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Abstract
The role of balancing selection is a long-standing evolutionary puzzle. Balancing selection is a crucial evolutionary 
process that maintains genetic variation (polymorphism) over extended periods of time; however, detecting it poses 
a significant challenge. Building upon the Polymorphism-aware phylogenetic Models (PoMos) framework rooted in 
the Moran model, we introduce a PoMoBalance model. This novel approach is designed to disentangle the interplay 
of mutation, genetic drift, and directional selection (GC-biased gene conversion), along with the previously unex
plored balancing selection pressures on ultra-long timescales comparable with species divergence times by analyzing 
multi-individual genomic and phylogenetic divergence data. Implemented in the open-source RevBayes Bayesian 
framework, PoMoBalance offers a versatile tool for inferring phylogenetic trees as well as quantifying various select
ive pressures. The novel aspect of our approach in studying balancing selection lies in polymorphism-aware phylo
genetic models’ ability to account for ancestral polymorphisms and incorporate parameters that measure frequency- 
dependent selection, allowing us to determine the strength of the effect and exact frequencies under selection. We 
implemented validation tests and assessed the model on the data simulated with SLiM and a custom Moran model 
simulator. Real sequence analysis of Drosophila populations reveals insights into the evolutionary dynamics of re
gions subject to frequency-dependent balancing selection, particularly in the context of sex-limited color dimorph
ism in Drosophila erecta.

Key words: polymorphism-aware phylogenetic models, balancing selection, GC-biased gene conversion, Bayesian in
ference with MCMC, site frequency spectrum, species trees.

Introduction
Balancing selection (BS) represents a form of natural selec
tion that maintains beneficial genetic diversity within popu
lations (Bitarello et al. 2023). Multiple mechanisms 
contribute to maintaining variation, such as the heterozy
gote advantage or overdominance (heterozygous indivi
duals having higher fitness), frequency-dependent 
selection (an individual’s fitness depends on the frequencies 
of other phenotypes or genotypes), antagonistic selection 
(in contexts like sexual conflicts or tissue-specific antagon
ism), and selection that changes through time or space in 
population. The evidence for BS is extensive, including ex
amples from immune response such as the major histocom
patibility complex (MHC) (Andrés et al. 2009; Spurgin and 
Richardson 2010; Bitarello et al. 2018), pathogen resistance 
(Bakker et al. 2006), plant and fungi self-incompatibility 
(Lawrence 2000; Castric and Vekemans 2004), and sex- 
related genes (Charlesworth 2004; Connallon and Clark 
2014; Mank 2017; Kim et al. 2019).

BS finds its roots in the “balance hypothesis”, according to 
which populations exhibited high levels of diversity, with nat
ural selection maintaining a balance among different alleles 
(Dobzhansky 1955). Historically, the classical theory dimin
ished the ubiquity of the balancing hypothesis by explaining 
the evolution of populations through the interplay of 
mutations and purifying or positive selections with varying 
strengths. However, BS remains a valuable concept for ex
plaining the persistence of polymorphisms over extended per
iods. According to Bitarello et al. (2023), three types of BS can 
be defined based on the acting timescales. Assuming the ef
fective population size (Ne = 106; Sprengelmeyer et al. 
2020), generation time (10 days; Fernández-Moreno et al. 
2007), and the divergence times between Drosophila erecta 
and Drosophila orena species (3 × 106 years; Yassin et al. 
2016), which are studied here, one can translate these time
scales into calendar times. In this context, BS can be categor
ized as ultra-long-term (>3.7 × 106 years), long-term (>105  

years), and recent (<105 years).

M
ethods 
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The heterozygote advantage stands out as one of the 
initially proposed mechanisms for BS. The textbook ex
ample of this kind of BS is found in human African popula
tions: homozygous individuals for the abnormal version of 
β-globin gene that makes hemoglobin are susceptible to 
sickle-cell disease, while heterozygous individuals exhibit 
resistance to malaria (Laval et al. 2019). In this study, 
even though we are capable of detecting heterozygote ad
vantage as well, we focus more on another well-known 
mechanism of BS called negative frequency-dependent 
BS as defined by Charlesworth and Charlesworth (2010). 
This mechanism is observed when the fitness of one indi
vidual depends on the frequencies of other phenotypes or 
genotypes in the population. Very often, negative 
frequency-dependent selection manifests in the mainten
ance of one or several rare advantageous genotypes in a 
population. In the context of this study, we focus on ultra 
long-term BS (∼5 million years), which leads to sexual di
morphism in female Drosophila erecta resulting in the 
maintenance of dark and light females in the populations. 
The dark females are presumably engaging in mimicry 
among the males to avoid the costs associated with re
peated matings (Yassin et al. 2016).

The role of BS has been a subject of considerable debate 
over the last century (Bitarello et al. 2023). With the ad
vent of new sequencing technologies, there has been a re
newed interest in this phenomenon. Some models, such as 
those based on heterozygote advantage and sexual antag
onism, have been proposed by Connallon and Clark (2014)
and Zeng et al. (2021). While these models are valuable for 
describing allele frequency dynamics in populations, they 
become impractical for inference due to the consideration 
of specific cases of BS that are challenging to generalize and 
increasing computational costs associated with expanding 
parameter space.

Thus, a model that is flexible enough to capture 
the intricate effects of BS yet simple is required for infer
ring frequency-dependent selection. Here, we propose a 
new model that incorporates BS and further integrates it 
into an inference approach. We build upon PoMos, a set 
of models developed over a decade for species tree infer
ence (De Maio et al. 2013, 2015; Schrempf et al. 2016). 
A fast implementation of the PoMo approach for species 
tree inference is available in IQ-TREE (Schrempf et al. 
2019).

Recently, PoMos were extended to account for direc
tional selection (DS) and tested on the GC-biased gene 
conversion (gBGC; Borges et al. 2019; Borges and Kosiol 
2020; Borges et al. 2022b, 2022a). This phenomenon is 
modeled similarly to DS, by setting relative fitnesses for 
C and G alleles higher than those for A and T alleles. 
Furthermore, in the inference setup, DS and gBGC are con
sidered to be equivalent.

Borges et al. (2022b) demonstrated that including the 
effect of gBGC improves the accuracy of branch length es
timation employed for molecular dating. Here, in the con
text of BS, we integrate the modeling of gBGC as it serves as 
the background force. This approach provides a more 

realistic null model, thereby enhancing the estimation of 
BS on experimental data.

PoMos prove to be valuable for modeling and detecting 
BS, as they are rooted in polymorphisms characterized by 
the prolonged existence of multiple genetic variations— 
markers of BS (Bitarello et al. 2023). This phenomenon 
manifests in a shift in the site frequency spectrum (SFS) to
ward an excess of intermediate frequency variants. These 
are sometimes identifiable by a peak in the intermediate 
frequencies of the SFS that cannot be explained by the 
interplay between mutation, genetic drift, and DS, as men
tioned in Charlesworth (2006) and Charlesworth and 
Charlesworth (2010), but by BS. Consequently, these signa
tures are utilized by various frameworks to detect BS.

