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Abstract

The role of balancing selection is a long-standing evolutionary puzzle. Balancing selection is a crucial evolutionary
process that maintains genetic variation (polymorphism) over extended periods of time; however, detecting it poses
a significant challenge. Building upon the Polymorphism-aware phylogenetic Models (PoMos) framework rooted in
the Moran model, we introduce a PoMoBalance model. This novel approach is designed to disentangle the interplay
of mutation, genetic drift, and directional selection (GC-biased gene conversion), along with the previously unex-
plored balancing selection pressures on ultra-long timescales comparable with species divergence times by analyzing
multi-individual genomic and phylogenetic divergence data. Implemented in the open-source RevBayes Bayesian
framework, PoMoBalance offers a versatile tool for inferring phylogenetic trees as well as quantifying various select-
ive pressures. The novel aspect of our approach in studying balancing selection lies in polymorphism-aware phylo-
genetic models’ ability to account for ancestral polymorphisms and incorporate parameters that measure frequency-
dependent selection, allowing us to determine the strength of the effect and exact frequencies under selection. We
implemented validation tests and assessed the model on the data simulated with SLiM and a custom Moran model
simulator. Real sequence analysis of Drosophila populations reveals insights into the evolutionary dynamics of re-
gions subject to frequency-dependent balancing selection, particularly in the context of sex-limited color dimorph-
ism in Drosophila erecta.

Key words: polymorphism-aware phylogenetic models, balancing selection, GC-biased gene conversion, Bayesian in-
ference with MCMG, site frequency spectrum, species trees.

BS finds its roots in the “balance hypothesis”, according to
which populations exhibited high levels of diversity, with nat-
ural selection maintaining a balance among different alleles
(Dobzhansky 1955). Historically, the classical theory dimin-
ished the ubiquity of the balancing hypothesis by explaining
the evolution of populations through the interplay of
mutations and purifying or positive selections with varying
strengths. However, BS remains a valuable concept for ex-
plaining the persistence of polymorphisms over extended per-
iods. According to Bitarello et al. (2023), three types of BS can
be defined based on the acting timescales. Assuming the ef-
fective population size (N, = 10% Sprengelmeyer et al.
2020), generation time (10 days; Fernandez-Moreno et al.

Introduction

Balancing selection (BS) represents a form of natural selec-
tion that maintains beneficial genetic diversity within popu-
lations (Bitarello et al. 2023). Multiple mechanisms
contribute to maintaining variation, such as the heterozy-
gote advantage or overdominance (heterozygous indivi-
duals having higher fitness), frequency-dependent
selection (an individual's fitness depends on the frequencies
of other phenotypes or genotypes), antagonistic selection
(in contexts like sexual conflicts or tissue-specific antagon-
ism), and selection that changes through time or space in
population. The evidence for BS is extensive, including ex-
amples from immune response such as the major histocom-

patibility complex (MHC) (Andrés et al. 2009; Spurgin and
Richardson 2010; Bitarello et al. 2018), pathogen resistance
(Bakker et al. 2006), plant and fungi self-incompatibility
(Lawrence 2000; Castric and Vekemans 2004), and sex-
related genes (Charlesworth 2004; Connallon and Clark
2014; Mank 2017; Kim et al. 2019).

Received: December 11, 2023. Revised: April 19, 2024. Accepted: July 06, 2024

2007), and the divergence times between Drosophila erecta
and Drosophila orena species (3 X 10° years; Yassin et al.
2016), which are studied here, one can translate these time-
scales into calendar times. In this context, BS can be categor-
ized as ultra-long-term (>3.7 X 10° years), long-term (>10°
years), and recent (<10° years).
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The heterozygote advantage stands out as one of the
initially proposed mechanisms for BS. The textbook ex-
ample of this kind of BS is found in human African popula-
tions: homozygous individuals for the abnormal version of
p-globin gene that makes hemoglobin are susceptible to
sickle-cell disease, while heterozygous individuals exhibit
resistance to malaria (Laval et al. 2019). In this study,
even though we are capable of detecting heterozygote ad-
vantage as well, we focus more on another well-known
mechanism of BS called negative frequency-dependent
BS as defined by Charlesworth and Charlesworth (2010).
This mechanism is observed when the fitness of one indi-
vidual depends on the frequencies of other phenotypes or
genotypes in the population. Very often, negative
frequency-dependent selection manifests in the mainten-
ance of one or several rare advantageous genotypes in a
population. In the context of this study, we focus on ultra
long-term BS (~5 million years), which leads to sexual di-
morphism in female Drosophila erecta resulting in the
maintenance of dark and light females in the populations.
The dark females are presumably engaging in mimicry
among the males to avoid the costs associated with re-
peated matings (Yassin et al. 2016).

