various spatial regions in the integrated dataset using the 6000 highly
variable genes. SCANet inferred de novo GCN modules from the spatial data and analyzed
region associations, identifying modules with altered expression in specific regions. These
GCNs were further converted to gene regulatory networks (GRNs), and we conducted
a drug repositioning analysis based on these networks.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms25115929/s1.
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