BS poses a significant challenge to detection methods 
due to its subtle nature, often entangled with structural 
variants and linkage disequilibrium (Charlesworth 2006; 
Fijarczyk and Babik 2015). Recent efforts have been 
made to propose universal and robust frameworks for BS 
detection. The software packages aimed at detecting BS 
are summarized in Table 1. These include methods based 
on genome scans with multiple summary statistics and 
composite likelihood ratio tests (CLRTs; Andrés et al. 
2009; DeGiorgio et al. 2014; Bitarello et al. 2018; Cheng 
and DeGiorgio 2019, 2020, 2022), as well as deep-learning 
methods (Sheehan and Song 2016; Isildak et al. 2021; 
Korfmann et al. 2023). In Table 1, we summarize ap
proaches that are most relevant to our study; for more de
tails, please refer to Bitarello et al. (2023).

The majority of the approaches mentioned above exploit 
long-term BS and are therefore focused on scenarios involv
ing single species. Two exceptions to this are MUlTi-spEcies 
BAlancing Selection Summaries (MuteBaSS) and MULti- 
species LikElihood Tests (MULLET) (Cheng and DeGiorgio 
2019), which operate within the paradigm of ultra-long BS 
and accept multispecies data. Consequently, we utilize these 
packages for comparisons with our approach. Another as
pect of the methods summarized in Table 1 is that the ma
jority of them are trained and tested on human or great ape 
data. Therefore, one must exercise caution when applying 
them to other species. Moreover, unlike other approaches, 
Cheng and DeGiorgio (2022) strive to disentangle DS 
from BS. However, their approach requires intricate infor
mation about populations, such as recombination maps 
and ancestral pairwise alignment files.

By leveraging the advantages of accommodating multi
species data, applicability to most species (excluding bacteria 
and viruses), and incorporating mechanisms for disentan
gling DS from BS, our approach serves as a Bayesian inference 
tool. Our method not only detects selection but also quan
tifies its strength and frequencies, unlike most of the BS de
tection tools that show maximal performance at frequency 
equilibrium close to 0.5. Notably, Non-Central Deviation 
(NCD; Bitarello et al. 2018) and subsequently MuteBaSS 
(Cheng and DeGiorgio 2019), which utilizes modified NCD 
statistics, possess a mechanism to detect BS at frequency 
equilibrium below 0.5. However, these frequencies must 
be pre-defined by the user. BetaScan2 (Siewert and Voight 
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2020) is also capable of detecting equilibrium frequencies, 
but when substitutions are specified, it is outperformed by 
NCD (Cheng and DeGiorgio 2019).

Evaluating the effect of BS remains challenging, requir
ing more model-based approaches (Fijarczyk and Babik 
2015; Bitarello et al. 2023). Specifically, we require 
models that extend beyond heterozygote advantage, in
corporating frequency-dependent selection and integrat
ing both balancing and DS. Our method addresses these 
challenges in a particular manner. Currently, it focuses 
on single genes or groups of genes; however, it holds a 
high potential for parallel implementation. At the mo
ment, it allows analyses across numerous individuals and 
populations over genomic regions, including several hundred 
base pairs. In the future, it is poised to enable genome-wide 
inferences.

Materials and Methods
Modeling the BS with PoMoBalance
In this paper, we introduce the PoMoBalance model 
(depicted in Fig. 1a) that can be regarded as an extension 
of the PoMos with DS introduced by Borges et al. (2019), 
Borges and Kosiol (2020), Borges et al. (2022b), and 
Borges et al. (2022a). We will refer to the latter as 
PoMoSelect henceforth for brevity. Both PoMoSelect and 
PoMoBalance are distinguished in Table 2 and belong to 
the family of models known as PoMos that are continuous- 
time Markov chain models based on the Moran model 
(Moran 1958). The Moran model is a stochastic process 
that simulates a virtual population of N haploid indivi
duals, with the power to incorporate boundary mutations 
and DS. Together with the Wright–Fisher model, they are 

both boundary mutation models. These models treat 
mutations as perturbations from the equilibrium state 
of populations, while selection drives population geno
types to fixation. The frequency-dependent formulation 
of such models makes them attractive for inference, 
since it is relatively easy to implement DS and BS in 
them. Moran model bears similarities to the Wright– 
Fisher model, which counts time in the number of gen
erations. In contrast, the Moran model is continuous- 
time, measuring time in the number of births 
(Lanchier 2017). This characteristic makes the Moran 
model advantageous for phylogeny and experimental 
evolution approaches (Barata et al. 2023) that rely on 
a continuous-time paradigm.

In this paper, we extend the Moran model to include BS 
in a four-allelic system representing the four nucleotide 
bases. The model encompasses 4 + 6(N − 1) distinct 
states, with four monomorphic boundary states, denot
ing scenarios in which all individuals share the same 
allele. In contrast, the intermediate 6(N − 1) states re
present polymorphisms, where some individuals possess 
different alleles. Here, as shown in Fig. 1a, we consider 
only biallelic polymorphisms, where each state represents 
certain frequency n of alleles ai (monomorphic on the 
left) and N − n of aj (monomorphic on the right). 
These alleles signify four nucleotides i, j = {A, C, G, T}. The 
combinations of alleles, indicated as aiaj, represent the 
possible pairs without repetition, namely AC, AG, AT, CG, 
CT, or GT.

The model incorporates mutation rates, μaiaj 
and μajai 

(as illustrated in Fig. 1a), which govern transitions from 
the monomorphic states, representing boundary muta
tions. The parameters of PoMos are defined in Table 3. 
Very often, the reversibility of the model is defined from 

Table 1. Comparison of PoMos with other methods for detection of DS and BS

Function Package Citation Method Multi-species Trained and tested on 
human

DS Detects magnitude and 
frequencies

BetaScan Siewert and Voight 
(2017)

Summary statistics − + − −

Siewert and Voight 
(2020)

BALancing Selection DeGiorgio et al. (2014) CLRT − + − −
LikElihood Test
NCD Bitarello et al. (2018) Summary statistics − − − −
MuteBaSS Cheng and DeGiorgio 

(2019)
Summary statistics + − − −

MULLET Cheng and DeGiorgio 
(2019)

CLRT + + − −

BalLeRMix Cheng and DeGiorgio 
(2020)

CLRT − + − −

BalLeRMix+ Cheng and DeGiorgio 
(2022)

CLRT − + + −

Balancing Selection Isildak et al. (2021) Deep learning − + + −
PoMos Borges et al. (2019) Bayesian inference + − + +
with selection Borges et al. (2022a)
(PoMoSelect +  

PoMoBalance)
This study
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certain symmetries in the parameters. In PoMoSelect, the 
mutation rates are presented as μaiaj

= ρaiaj
πaj and 

μajai
= ρajai

πai , similar to Tavare (1986). Parameters ρajai 

are exhangeabilities of nucleotides (Yang 2014) that spe
cify the relative rates of change between states i and j, 
and πaj are nucleotide base frequencies, giving the equilib
rium frequency at which each base occurs at all sites. If 
ρaiaj

= ρajai
, the model is reversible, otherwise, it is 

nonreversible.
In PoMoSelect, frequency shifts between polymorphic 

states are governed by genetic drift and DS favoring or dis
favoring the reproduction of the ai allele. The fitness values 
are represented by ϕai