The role of BS has been a subject of considerable debate
over the last century (Bitarello et al. 2023). With the ad-
vent of new sequencing technologies, there has been a re-
newed interest in this phenomenon. Some models, such as
those based on heterozygote advantage and sexual antag-
onism, have been proposed by Connallon and Clark (2014)
and Zeng et al. (2021). While these models are valuable for
describing allele frequency dynamics in populations, they
become impractical for inference due to the consideration
of specific cases of BS that are challenging to generalize and
increasing computational costs associated with expanding
parameter space.

Thus, a model that is flexible enough to capture
the intricate effects of BS yet simple is required for infer-
ring frequency-dependent selection. Here, we propose a
new model that incorporates BS and further integrates it
into an inference approach. We build upon PoMos, a set
of models developed over a decade for species tree infer-
ence (De Maio et al. 2013, 2015; Schrempf et al. 2016).
A fast implementation of the PoMo approach for species
tree inference is available in IQ-TREE (Schrempf et al.
2019).

Recently, PoMos were extended to account for direc-
tional selection (DS) and tested on the GC-biased gene
conversion (gBGC; Borges et al. 2019; Borges and Kosiol
2020; Borges et al. 2022b, 2022a). This phenomenon is
modeled similarly to DS, by setting relative fitnesses for
C and G alleles higher than those for A and T alleles.
Furthermore, in the inference setup, DS and gBGC are con-
sidered to be equivalent.

Borges et al. (2022b) demonstrated that including the
effect of gBGC improves the accuracy of branch length es-
timation employed for molecular dating. Here, in the con-
text of BS, we integrate the modeling of gBGC as it serves as
the background force. This approach provides a more
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realistic null model, thereby enhancing the estimation of
BS on experimental data.

PoMos prove to be valuable for modeling and detecting
BS, as they are rooted in polymorphisms characterized by
the prolonged existence of multiple genetic variations—
markers of BS (Bitarello et al. 2023). This phenomenon
manifests in a shift in the site frequency spectrum (SFS) to-
ward an excess of intermediate frequency variants. These
are sometimes identifiable by a peak in the intermediate
frequencies of the SFS that cannot be explained by the
interplay between mutation, genetic drift, and DS, as men-
tioned in Charlesworth (2006) and Charlesworth and
Charlesworth (2010), but by BS. Consequently, these signa-
tures are utilized by various frameworks to detect BS.

BS poses a significant challenge to detection methods
due to its subtle nature, often entangled with structural
variants and linkage disequilibrium (Charlesworth 2006;
Fijarczyk and Babik 2015). Recent efforts have been
made to propose universal and robust frameworks for BS
detection. The software packages aimed at detecting BS
are summarized in Table 1. These include methods based
on genome scans with multiple summary statistics and
composite likelihood ratio tests (CLRTs; Andrés et al.
2009; DeGiorgio et al. 2014; Bitarello et al. 2018; Cheng
and DeGiorgio 2019, 2020, 2022), as well as deep-learning
methods (Sheehan and Song 2016; Isildak et al. 2021;
Korfmann et al. 2023). In Table 1, we summarize ap-
proaches that are most relevant to our study; for more de-
tails, please refer to Bitarello et al. (2023).

The majority of the approaches mentioned above exploit
long-term BS and are therefore focused on scenarios involv-
ing single species. Two exceptions to this are MUITi-spEcies
BAlancing Selection Summaries (MuteBaSS) and MULti-
species LikElihood Tests (MULLET) (Cheng and DeGiorgio
2019), which operate within the paradigm of ultra-long BS
and accept multispecies data. Consequently, we utilize these
packages for comparisons with our approach. Another as-
pect of the methods summarized in Table 1 is that the ma-
jority of them are trained and tested on human or great ape
data. Therefore, one must exercise caution when applying
them to other species. Moreover, unlike other approaches,
Cheng and DeGiorgio (2022) strive to disentangle DS
from BS. However, their approach requires intricate infor-
mation about populations, such as recombination maps
and ancestral pairwise alignment files.

By leveraging the advantages of accommodating multi-
species data, applicability to most species (excluding bacteria
and viruses), and incorporating mechanisms for disentan-
gling DS from BS, our approach serves as a Bayesian inference
tool. Our method not only detects selection but also quan-
tifies its strength and frequencies, unlike most of the BS de-
tection tools that show maximal performance at frequency
equilibrium close to 0.5. Notably, Non-Central Deviation
(NCD; Bitarello et al. 2018) and subsequently MuteBaSS
(Cheng and DeGiorgio 2019), which utilizes modified NCD
statistics, possess a mechanism to detect BS at frequency
equilibrium below 0.5. However, these frequencies must
be pre-defined by the user. BetaScan2 (Siewert and Voight
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Table 1. Comparison of PoMos with other methods for detection of DS and BS