= 1 + σai , where σai is a selection 
coefficient. In PoMoBalance, these frequency shifts add
itionally include BS transition rates that are regulated by 
a quantity that we call multiplicative fitness, expressed 

by the following equation for the selected state n as per 
Fig. 1a:

Φ
a∓

i,j
n =

n(N − n)
N􏽼���􏽻􏽺���􏽽

drift

(1 + σai,j )
􏽺���􏽽􏽼���􏽻

DS

β
1/2 |n−Baiaj |−|n∓1−Baiaj |+1
􏼂 􏼃

aiaj
􏽼�������������􏽻􏽺�������������􏽽

BS

,

n = 1, . . . , N − 1,

(1) 

where there are three components: the first fraction corre
sponds to genetic drift or neutral mutations, the second 
multiplier represents DS, modeled similarly to previous 
PoMos. The final term in the form of a power-law function 
characterizes BS. This form of the BS term was derived phe
nomenologically from observations of various SFSs ob
tained from experimental data. It is governed by two key 

a

b

Fig. 1. a) PoMoBalance model, presented as a Markov chain Moran-based model. The boundary states (monomorphic) are denoted by larger 
circles. These states encompass N individuals, with the left side showcasing individuals carrying the ai allele, and the right side representing in
dividuals with the aj allele. In contrast, all the intermediate states, reflecting polymorphic conditions, are displayed using smaller circles. The 
transition rates from the monomorphic states are determined by mutation rates, whereas the transition rates from the polymorphic states 
are governed by the multiplicative fitness as indicated in Equation (1). Additionally, the multiplicative fitness encapsulates not only the DS effect 
but also the influence of BS, which exerts a force toward the state with the preferred allele frequency, Baiaj , represented by dark arrows. If the 
transition occurs against this preferred state, there is no such attracting force, signified by the light crossed arrows. b) A specific instance of the 
PoMoBalance model, featuring a population size of N = 4.

Table 2. PoMo functions and parameters in RevBayes

Function (reference in the text) Description Parameters

fnPomoKN (nonreversible PoMoSelect or 
PoMoSelect)

Describes the evolution of a population with K alleles and N individuals 
subjected to mutational bias and selection

K, N, μ, ϕ

fnReversiblePomoKN (reversible PoMoSelect) Particular case of PoMoKN when mutations are considered reversible K, N, π, ρ, ϕ
fnPoMoBalanceKN (nonreversible PoMoBalance 

or PoMoBalance)
Describes the evolution of a population with K alleles and N individuals 

subjected to mutational bias, selection, and BS
K, N, μ, ϕ, β, 

B
fnReversiblePomoBalanceKN (reversible 

PoMoBalance)
Particular case of PoMoBalanceKN when mutations are considered 

reversible and the preferred frequency is in the middle B = N/2
K, N, π, ρ, ϕ, 

β
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factors: the strength of BS, denoted as βaiai 
(with 

βaiai
> 0), and a preferred frequency denoted as Baiaj . 

The preferred frequency, a natural number within the 
range 0 < Baiaj < N, designates the position of the poly
morphic peak associated with BS in the SFS. Note that 
if βaiai

= 1, the resulting model aligns with the 
PoMoSelect model. We modeled BS in a frequency- 
dependent manner, in which the strength of BS govern
ing the frequency shifts toward a favored frequency. The 
frequency equilibrium, as defined in Charlesworth and 
Charlesworth (2010), Bitarello et al. (2018), Bitarello 

et al. (2023), and Andrés et al. (2009), can be determined 
from our model as Baiaj/N.

Reversibility criteria for PoMoBalance are different from 
those for the PoMoSelect model due to the higher com
plexity of the transition rates from the polymorphic states 
brought by BS terms. PoMoBalance is reversible only if 
exhangeabilities are symmetric and the preferred fre
quency is in the middle of the chain Baiaj = N/2, where 
N is even (for more details, see supplementary material 1, 
Supplementary Material online).

Furthermore, we always assume that both Baiaj and βaiai 

are symmetric. The strength of BS operates similarly to 
DS, but rather than favoring the fixation of alleles, it promotes 
the persistence of polymorphisms. In Fig. 1a, we visualize this 
additional attraction toward the preferred polymorphic state 
with dark arrows when βaiai

> 1. After replacing variables and 
simplifying the expressions with power terms, the transition 

rates become Φ
a∓

i,j
n = (n(N − n)/N)ϕai,j

βaiaj
, if n < Baiaj , and 

the absence of the BS attractor is indicated with light crossed 

arrows in the figure when Φ
a∓

i,j
n = (n(N − n)/N)ϕai,j

, if 
n ≥ Baiaj . To provide a more concrete example, we represent 
the transition rates of a population with N = 4 individuals in 
Fig. 1b, where the preferred frequency is B = 2. It is important 
to note that in cases where βaiai

< 1, we do not model BS, but 
instead a form of purging selection occurs that leads to the 
removal of polymorphisms more than expected by drift 
(for a detailed explanation, see supplementary material 1, 
Supplementary Material online).

In the broader context, the PoMoBalance model can be 
characterized through the instantaneous rate matrix de
noted as Q, where each specific transition rate within the 
model corresponds to an element of this matrix

q{nai ,(N−n)aj}→{mai ,(N−m)aj} =

μaiaj
if n = N, m = N − 1,

μajai
if n = 0, m = 1,

n(N − n)
N

(1 + σai )β
1/2 |n−Baiaj |−|n+1−Baiaj |+1
􏼂 􏼃

aiaj if m = n + 1,

n(N − n)
N

(1 + σaj )β
1/2 |n−Baiaj |−|n−1−Baiaj |+1
􏼂 􏼃

aiaj if m = n − 1,

0 if |m − n| > 1,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2) 

where the variables n and m represent neighboring states 
as illustrated in Fig. 1a. This matrix summarizes the 
PoMoBalance model, depicting transitions from mono
morphic states regulated by mutation rates and from poly
morphic states governed by Equation (1). Since 
PoMoBalance is the Moran-based model, the allele fre
quency shifts exceeding one are prohibited, as specified 
in the final condition outlined in Equation (2). The diag
onal elements of this matrix are determined such that 
the sum of each respective row is equal to zero.

Both the PoMoSelect and PoMoBalance models have 
been incorporated into a Bayesian phylogenetic inference 

framework RevBayes (Höhna et al. 2016, 2017, 2018; Borges 
et al. 2022a), available at https://revbayes.github.io/, em
ploying a probabilistic graphical model representation.

Bayesian Inference Using PoMoBalance with 
RevBayes
The advantage of using RevBayes for implementing PoMos 
is the flexibility of the use of probabilistic graphical models 
allowing us to combine complex models while taking 
advantage of communicating them with users through 
extensive tutorials and discussion forums. RevBayes em
ploys a Bayesian inference based on the Markov chain 

Table 3. Parameters of PoMos in the four-allelic case

Parameter Variable or vector Description

ai,j A, C, G, T Nucleotide bases
aia j AC, AG, AT, CG, CT, GT Pairwise 

combinations of 
nucleotide bases

N N Effective 
population size

μaiaj
μ = (μAC , μAG , μAT , μCG , μCT , μGT , Mutation rates

μCA , μGA , μTA , μGC , μTC , μTG)
μaiaj

= ρaiaj
πaj μ = (μAC , μAG , μAT , μCG , μCT , μGT) Reversible 

mutation rates
πai,j π = (πA , πC , πG , πT) Nucleotide base 

frequencies
ρaiaj

ρ = (ρAC , ρAG , ρAT , ρCG , ρCT , ρGT) Exhangeabilities
ϕai,j

ϕ = (ϕA , ϕC , ϕG , ϕT) Fitnesses
σai,j = ϕai,j

− 1 σsel = (σA , σC , σG , σT) Selection 
coefficients

[if σA = σT = 0, σ = σC = σG] (GC-bias rate)
βaiaj

β = (βAC , βAG , βAT , βCG , βCT , βGT) Strength of BS
Baiaj [Baiaj/N] B = (BAC , BAG , BAT , BCG , BCT , BGT) Preferred 

(equilibrium) 
frequencies of BS
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Monte Carlo (MCMC) sampler and it is an open-source 
framework for phylogenetic inference, molecular dating, 
discrete morphology, and ancestral state reconstruction 
(Höhna et al. 2016, 2017, 2018; Borges et al. 2022a). Our in
tegration of PoMoBalance into RevBayes enables users to 
perform phylogenetic tree inference, DS analysis, and 
now, identify BS. Unlike previous methods for detecting 
BS discussed earlier, our software not only detects BS 
but also quantifies its strength and identifies the 
alleles and their frequencies under selection. For 
detailed instructions on implementing RevBayes scripts 
with PoMoBalance, please refer to the PoMoBalance 
tutorial available at https://revbayes.github.io/tutorials/ 
pomobalance/.

In PoMos’ data input, count files are employed, which 
can be generated from format for nucleotide ( FASTA) 
sequences of multiple individuals and species or VCF 
(Variant Call Format) files with the corresponding refer
ence using the cflib package available on GitHub at 
https://github.com/pomo-dev/cflib (Schrempf et al. 
2016). Additionally, we include scripts to correct for sam
pling biases, which can be helpful when the number of in
dividuals sampled from populations varies and when it 
differs from the PoMo population size. These biases may 
emerge from undersampling genetic diversity, where poly
morphic sites sampled from larger populations may erro
neously appear monomorphic. To address this, the 
binomial sampling method, as initially proposed by 
Schrempf et al. (2016), assists in smoothing out sampling 
biases at the tips of a phylogenetic tree.

Additionally, PoMoSelect includes a rescaling tool 
for adjusting inferred parameters across different 
population sizes. Parameters calculated in the PoMos, ori
ginally in terms of virtual population sizes, can be rescaled 
to represent the actual population sizes. This rescaling 
is achieved using the mapping method introduced by 
Borges et al. (2019) and explained in the context of 
PoMoBalance in supplementary material 2, Supplementary 
Material online.

RevBayes offers several PoMo functions tailored to 
different inference scenarios, including fnPomoKN, 
fnReversiblePomoKN, fnPomoBalanceKN, and 
fnReversiblePomoBalanceKN. The first two func
tions are discussed in detail by Borges et al. (2022a). The 
roles and input parameters for each function are summar
ized in Table 2.

They are designed to infer data from K alleles, with the 
most common scenario involving K = 4, although other op
tions (e.g. K = 2) are also available. Additionally, RevBayes 
accommodates the parameters of the PoMoBalance model 
outlined in section “Modeling the BS with PoMoBalance” 
and Table 3. These include the virtual population size N, 
mutation rates μ represented through nucleotide base fre
quencies π, and exhangeabilities ρ in the reversible case. 
Additionally, it includes a vector encompassing allele fit
nesses ϕ, which, in our case, reflects gBGC as previously 
studied by Borges et al. (2019). We sometimes mention 
DS and gBGC interchangeably since the latter is modeled 

similarly to DS, with higher relative fitness for C and G alleles 
compared to A and T alleles. It is represented by the vector 
ϕ = (1, 1 + σ, 1+ σ, 1), where σ is a GC-bias rate. We also 
define two vectors for the strength and location of the BS 
peak for each combination of alleles β and B.

For the Bayesian inferences conducted here, we employ 
dnDirichlet priors (concentration 0.25 for all alleles) 
on base frequencies π and mvBetaSimplex moves 
due to their sum-to-unity nature. For ρ, σ, and β, 
dnExponential priors are chosen as appropriate 
priors for positive real parameters with rates 10, 10, and 
1, respectively, similar for all combinations of alleles. We 
use standard mvScale moves for these variables, but if 
they exhibit correlation, we may introduce additional 
moves like mvUpDownScale, mvAVMVN, mvSlice, 
or mvEllipticalSliceSamplingSimple to 
mitigate the correlation. In some cases, we observed a cor
relation between σ and β, and incorporating the 
mvAVMVN move helped to resolve it for some chains. 
The preferred frequency B is a positive natural number 
within the range 0 < B < N, and Uniform priors in this 
range are set. The variable is rounded on each MCMC 
step to obtain discrete results. We introduce two moves, 
mvSlide and mvScale, to enhance parameter space 
exploration. Such a technique leads to faster convergence 
compared to UniformNatural prior and discrete vari
able moves. We assign different weights to each move; 
however, the specific values are less critical since autotun
ing of weights occurs during the MCMC burn-in period. 
Our analysis involves running both the Metropolis– 
Hastings MCMC sampler (mcmc), and where relevant, 
the Metropolis-coupled MCMC sampler or MC3 

(mcmcmc), which includes high-temperature and cold 
chains to overcome local minima. Both versions normally 
run four parallel chains to ensure convergence. The num
ber of MCMC steps required for convergence (ESS > 200) 
for different types of analyses is depicted in Fig. 2.

Data Simulation, Analysis, and Inference
Extensive testing of PoMoBalance has been conducted 
across multiple scenarios, employing data simulated 
through different techniques. Each scenario is summarized 
in Fig. 2.

First, we conducted a built-in validation analysis within 
RevBayes. This analysis is based on the simulation-based 
calibration procedure (Talts et al. 2020), the approach 
used to test the accuracy of parameter inference through 
the following steps: 

1) Drawing 1,000 random parameter values and a ran
dom five-species trees with uniform topology from 
the priors.

2) For each drawn parameter value simulating data 
sample with 1,000 nucleotide sites.

3) Performing MCMC inference for each sample.
4) Calculating coverage probabilities.

Braichenko et al. · https://doi.org/10.1093/molbev/msae138 MBE

6

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/7/m
sae138/7709777 by Veterinary M

edicine U
niversity Vienna user on 23 Septem

ber 2025

https://revbayes.github.io/tutorials/pomobalance/
https://revbayes.github.io/tutorials/pomobalance/
https://github.com/pomo-dev/cflib
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae138#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae138#supplementary-data


Coverage probabilities (Talts et al. 2020) are estimated 
based on the observation that 90% (or any arbitrary per
centage) of credible intervals obtained with MCMC should 
contain the simulated parameter value in 90% of the sam
ples. Simulation-based calibration leverages the frequentist 
properties of Bayesian inference. The advantage of this ap
proach is its ability to simultaneously test the model across 
various parameters and multiple five-species trees. 
Additionally, we calculate the scores for tree topology, 
measured by mean Robinson–Foulds distances (Höhna 
et al. 2018), inferring tree topologies especially for large 
trees known to be a notoriously challenging task 
(Cavalli-Sforza and Edwards 1967). The deliberate choice 
of a small virtual population size, N = 4, aims to test our 
models with minimal computational cost, as previous find
ings suggest that performance tends to remain consistent 
even with an increase in N (Borges et al., unpublished). We 
also conducted tests with N = 6, yielding similar perform
ance. However, testing with higher values of N becomes 
challenging due to the increasing computational cost asso
ciated with larger values. Nonetheless, we anticipate that 
the performance would remain consistent.