Function Package Citation Method Multi-species  Trained and tested on DS Detects magnitude and
human frequencies
BetaScan Siewert and Voight Summary statistics - + - -
(2017)
Siewert and Voight
(2020)
BALancing Selection DeGiorgio et al. (2014) CLRT - + - -
LikElihood Test
NCD Bitarello et al. (2018) Summary statistics — - - -
MuteBaSS Cheng and DeGiorgio Summary statistics + - - -
(2019)
MULLET Cheng and DeGiorgio CLRT + + - -
(2019)
BalLeRMix Cheng and DeGiorgio CLRT - + - -
(2020)
BalLeRMix+ Cheng and DeGiorgio CLRT - + + -
(2022)
Balancing Selection Isildak et al. (2021) Deep learning - + + -
PoMos Borges et al. (2019) Bayesian inference + - + +
with selection Borges et al. (2022a)
(PoMoSelect + This study

PoMoBalance)

2020) is also capable of detecting equilibrium frequencies,
but when substitutions are specified, it is outperformed by
NCD (Cheng and DeGiorgio 2019).

Evaluating the effect of BS remains challenging, requir-
ing more model-based approaches (Fijarczyk and Babik
2015; Bitarello et al. 2023). Specifically, we require
models that extend beyond heterozygote advantage, in-
corporating frequency-dependent selection and integrat-
ing both balancing and DS. Our method addresses these
challenges in a particular manner. Currently, it focuses
on single genes or groups of genes; however, it holds a
high potential for parallel implementation. At the mo-
ment, it allows analyses across numerous individuals and
populations over genomic regions, including several hundred
base pairs. In the future, it is poised to enable genome-wide
inferences.

Materials and Methods

Modeling the BS with PoMoBalance

In this paper, we introduce the PoMoBalance model
(depicted in Fig. 1a) that can be regarded as an extension
of the PoMos with DS introduced by Borges et al. (2019),
Borges and Kosiol (2020), Borges et al. (2022b), and
Borges et al. (2022a). We will refer to the latter as
PoMoSelect henceforth for brevity. Both PoMoSelect and
PoMoBalance are distinguished in Table 2 and belong to
the family of models known as PoMos that are continuous-
time Markov chain models based on the Moran model
(Moran 1958). The Moran model is a stochastic process
that simulates a virtual population of N haploid indivi-
duals, with the power to incorporate boundary mutations
and DS. Together with the Wright—Fisher model, they are

both boundary mutation models. These models treat
mutations as perturbations from the equilibrium state
of populations, while selection drives population geno-
types to fixation. The frequency-dependent formulation
of such models makes them attractive for inference,
since it is relatively easy to implement DS and BS in
them. Moran model bears similarities to the Wright-
Fisher model, which counts time in the number of gen-
erations. In contrast, the Moran model is continuous-
time, measuring time in the number of births
(Lanchier 2017). This characteristic makes the Moran
model advantageous for phylogeny and experimental
evolution approaches (Barata et al. 2023) that rely on
a continuous-time paradigm.

In this paper, we extend the Moran model to include BS
in a four-allelic system representing the four nucleotide
bases. The model encompasses 4+ 6(N — 1) distinct
states, with four monomorphic boundary states, denot-
ing scenarios in which all individuals share the same
allele. In contrast, the intermediate 6(N — 1) states re-
present polymorphisms, where some individuals possess
different alleles. Here, as shown in Fig. 1a, we consider
only biallelic polymorphisms, where each state represents
certain frequency n of alleles a; (monomorphic on the
left) and N—n of a; (monomorphic on the right).
These alleles signify four nucleotides i, j = {A, C, G, T}. The
combinations of alleles, indicated as a;aj, represent the
possible pairs without repetition, namely AC, AG, AT, CG,
CT, or GT.

The model incorporates mutation rates, /i, , and iy,
(as illustrated in Fig. 1a), which govern transitions from
the monomorphic states, representing boundary muta-
tions. The parameters of PoMos are defined in Table 3.
Very often, the reversibility of the model is defined from
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Fig. 1. a) PoMoBalance model, presented as a Markov chain Moran-based model. The boundary states (monomorphic) are denoted by larger
circles. These states encompass N individuals, with the left side showcasing individuals carrying the g; allele, and the right side representing in-
dividuals with the g; allele. In contrast, all the intermediate states, reflecting polymorphic conditions, are displayed using smaller circles. The
transition rates from the monomorphic states are determined by mutation rates, whereas the transition rates from the polymorphic states
are governed by the multiplicative fitness as indicated in Equation (1). Additionally, the multiplicative fitness encapsulates not only the DS effect
but also the influence of BS, which exerts a force toward the state with the preferred allele frequency, B, 4, represented by dark arrows. If the
transition occurs against this preferred state, there is no such attracting force, signified by the light crossed arrows. b) A specific instance of the
PoMoBalance model, featuring a population size of N = 4.

Table 2. PoMo functions and parameters in RevBayes

Function (reference in the text) Description Parameters

fnPomoKN (nonreversible PoMoSelect or Describes the evolution of a population with K alleles and N individuals K,N,u ¢
PoMoSelect) subjected to mutational bias and selection

fnReversiblePomoKN (reversible PoMoSelect) Particular case of PoMoKN when mutations are considered reversible K, N,z p, ¢

fnPoMoBalanceKN (nonreversible PoMoBalance Describes the evolution of a population with K alleles and N individuals K, N, u, ¢, §,
or PoMoBalance) subjected to mutational bias, selection, and BS B

fnReversiblePomoBalanceKN (reversible Particular case of PoMoBalanceKN when mutations are considered K,N, 7, p, §,
PoMoBalance) reversible and the preferred frequency is in the middle B=N/2 B

certain symmetries in the parameters. In PoMoSelect, the by the following equation for the selected state n as per

mutation rates are presented as (. =447 and Fig. 1a:

Haa, = Paja,Tay Similar to Tavare (1986). Parameters Paa, o

are exhangeabilities of nucleotides (Yang 2014) that spe- a  n(N-— ,,,),_/_ 1/2[|n B |- |n¢1_Ba'a-|+1]

cify the relative rates of change between states i and j, @, =T(1 0a,) Paa, ’

and 7, are nucleotide base frequencies, giving the equilib- ‘-Ei’ﬁ—" BS Q
rium frequency at which each base occurs at all sites. If - N1

Paa =Paqy the model is reversible, otherwise, it is
nonreversible.

In PoMoSelect, frequency shifts between polymorphic
states are governed by genetic drift and DS favoring or dis-
favoring the reproduction of the g; allele. The fitness values
are represented by ¢, =1+ g5, where g, is a selection
coefficient. In PoMoBalance, these frequency shifts add-
itionally include BS transition rates that are regulated by
a quantity that we call multiplicative fitness, expressed

where there are three components: the first fraction corre-
sponds to genetic drift or neutral mutations, the second
multiplier represents DS, modeled similarly to previous
PoMos. The final term in the form of a power-law function
characterizes BS. This form of the BS term was derived phe-
nomenologically from observations of various SFSs ob-
tained from experimental data. It is governed by two key
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Table 3. Parameters of PoMos in the four-allelic case

Parameter Variable or vector Description

aij AGGT Nucleotide bases
aia; AC, AG, AT, CG, CT, GT Pairwise
combinations of
nucleotide bases
N N Effective
population size
Hayg; = Wac Macs Barr Heer B Merr  Mutation rates

Uear Hoar Hrar Bor Hrcr Hrg)
o, =PaaTa; 1= (lac Hacr HaT Heer Herr Mer) Reversible

mutation rates

Ta, 7 = (TTa, Tc, TGy TT) Nucleotide base
frequencies
Paia; P = (Pac Pacs Pats Peo P Por) - Exhangeabilities
Pa, ¢=n bc bo 1) Fitnesses
Oa;; = ¢a”~ -1 Osel = (UA: oc, 0G, O'T) Selection
coefficients

(GC-bias rate)
Strength of BS
Preferred
(equilibrium)
frequencies of BS

[if oA =07 =0, 0 =0c = 0¢]
ﬂaia, ,B = (,BAC' ﬂAG' ﬂAT' ﬁcc' ﬂCT' ﬂcr)
By [Baa;/N]1 B = (Bac, Bac, Bat, Bca, Ber, Bar)

factors: the strength of BS, denoted as f,, (with
Baa > 0), and a preferred frequency denoted as B,g.
The preferred frequency, a natural number within the
range 0 < B, <N, designates the position of the poly-
morphic peak associated with BS in the SFS. Note that
if B, =1 the resulting model aligns with the
PoMoSelect model. We modeled BS in a frequency-
dependent manner, in which the strength of BS govern-
ing the frequency shifts toward a favored frequency. The
frequency equilibrium, as defined in Charlesworth and
Charlesworth (2010), Bitarello et al. (2018), Bitarello

/ua,»a,
Haa,
n(N —n)
q{na;,(N—n)aj}%{ma;,(N—m)aj} — T
n(N —n)
N
0

where the variables n and m represent neighboring states
as illustrated in Fig. 1a. This matrix summarizes the
PoMoBalance model, depicting transitions from mono-
morphic states regulated by mutation rates and from poly-
morphic states governed by Equation (1). Since
PoMoBalance is the Moran-based model, the allele fre-
quency shifts exceeding one are prohibited, as specified
in the final condition outlined in Equation (2). The diag-
onal elements of this matrix are determined such that
the sum of each respective row is equal to zero.