Subsequently, a custom five-species tree (refer to Figs. 2
and 4a) was simulated using a Moran simulator in 
RevBayes. In this analysis, we utilize a five-species tree, as 
most methods for detecting ultra-long-term BS focus on 
testing fixed trees with four species or fewer (Cheng and 
DeGiorgio 2019). Our simulations cover timescales asso
ciated with long-term or ultra-long-term BS, as this ex
ample is not tied to any specific species. Here, we 
maintain the tree fixed to ensure better performance of 
the method. We recommend employing PoMoSelect for 
tree inference initially, as it has demonstrated better per
formance in inferring tree topologies (refer to Fig. 3). In 

testing the PoMoBalance approach, our focus is primarily 
on inferring gBGC and BS parameters. We simulate the se
quences under the same model to ensure the precise re
covery of parameters from data simulated under the 
similar models but in diverse evolutionary settings, includ
ing drift, gBGC, BS, and a combination of BS and gBGC. For 
most of the values, we simulated 105 genomics sites, while 
for the intertwined scenario of weak BS (βaiaj

= 1.5) and 
gBGC (σ = 0.05), we required 8 × 105 to achieve satisfac
tory convergence.

Furthermore, we assessed the performance of our pack
age using data simulated within the evolutionary frame
work SLiM (Haller and Messer 2019). In this test, we 
used a tree including four great ape species: orangutans 
from Borneo and Sumatra islands, chimpanzees, and hu
mans (refer to Figs. 2 and 4c and supplementary Fig. S1, 
Supplementary Material online). This tree had been previ
ously estimated without BS using PoMos by Schrempf et al. 
(2016). In this setup, we simulate ultra-long-term BS and 
we first infer the tree with PoMoSelect. Subsequently, for 
the PoMoBalance analysis, we maintain the tree topology 
fixed and infer tree branch lengths alongside other para
meters. The great ape species are of particular interest in 
the context of our paper as they exhibit several well- 
documented instances of BS, such as those observed in 
the MHC locus (Cagan et al. 2016). Another classical ex
ample of heterozygote advantage is sickle-cell disease, ex
tensively studied in humans, however, its role in other 
great ape species remains a subject of debate (Laval et al. 
2019). In SLiM simulations, we implemented heterozygote 
advantage within the great apes tree to simulate BS. Unlike 
the Moran simulator, SLiM simulations incorporated three 
regimes: drift, gBGC, and BS, excluding combination of BS 
and gBGC. This adjustment was necessary due to the 

Fig. 2. Testing scenarios for PoMoBalance include various types of trees, tree topologies, parameters of PoMos utilized in the tests, sequence 
lengths, and the number of MCMC steps. Simulation-based calibration involves data simulated under 1,000 parameters sampled from priors, 
while the Moran and SLiM frameworks also rely on simulated data for several values of σ and β. Additionally, we employ experimental data 
extracted from various subspecies of Drosophila.
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heterozygote advantage overpowering gBGC in SLiM. 
Other features not explicitly considered by the Moran 
model but simulated in SLiM are genetic recombination 
and demography. Refer to supplementary material 3, 
Supplementary Material online, for more details on SLiM 
simulations.

Following this, we applied PoMoBalance to real datasets 
exhibiting BS associated with sexual dimorphism in 
Drosophila erecta females (Yassin et al. 2016). This case 
was chosen to exemplify ultra-long-term negative 
frequency-dependent BS in sexual selection, a topic of in
creasing interest (Croze et al. 2017). Please refer to Fig. 2, 
for details of the inference, and data availability details. 
Sequences were obtained for the tan gene in the tMSE re
gion. In addition to Drosophila erecta dark (seven indivi
duals) and light (nine individuals), we extract data of 
multiple individuals from four closely related subspecies: 
D. santomea (10 individuals), yakuba (15 individuals), mel
anogaster (22 individuals), and simulans (18 individuals). 
We inferred trees in two cases: when all six subspecies 
were involved, and in the four-subspecies case, where we 
discarded D. santomea and yakuba due to poor quality 
of sequences. We performed the sequence alignment using 
MAFFT software (Rozewicki et al. 2019), filtered out sites 
containing more than 50% missing data and converted 

them into count files using the cflib package (Schrempf 
et al. 2016). The final sequences contained ∼ 400 sites. 
For the neutrality analyses performed with Tajima’s D 
(Tajima 1989) and Hudson-Kreitman-Aguade (HKA)- like 
(Begun et al. 2007) tests, we also used 5-kb upstream 
(∼ 400 sites) and 10-kb downstream (∼ 900 sites) regions 
that are known to be neutral. The data analysis pipeline is 
available in the supplementary repository (https://github. 
com/sb2g14/PoMoBalance).

Results
Validation Analysis for PoMoSelect and PoMoBalance
To validate the implementations of PoMoSelect and 
PoMoBalance, as depicted in Fig. 3, we employ the 
simulation-based calibration procedure implemented in 
RevBayes (Talts et al. 2020). In our study, we evaluate 
both the PoMoSelect model with DS proposed previously 
by Borges et al. (2022a) and the model that incorporates 
directional and BS (PoMoBalance), as outlined in section 
“Modelling the BS with PoMoBalance”.

In Fig. 3, we conduct simulation-based calibration for 
four PoMo functions (see Table 2) in both reversible and 
nonreversible implementations, simulating the trees with 

a b

c d

Fig. 3. Coverage probabilities determined through validation analysis within RevBayes, employing distinct computational routines for reversible 
scenarios: a) PoMoSelect and b) PoMoBalance, as well as for nonreversible scenarios: c) PoMoSelect and d) PoMoBalance. The dashed lines in
dicate 90% CIs and fixed virtual population size for all cases was N = 4.

Braichenko et al. · https://doi.org/10.1093/molbev/msae138 MBE

8

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/7/m
sae138/7709777 by Veterinary M

edicine U
niversity Vienna user on 23 Septem

ber 2025

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae138#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae138#supplementary-data
https://github.com/sb2g14/PoMoBalance
https://github.com/sb2g14/PoMoBalance


five taxa and a uniform topology. The markers in the figure 
represent coverage probabilities for various parameters, in
cluding tree branch lengths (stars), fitnesses (ϕ, diamonds), 
nucleotide base frequencies (π, X unfilled), exhangeabilities 
(ρ, circles), mutation rates (μ, pluses unfilled), BS strengths 
(β, triangles left), preferred frequencies (B, pluses), and top
ology (octagons). Different marker types distinguish values 
corresponding to different alleles or their combinations as 
per Table 3. Notably, nucleotide base frequencies exhibit a 
single coverage probability due to their origin from 
dnDirichlet. For fitnesses, they are relative by defin
ition, with one of them always taking value of 1. 
Therefore, three coverage probabilities are observed in
stead of four. The 90% confidence bounds for MCMC 
are shown by red dashed lines. The scores for topologies 
and branch lengths are best estimated for the nonrever
sible PoMoSelect, presumably it has fewer degrees of 
freedom, reducing the likelihood of encountering local 
minima during inference. Therefore, in this paper, we ad
here to a combined approach using PoMoSelect for tree 

or tree topology estimation and PoMoBalance for esti
mating gBGC and BS.