Both the PoMoSelect and PoMoBalance models have
been incorporated into a Bayesian phylogenetic inference

(1+ 04,)Bag,

(1 + Og )ﬁa;aj

et al. (2023), and Andrés et al. (2009), can be determined
from our model as By, /N.

Reversibility criteria for PoMoBalance are different from
those for the PoMoSelect model due to the higher com-
plexity of the transition rates from the polymorphic states
brought by BS terms. PoMoBalance is reversible only if
exhangeabilities are symmetric and the preferred fre-
quency is in the middle of the chain B, = N/2, where
N is even (for more details, see supplementary material 1,
Supplementary Material online).

Furthermore, we always assume that both By, and 3,
are symmetric. The strength of BS operates similarly to
DS, but rather than favoring the fixation of alleles, it promotes
the persistence of polymorphisms. In Fig. 1a, we visualize this
additional attraction toward the preferred polymorphic state
with dark arrows when 3, ;. > 1. After replacing variables and
simplifying the expressions with power terms, the transition

rates become @, = (n(N = n)/N)p, Poa, if N <Bag, and
the absence of the BS attractor is indicated with light crossed

arrows in the figure when d)l:,” = (n(N — ”)/N)¢a,,,-' if
n > By, To provide a more concrete example, we represent
the transition rates of a population with N = 4 individuals in
Fig. 1b, where the preferred frequency is B = 2. It is important
to note that in cases where 3, , < 1, we do not model BS, but
instead a form of purging selection occurs that leads to the
removal of polymorphisms more than expected by drift
(for a detailed explanation, see supplementary material 1,
Supplementary Material online).

In the broader context, the PoMoBalance model can be
characterized through the instantaneous rate matrix de-
noted as Q, where each specific transition rate within the
model corresponds to an element of this matrix

|f”=N,m=N_1l

ifn=0m=1,
‘ _Bu'a"_l +1_Ba>a'|+1 .
[” o | =11 i9 ] |fm:n+1, (2)
[‘”_Ba;a ‘_|”_1_Baia-|+1] .
! ! fm=n-1,
if |/m—n|>1,

framework RevBayes (Hohna et al. 2016, 2017, 2018; Borges
et al. 2022a), available at https://revbayes.github.io/, em-
ploying a probabilistic graphical model representation.

Bayesian Inference Using PoMoBalance with
RevBayes

The advantage of using RevBayes for implementing PoMos
is the flexibility of the use of probabilistic graphical models
allowing us to combine complex models while taking
advantage of communicating them with users through
extensive tutorials and discussion forums. RevBayes em-
ploys a Bayesian inference based on the Markov chain

5
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Monte Carlo (MCMC) sampler and it is an open-source
framework for phylogenetic inference, molecular dating,
discrete morphology, and ancestral state reconstruction
(Hohna et al. 2016, 2017, 2018; Borges et al. 2022a). Our in-
tegration of PoMoBalance into RevBayes enables users to
perform phylogenetic tree inference, DS analysis, and
now, identify BS. Unlike previous methods for detecting
BS discussed earlier, our software not only detects BS
but also quantifies its strength and identifies the
alleles and their frequencies under selection. For
detailed instructions on implementing RevBayes scripts
with PoMoBalance, please refer to the PoMoBalance
tutorial available at https://revbayes.github.io/tutorials/
pomobalance/.

In PoMos’ data input, count files are employed, which
can be generated from format for nucleotide ( FASTA)
sequences of multiple individuals and species or VCF
(Variant Call Format) files with the corresponding refer-
ence using the cflib package available on GitHub at
https://github.com/pomo-dev/cflib  (Schrempf et al.
2016). Additionally, we include scripts to correct for sam-
pling biases, which can be helpful when the number of in-
dividuals sampled from populations varies and when it
differs from the PoMo population size. These biases may
emerge from undersampling genetic diversity, where poly-
morphic sites sampled from larger populations may erro-
neously appear monomorphic. To address this, the
binomial sampling method, as initially proposed by
Schrempf et al. (2016), assists in smoothing out sampling
biases at the tips of a phylogenetic tree.

Additionally, PoMoSelect includes a rescaling tool
for adjusting inferred parameters across different
population sizes. Parameters calculated in the PoMos, ori-
ginally in terms of virtual population sizes, can be rescaled
to represent the actual population sizes. This rescaling
is achieved using the mapping method introduced by
Borges et al. (2019) and explained in the context of
PoMoBalance in supplementary material 2, Supplementary
Material online.

RevBayes offers several PoMo functions tailored to
different inference scenarios, including fnPomoKN,
fnReversiblePomoKN, fnPomoBalanceKN, and
fnReversiblePomoBalanceKN. The first two func-
tions are discussed in detail by Borges et al. (2022a). The
roles and input parameters for each function are summar-
ized in Table 2.

They are designed to infer data from K alleles, with the
most common scenario involving K = 4, although other op-
tions (e.g. K =2) are also available. Additionally, RevBayes
accommodates the parameters of the PoMoBalance model
outlined in section “Modeling the BS with PoMoBalance”
and Table 3. These include the virtual population size N,
mutation rates u represented through nucleotide base fre-
quencies 7, and exhangeabilities p in the reversible case.
Additionally, it includes a vector encompassing allele fit-
nesses ¢, which, in our case, reflects gBGC as previously
studied by Borges et al. (2019). We sometimes mention
DS and gBGC interchangeably since the latter is modeled

6

similarly to DS, with higher relative fitness for C and G alleles
compared to A and T alleles. It is represented by the vector
¢ =(1,1+0, 1+ o, 1), where o is a GC-bias rate. We also
define two vectors for the strength and location of the BS
peak for each combination of alleles £ and B.

For the Bayesian inferences conducted here, we employ
dnDirichlet priors (concentration 0.25 for all alleles)
on base frequencies 7 and mvBetaSimplex moves
due to their sum-to-unity nature. For p, o, and p,
dnExponential priors are chosen as appropriate
priors for positive real parameters with rates 10, 10, and
1, respectively, similar for all combinations of alleles. We
use standard mvScale moves for these variables, but if
they exhibit correlation, we may introduce additional
moves like mvUpDownScale, mvAVMVN, mvSlice,
or mvEllipticalSliceSamplingSimple to
mitigate the correlation. In some cases, we observed a cor-
relation between ¢ and p, and incorporating the
mvAVMVN move helped to resolve it for some chains.
The preferred frequency B is a positive natural number
within the range 0 < B < N, and Uniform priors in this
range are set. The variable is rounded on each MCMC
step to obtain discrete results. We introduce two moves,
mvSlide and mvScale, to enhance parameter space
exploration. Such a technique leads to faster convergence
compared toUniformNatural prior and discrete vari-
able moves. We assign different weights to each move;
however, the specific values are less critical since autotun-
ing of weights occurs during the MCMC burn-in period.
Our analysis involves running both the Metropolis—
Hastings MCMC sampler (mcmc), and where relevant,
the Metropolis-coupled MCMC sampler or MC
(mcmcme), which includes high-temperature and cold
chains to overcome local minima. Both versions normally
run four parallel chains to ensure convergence. The num-
ber of MCMC steps required for convergence (ESS > 200)
for different types of analyses is depicted in Fig. 2.

Data Simulation, Analysis, and Inference

Extensive testing of PoMoBalance has been conducted
across multiple scenarios, employing data simulated
through different techniques. Each scenario is summarized
in Fig. 2.

First, we conducted a built-in validation analysis within
RevBayes. This analysis is based on the simulation-based
calibration procedure (Talts et al. 2020), the approach
used to test the accuracy of parameter inference through
the following steps:

1) Drawing 1,000 random parameter values and a ran-
dom five-species trees with uniform topology from
the priors.

2) For each drawn parameter value simulating data
sample with 1,000 nucleotide sites.

3) Performing MCMC inference for each sample.

4) Calculating coverage probabilities.
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Fig. 2. Testing scenarios for PoMoBalance include various types of trees, tree topologies, parameters of PoMos utilized in the tests, sequence
lengths, and the number of MCMC steps. Simulation-based calibration involves data simulated under 1,000 parameters sampled from priors,
while the Moran and SLiM frameworks also rely on simulated data for several values of o and f. Additionally, we employ experimental data

extracted from various subspecies of Drosophila.

Coverage probabilities (Talts et al. 2020) are estimated
based on the observation that 90% (or any arbitrary per-
centage) of credible intervals obtained with MCMC should
contain the simulated parameter value in 90% of the sam-
ples. Simulation-based calibration leverages the frequentist
properties of Bayesian inference. The advantage of this ap-
proach is its ability to simultaneously test the model across
various parameters and multiple five-species trees.
Additionally, we calculate the scores for tree topology,
measured by mean Robinson-Foulds distances (Hohna
et al. 2018), inferring tree topologies especially for large
trees known to be a notoriously challenging task
(Cavalli-Sforza and Edwards 1967). The deliberate choice
of a small virtual population size, N = 4, aims to test our
models with minimal computational cost, as previous find-
ings suggest that performance tends to remain consistent
even with an increase in N (Borges et al.,, unpublished). We
also conducted tests with N = 6, yielding similar perform-
ance. However, testing with higher values of N becomes
challenging due to the increasing computational cost asso-
ciated with larger values. Nonetheless, we anticipate that
the performance would remain consistent.