Despite using a small virtual population size (N = 4) for 
computational efficiency, the majority of coverage prob
abilities lie within or very close to the confidence bounds, 
ensuring the validity of the implementations. The analysis 
of larger population sizes (N = 6) has shown equivalent 
performance.

Testing PoMoBalance on the Data Generated with 
Moran and SLiM Simulators
In this subsection, we assess the performance of the 
PoMoBalance model using data simulated under various 
evolutionary scenarios with two different simulators. The 
details for the data generated with the first simulator, re
ferred to as the Moran simulator, are depicted in Figs. 2, 
4a,b, and 5a–c. In this analysis, we utilize RevBayes and 
our PoMoBalance implementation to simulate PoMo 
states from the nonreversible Moran model for generality, 
employing pre-selected parameter values akin to the 

a

c d

b

Fig. 4. a) Phylogenetic tree simulated using the Moran simulator within RevBayes, the branch lengths are expressed in numbers of generations; 
the tree remains fixed for these analyses. b) SFS of the data with BS simulated using the Moran model with N = 6 (stars), with the tree from 
(a) exhibiting good agreement with the SFS obtained from the inference using PoMoBalance (diamonds); the inset magnifies the BS peak. 
c) Phylogenetic tree of great apes simulated with SLiM and subsequently inferred with RevBayes, the branch lengths are expressed in the number 
of substitutions per site. Posterior probabilities are indicated at the nodes. Images are distributed under a Creative Commons license from 
Wikimedia and Microsoft. d) Comparison of the SFS with N = 10, akin to (b), obtained from the simulated data with SLiM and the tree 
from (c). The SFS representation (aiaj) includes AC, AG, AT, CG, CT, and GT, demonstrating similarity in all cases.
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scenario described in the previous subsection. However, in 
this case, we employ a custom phylogenetic tree depicted 
in Fig. 4a, use only a few parameter sets (shown in Fig. 2), 
and omit the calculation of coverage probabilities. Instead, 
we evaluate how far the inferred values deviate from the 
true values for a range of σ and β, as illustrated in Fig. 6. 
Note that the accuracy of the inference decreases and con
fidence intervals (CIs) increase with an increase in σ and β, 
but still the latter intersect the true values. In the case 
where σ = 0.05 and β = 1.5, we had to increase the number 
of sites from 105 to 8 × 105 for better convergence. The CIs 
are the largest for β = 1, corresponding to the case where 
there is no BS, leading to significant uncertainty in learning 
preferred frequencies, which affects other parameters.

Additionally, we compare the SFS for σ = 0.1 and β = 2 
in Fig. 4b, calculated from the simulated data depicted by 
stars, with theoretical predictions derived using para
meters inferred with PoMoBalance illustrated with dia
monds. The SFSs agree quite well despite slight 
inaccuracies in inferring parameters. The theoretical pre
dictions are estimated numerically from the PoMo matrix 
in Equation (2), using the Markovian property dP(t)/
dt = P(t)Q, where P(t) = exp(tQ). By matrix exponenti
ation at very long times (t = 106), we obtain the stationary 
distribution for the PoMo states, which coincides with the 
SFS. Further details about stationary frequencies in the 
PoMoBalance model can be found in supplementary Fig. 
S1, Supplementary Material online.

a b c

d e f

Fig. 5. Posterior distributions of inferred parameters compared to their expected values. Subplots a), b), and c) employ the Moran model simu
lator, in Fig. 4a and b. Conversely, subplots d), e), and f) use the SLiM simulator, corresponding to Fig. 4c and d. Data simulations encompass four 
regimes: D for drift, GC for gBGC, BS for balancing selection, and GC + BS for the combination of gBGC and BS. Inference methods include BalFB, 
representing inference with PoMoBalance while fixing preferred frequencies B, and Bal, representing regular inference with PoMoBalance. True 
values are indicated by dashed and dot-dashed lines. a) Posterior plots for the GC-bias rate σ, with two boxplots on the left indicating simulated 
data in regime D inferred with BalFB and BS inferred with Bal. Two boxplots on the left show distributions that correspond to regime GC inferred 
with BalFB and GC + BS inferred with Bal. b) Estimates for mutation rates, and c) strengths of BS in the simulation scenario GC + BS. d) Posterior 
plots for SLiM data inference in three simulation regimes D, BS, and GC, analogous to (a), indicating the GC-bias rate σ. e) Estimates for mutation 
rates and f) strengths of BS corresponding to the BS simulation scenario in SLiM.
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Figure 5a–c depicts boxes and whiskers of the posterior 
distributions derived from MCMC inference with the data 
simulated with the Moran model. The data are simulated 
under four evolutionary regimes: D for neutral mutations 
or drift, GC for GC-biased gene conversion (gBGC), BS 
for balancing selection, and GC + BS for the combination 
of gBGC and BS. We plot the boxes alongside the ground 
truth parameters (dashed for gBGC and BS, dotted-dashed 
for neutral and gBGC + BS) for comparison. Refer to 
supplementary Table S1, Supplementary Material online, 
for posterior means and CIs for selected points. Figure 4b il
lustrates the SFS for the last case. In the estimation of the 
posterior in all cases, we discard the MCMC burn-in period.

Within the box plots in Fig. 5a, we display estimates for 
the GC-bias rate in all four regimes, which align well with 
the true values. Mutation rates are shown in Fig. 5b, and BS 
strengths are depicted in Fig. 5c focusing solely on the GC 
+ BS regime for brevity. Posterior plots for preferred fre
quencies are not presented due to spike-like distributions 
as MCMC chains converge to the true values Baiaj = 2 dur
ing the burn-in period. This corresponds to the BS peak in 
Fig. 4b inset.

In Figs. 4c,d and 5d–f, we utilize the evolutionary simu
lation framework SLiM proposed by Haller and Messer 
(2019). For this simulation, we employed the great apes 
tree in supplementary Fig. S2, Supplementary Material on
line, implementing heterozygote advantage with SLiM (see 
supplementary material 3, Supplementary Material online, 
for details). The tree inferred with RevBayes in Fig. 4c is 
comparable to the simulated tree, with posterior probabil
ities at each node equal to 1. The SFS in Fig. 4c is extracted 
from the data and features a well-distinguished peak that 
is effectively captured by the inference.