Subsequently, a custom five-species tree (refer to Figs. 2
and 4a) was simulated using a Moran simulator in
RevBayes. In this analysis, we utilize a five-species tree, as
most methods for detecting ultra-long-term BS focus on
testing fixed trees with four species or fewer (Cheng and
DeGiorgio 2019). Our simulations cover timescales asso-
ciated with long-term or ultra-long-term BS, as this ex-
ample is not tied to any specific species. Here, we
maintain the tree fixed to ensure better performance of
the method. We recommend employing PoMoSelect for
tree inference initially, as it has demonstrated better per-
formance in inferring tree topologies (refer to Fig. 3). In

testing the PoMoBalance approach, our focus is primarily
on inferring gBGC and BS parameters. We simulate the se-
quences under the same model to ensure the precise re-
covery of parameters from data simulated under the
similar models but in diverse evolutionary settings, includ-
ing drift, gBGC, BS, and a combination of BS and gBGC. For
most of the values, we simulated 10° genomics sites, while
for the intertwined scenario of weak BS (8,, = 1.5) and
gBGC (o = 0.05), we required 8 X 10° to achieve satisfac-
tory convergence.

Furthermore, we assessed the performance of our pack-
age using data simulated within the evolutionary frame-
work SLiIM (Haller and Messer 2019). In this test, we
used a tree including four great ape species: orangutans
from Borneo and Sumatra islands, chimpanzees, and hu-
mans (refer to Figs. 2 and 4c and supplementary Fig. S1,
Supplementary Material online). This tree had been previ-
ously estimated without BS using PoMos by Schrempf et al.
(2016). In this setup, we simulate ultra-long-term BS and
we first infer the tree with PoMoSelect. Subsequently, for
the PoMoBalance analysis, we maintain the tree topology
fixed and infer tree branch lengths alongside other para-
meters. The great ape species are of particular interest in
the context of our paper as they exhibit several well-
documented instances of BS, such as those observed in
the MHC locus (Cagan et al. 2016). Another classical ex-
ample of heterozygote advantage is sickle-cell disease, ex-
tensively studied in humans, however, its role in other
great ape species remains a subject of debate (Laval et al.
2019). In SLiM simulations, we implemented heterozygote
advantage within the great apes tree to simulate BS. Unlike
the Moran simulator, SLiM simulations incorporated three
regimes: drift, gBGC, and BS, excluding combination of BS
and gBGC. This adjustment was necessary due to the
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Fig. 3. Coverage probabilities determined through validation analysis within RevBayes, employing distinct computational routines for reversible
scenarios: a) PoMoSelect and b) PoMoBalance, as well as for nonreversible scenarios: c) PoMoSelect and d) PoMoBalance. The dashed lines in-

dicate 90% Cls and fixed virtual population size for all cases was N = 4.

heterozygote advantage overpowering gBGC in SLiM.
Other features not explicitly considered by the Moran
model but simulated in SLiM are genetic recombination
and demography. Refer to supplementary material 3,
Supplementary Material online, for more details on SLiM
simulations.

Following this, we applied PoMoBalance to real datasets
exhibiting BS associated with sexual dimorphism in
Drosophila erecta females (Yassin et al. 2016). This case
was chosen to exemplify ultra-long-term negative
frequency-dependent BS in sexual selection, a topic of in-
creasing interest (Croze et al. 2017). Please refer to Fig. 2,
for details of the inference, and data availability details.
Sequences were obtained for the tan gene in the tyge re-
gion. In addition to Drosophila erecta dark (seven indivi-
duals) and light (nine individuals), we extract data of
multiple individuals from four closely related subspecies:
D. santomea (10 individuals), yakuba (15 individuals), mel-
anogaster (22 individuals), and simulans (18 individuals).
We inferred trees in two cases: when all six subspecies
were involved, and in the four-subspecies case, where we
discarded D. santomea and yakuba due to poor quality
of sequences. We performed the sequence alignment using
MAFFT software (Rozewicki et al. 2019), filtered out sites
containing more than 50% missing data and converted
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them into count files using the cflib package (Schrempf
et al. 2016). The final sequences contained ~ 400 sites.
For the neutrality analyses performed with Tajima’s D
(Tajima 1989) and Hudson-Kreitman-Aguade (HKA)- like
(Begun et al. 2007) tests, we also used 5-kb upstream
(~ 400 sites) and 10-kb downstream (~ 900 sites) regions
that are known to be neutral. The data analysis pipeline is
available in the supplementary repository (https://github.
com/sb2g14/PoMoBalance).