In SLiM simulations, we implemented three regimes (D, 
GC, and BS). The posterior distributions for GC-bias rate in 
these regimes are illustrated in Fig. 5d. We obtain reason
able estimates in the D and GC regimes, but in the BS re
gime, σ is overestimated. This occurrence is due to the 
challenge of distinguishing σ and π for small virtual popu
lations. While not easily discernible in the mutation rates 
presented in Fig. 5e, it becomes apparent when examining 
the inferred nucleotide base frequencies π (refer to 
supplementary Table S2, Supplementary Material online). 
Increasing the virtual PoMo size to N = 20 resolves this 
problem partially resulting in much lower σBS-Bal = 0.008. 
In this analysis, our focus is on the estimation of BS 
strength, which shows promising results in Fig. 5e. The pre
ferred frequencies are also inferred accurately, similar to 
the Moran simulator.

Additionally, in Table 4, we present scaled scores ob
tained from tests conducted with MuteBaSS (HKAtrans, 
NCD, NCDopt, NCDsub) and MULLET (T1trans, T2trans) 
(Cheng and DeGiorgio 2019). The scores for summary sta
tistics and likelihood-based methods were calculated using 
the sliding windows approach, while our method is evalu
ated through the logarithm of the Bayes factor (BF).

The data were generated via SLiM, similarly to Figs. 4c
and 6d–f under drift, gBGC, and BS regimes. For the details 
of the calculations, please refer to supplementary material 
4, Supplementary Material online.

The strongest evidence of BS is indicated by our method 
(log(BF)), followed by HKAtrans and T2trans. However, the 
scores of HKAtrans are highly dependent on the window 
sizes. Please note that these results must be interpreted 
with caution, as the scores are calculated for different ap
proaches operating on different scales.

Detection of BS in Drosophila erecta
In this analysis, we examine sequences derived from experi
mental genomic data of various Drosophila subspecies. We 
specifically explore the example of sexual dimorphism in 
the tMSE gene region, featuring the tan gene observed in 
Drosophila erecta females, as studied by Yassin et al. 
(2016). Table 5 presents the results of Tajima’s D (Tajima 
1989), HKA-like (Begun et al. 2007), and HKAtrans (Cheng 
and DeGiorgio 2019) tests indicating the potential pres
ence of BS in the tMSE region in contrast to neutral se
quences 5-kb upstream and 10-kb downstream from the 
region.

The conclusion is drawn from a significant elevation of 
Tajimas D in the region of interest. Regarding the HKA-like 
test, we observe a notably higher proportion of poly
morphic sites (Pol) between dark and light Drosophila 
erecta lines compared to divergent (Div) sites between 
both erecta lines and Drosophila orena, a closely related 
species to erecta. This increased polymorphism suggests 
the presence of BS. However, the χ2 test performed on 
these short sequences does not yield a significant result. 
In Yassin et al. (2016), the test is conducted on longer 
sequences containing the tMSE region and leads to a 

Fig. 6. Testing PoMoBalance in a range of GC-bias rate σ and 
strength of BS β on the data generated with the Moran model. 
Large open markers represent true values, smaller closed markers 
with error bars correspond to the mean values of posterior predic
tions by PoMoBalance and their 95%CI, respectively.
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significant result. The HKAtrans method is executed using 
MuteBaSS on Drosophila erecta (dark and light variants), 
melanogaster, and simulans. Negative scores for the up
stream and downstream regions indicate the absence of 
BS, unlike the positive score for the tMSE region, confirming 
the presence of BS.

We begin the inference with PoMoSelect to determine 
the tree and the level of gBGC in Drosophila subspecies. 
We analyze tMSE region in Drosophila erecta dark and light 
as well as santomea, yakuba, melanogaster, and simulans. 
The tree topology obtained with PoMoSelect, as shown 
in Fig. 7 (left), closely resembles the topology obtained 
by Yassin et al. (2016) using the multispecies coalescent 
method.

The gBGC rate σSel, inferred with PoMoSelect alongside 
the tree in Fig. 7 (right), is shown in Fig. 8a with box plot on 
the left, and it is quite low, as observed in experiments 
(Robinson et al. 2014). Refer to supplementary Table S3, 
Supplementary Material online, for the inferred para
meters and effective sample sizes (ESS). The rest of the 
box plots in Fig. 8 show the posterior distributions of 
the parameters inferred with PoMoBalance for four 
Drosophila subspecies, namely D. erecta dark and light, mel
anogaster, and simulans. Here we discard sequences of D. 
santomea and yakuba since they introduce noise into BS 
detection due to low numbers of individuals in the dataset, 
while still acceptable for PoMoSelect analysis. The results 
for all subspecies are presented in the supplementary 
Figs. S3 and S4, Supplementary Material online.

The posterior distribution for σPoMoBalance in Fig. 8a, in
ferred with PoMoBalance, is much wider than those for 
σPoMoSelect as it is challenging to detect GC-bias and BS 
simultaneously. Thus, we advocate a mixed approach by 
running PoMoSelect and PoMoBalance in parallel to get 
more accurate estimates. For example, we learn the tree 

topology from PoMoSelect and then fix the estimated top
ology for PoMoBalance analysis. The mutation rates in 
Fig. 8b show great convergence and ESS > 200 for all 
MCMC chains. The presence of BS is detected in most of 
the spectra, indicated by β > 1 in Fig. 8c, while for βAT , 
we observe purging of selection, indicated by β < 1. The 
preferred frequencies in Fig. 8d coincide or are not far 
away from the positions of BS peaks in the experimental 
SFS as shown in Fig. 9.

We performed all analyses using the UK Crop Diversity: 
Bioinformatics high-performance computing (HPC) 
Resource and the parallel implementation of RevBayes 
with 24 parallel processes. The computational time was 
85 h for PoMoSelect (6 subspecies, each containing 6–25 
individuals) and 118 h (4 subspecies, each containing 6– 
25 individuals) for PoMoBalance to analyze the tMSE region. 
For comparison, multispecies coalescent analysis for two 
species with introgression but without BS would take 5 
days (Flouri et al. 2020).

Discussion
Our study validated the implementations of PoMoSelect 
and PoMoBalance through simulation-based calibration 
in section “Validation Analysis for PoMoSelect and 
PoMoBalance”. Additionally, we conducted a diverse set 
of tests using data generated from both our custom simu
lator, based on the Moran model, and the evolutionary 
simulation framework SLiM in section “Modelling the BS 
with PoMoBalance” (Haller and Messer 2019). The 
PoMos demonstrated notable adaptability, particularly in 
the context of inferring data simulated via SLiM, which in
corporates more complex evolutionary dynamics than the 
Moran model.

While SLiM, grounded in the Wright–Fisher model, 
shares similarities with the Moran model, it introduces 
additional complexities such as genetic recombination, 
population demography (changes in population sizes), 
and diploid organisms with intricate interactions between 
drift and heterozygote advantage. Despite these chal
lenges, PoMoBalance performs well in locating BS poly
morphic peaks. To align SLiM diploids with PoMos, we 
treated them as two haplotypes in PoMos.

Notably, while overestimating the GC-bias rate, 
PoMoBalance excelled in identifying preferred frequencies, 
specifically in the middle of the SFS, corresponding to het
erozygote advantage in SLiM. This represents a unique 

Table 4. Scaled by the scores calculated in the neutral case tests run with MuteBaSS (HKAtrans, NCD, NCDopt, NCDsub) and MULLET (T1trans, T2trans) 
(Cheng and DeGiorgio 2019), obtained by averaging the scores in sliding window analyses with optimal window sizes and a shift of 10 nucleotides vs 
log(BF) calculated from PoMoBalance inference

Scaled score SLiM data ‖HKAtrans‖ ‖NCD‖ ‖NCDopt‖ ‖NCDsub‖ ‖T1trans‖ ‖T2trans‖ ‖ log (BF)‖

Drift 1.0 1.0 1.0 1.0 1.0 1.0 1.0
GC-bias 0.07 1.0018 1.003 1.004 1.01 0.94 1.01
BS 12.68 1.0024 1.012 1.057 2.26 4.44 146.05

The data were generated with SLiM on the tree shown in Fig. 4c under neutral conditions, with gBGC or BS.

Table 5. Results of Tajima’s D and HKA-like tests include the number of 
polymorphic sites (Pol) between dark and light Drosophila erecta lines 
and divergent (Div) sites between both erecta lines and Drosophila orena 
in the tMSE region, along with two neutral regions

Gene region Tajima’s D Pol Div Pol/Div HKAtrans

tMSE 3.99 51 28.5 1.78 0.031
5-kb upstream −1.1 40 51.9 0.77 −6.5 × 10−5

10-kb downstream 0.88 32 33.5 0.95 −0.175

The HKAtrans method is performed with MuteBaSS on Drosophila erecta (dark and 
light variants), melanogaster, and simulans by averaging scores within 
700-nucleotide windows with a step size of 10 nucleotides.
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advantage compared to previous methods, which, while 
suggestive of the presence of BS, cannot pinpoint specific 
combinations of alleles, strengths, and preferred frequen
cies of BS. It is important to acknowledge potential corre
lations between β and σ, which limits their inference. To 
address this, we advocate for incorporating extra moves 
into the MCMC, as discussed in section “Bayesian 
Inference Using PoMoBalance with RevBayes”. The com
parative analysis with MuteBaSS and MULLET indicates 
that our method demonstrates the strongest evidence of 
BS for data involving the heterozygote advantage. 
However, this result must be interpreted with caution 
since we assess the performance of our method using 
the BF approach, while we derive averaged statistics for 
the other methods (see supplementary material 4, 
Supplementary Material online).

In section “Detection of BS in Drosophila erecta”, we ap
plied PoMoSelect and PoMoBalance to analyze experimen
tal genomic data from Drosophila erecta, specifically 
focusing on the tMSE region known to exhibit BS (Yassin 
et al. 2016). Our application of PoMos reproduced previ
ous insights by Yassin et al. (2016) into the phylogenetic 
relationships among Drosophila subspecies.

Note that the outcomes of the inference for CG-bias 
rate and mutation rates are presented in terms of the vir
tual PoMos population sizes, which typically differ from 
the actual population sizes. To accurately reflect the actual 
population dynamics in Drosophila, it is necessary to map 
the values of μ, σ, β, and B from virtual PoMos size to ef
fective population size (see supplementary material 2, 
Supplementary Material online). This mapping results in 
substantially reduced parameter values for σ and μ, as 

Fig. 7. Phylogenetic tree inferred from the sequencing data obtained in the tMSE region across six (left) and four (right) subspecies of Drosophila. 
Posterior probabilities are indicated at the nodes. Images of D. santomea, yakuba, melanogaster, and simulans are credited to Darren Obbard, 
while those of D. erecta are reproduced from Yassin et al. (2016) under Creative Commons licence 4.0.

a b c d

Fig. 8. Posterior distributions derived from experimental data extracted from the tMSE region of six subspecies, as shown in Fig. 7 for PoMoSelect 
inference, and four Drosophila subspecies, namely D. erecta dark and light, melanogaster, and simulans for PoMoBalance inference. The corre
sponding SFS for the PoMobalance is presented in Fig. 9. a) Estimated rates of gBGC with PoMoSelect on the left and PoMoBalance on the right. 
b) Mutation rates, c) strength of BS, and d) preferred frequencies for BS, all inferred using PoMoBalance.
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found by Borges et al. (2019), given the large effective 
population sizes characteristic of Drosophila (Kelley et al. 
2005). The mapping for the preferred frequency is relative
ly straightforward, and we plan to propose a mapping for 
the BS strengths and the nonreversible coefficients in fu
ture research.

Through PoMoBalance analysis, we detect BS in the ma
jority of allele combinations, in contrast to the absence of 
BS peaks in neutral regions. Additionally, we observe the 
purging of selection for AT alleles, signifying the removal 
of polymorphisms at a rate higher than expected under 
neutral conditions. While this discovery showcases the 
flexibility of our method, interpreting its biological impli
cations is challenging. Moreover, such interpretation 
might be unnecessary, as the mean value for βAT is only 
slightly smaller than 1, indicating neutrality expectations 
and suggesting a relatively weak effect.

Conclusion
We incorporated the PoMoBalance model, a generalized 
form of PoMos capable of detecting BS, into RevBayes, a 
widely used phylogenetic software based on Bayesian infer
ence. This integration enriches the resources available to 
researchers engaged in phylogenetic analysis, providing a 
robust framework for precise species tree inference and 
concurrent parameter estimation. Notably, our implemen
tation allows for the estimation of BS, including preferred 

frequencies and specific alleles under selection, while 
also disentangling it from other forms of selection. 
PoMoBalance exhibits versatility in capturing various se
lection types, including purging selection, observed when 
the level of observed polymorphisms is lower than ex
pected via genetic drift and DS. These effects may arise 
from a combination of dominance effects, such as under
dominance, or purifying selection in the context of back
ground selection, etc.

In general, we provide a comprehensive framework to 
use PoMos for the estimation of phylogenetic trees, 
GC-bias, and BS. The approach involves several key steps. 
First, we employ the PoMoSelect to estimate tree top
ology, GC-bias rate, and mutations. Subsequently, we use 
PoMoBalance to estimate all parameters, allowing branch 
lengths to vary while maintaining a fixed topology learned 
from PoMoSelect. It is worthwhile to validate the results by 
comparing the inferred values with PoMoBalance esti
mates that include a fixed GC-bias rate learned from 
PoMoSelect. The selection of the best candidates is based 
on the agreement between the inferred SFS and that 
estimated from the data. Lastly, in this framework, 
PoMoBalance is selectively applied to regions that are like
ly under BS, such as the MHC locus in Homo sapiens.

The adaptability and versatility of PoMos address a need 
in the analysis of complex genomic datasets since our 
framework provides accurate phylogenetic inferences 
across multiple timescales and demonstrate potential for 

Fig. 9. SFS representation for the tMSE region corresponding to the PoMoBalance analysis in Fig. 8 for four subspecies of Drosophila, depicted in 
stars, compared with the inferred SFS indicated by diamonds.
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application in genome-wide scans through the parallel in
ference of multiple genomic regions. The other benefit of 
PoMos is scalability in terms of the number of species; it is 
capable of handling dozens of species (Borges et al. 2022b). 
In future, we aim to investigate additional genomic factors 
intertwined with BS, with a specific focus on exploring the 
role of linkage disequilibrium and its impact on the detec
tion of BS.

Software Availability
The software RevBayes (Höhna et al. 2016, 2017, 2018) 
is available at https://revbayes.github.io/. PoMoBalance 
tutorial at https://revbayes.github.io/tutorials/pomo 
balance/.

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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