Results

Validation Analysis for PoMoSelect and PoMoBalance
To validate the implementations of PoMoSelect and
PoMoBalance, as depicted in Fig. 3, we employ the
simulation-based calibration procedure implemented in
RevBayes (Talts et al. 2020). In our study, we evaluate
both the PoMoSelect model with DS proposed previously
by Borges et al. (2022a) and the model that incorporates
directional and BS (PoMoBalance), as outlined in section
“Modelling the BS with PoMoBalance”.

In Fig. 3, we conduct simulation-based calibration for
four PoMo functions (see Table 2) in both reversible and
nonreversible implementations, simulating the trees with
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Fig. 4. a) Phylogenetic tree simulated using the Moran simulator within RevBayes, the branch lengths are expressed in numbers of generations;
the tree remains fixed for these analyses. b) SFS of the data with BS simulated using the Moran model with N = 6 (stars), with the tree from
(a) exhibiting good agreement with the SFS obtained from the inference using PoMoBalance (diamonds); the inset magnifies the BS peak.
c) Phylogenetic tree of great apes simulated with SLiM and subsequently inferred with RevBayes, the branch lengths are expressed in the number
of substitutions per site. Posterior probabilities are indicated at the nodes. Images are distributed under a Creative Commons license from
Wikimedia and Microsoft. d) Comparison of the SFS with N =10, akin to (b), obtained from the simulated data with SLiM and the tree
from (c). The SFS representation (a;a;) includes AC, AG, AT, CG, CT, and GT, demonstrating similarity in all cases.

five taxa and a uniform topology. The markers in the figure
represent coverage probabilities for various parameters, in-
cluding tree branch lengths (stars), fitnesses (¢, diamonds),
nucleotide base frequencies (r, X unfilled), exhangeabilities
(p, circles), mutation rates (i, pluses unfilled), BS strengths
(B, triangles left), preferred frequencies (B, pluses), and top-
ology (octagons). Different marker types distinguish values
corresponding to different alleles or their combinations as
per Table 3. Notably, nucleotide base frequencies exhibit a
single coverage probability due to their origin from
dnDirichlet. For fitnesses, they are relative by defin-
ition, with one of them always taking value of 1.
Therefore, three coverage probabilities are observed in-
stead of four. The 90% confidence bounds for MCMC
are shown by red dashed lines. The scores for topologies
and branch lengths are best estimated for the nonrever-
sible PoMoSelect, presumably it has fewer degrees of
freedom, reducing the likelihood of encountering local
minima during inference. Therefore, in this paper, we ad-
here to a combined approach using PoMoSelect for tree

or tree topology estimation and PoMoBalance for esti-
mating gBGC and BS.

Despite using a small virtual population size (N = 4) for
computational efficiency, the majority of coverage prob-
abilities lie within or very close to the confidence bounds,
ensuring the validity of the implementations. The analysis
of larger population sizes (N =6) has shown equivalent
performance.

Testing PoMoBalance on the Data Generated with
Moran and SLiM Simulators

In this subsection, we assess the performance of the
PoMoBalance model using data simulated under various
evolutionary scenarios with two different simulators. The
details for the data generated with the first simulator, re-
ferred to as the Moran simulator, are depicted in Figs. 2,
4a,b, and 5a-c. In this analysis, we utilize RevBayes and
our PoMoBalance implementation to simulate PoMo
states from the nonreversible Moran model for generality,
employing pre-selected parameter values akin to the

9
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Fig. 5. Posterior distributions of inferred parameters compared to their expected values. Subplots a), b), and c) employ the Moran model simu-
lator, in Fig. 4a and b. Conversely, subplots d), e), and f) use the SLiM simulator, corresponding to Fig. 4c and d. Data simulations encompass four
regimes: D for drift, GC for gBGC, BS for balancing selection, and GC + BS for the combination of gBGC and BS. Inference methods include BalFB,
representing inference with PoMoBalance while fixing preferred frequencies B, and Bal, representing regular inference with PoMoBalance. True
values are indicated by dashed and dot-dashed lines. a) Posterior plots for the GC-bias rate g, with two boxplots on the left indicating simulated
data in regime D inferred with BalFB and BS inferred with Bal. Two boxplots on the left show distributions that correspond to regime GC inferred
with BalFB and GC + BS inferred with Bal. b) Estimates for mutation rates, and c) strengths of BS in the simulation scenario GC + BS. d) Posterior
plots for SLiM data inference in three simulation regimes D, BS, and GC, analogous to (a), indicating the GC-bias rate o. e) Estimates for mutation
rates and f) strengths of BS corresponding to the BS simulation scenario in SLiM.

scenario described in the previous subsection. However, in
this case, we employ a custom phylogenetic tree depicted
in Fig. 4a, use only a few parameter sets (shown in Fig. 2),
and omit the calculation of coverage probabilities. Instead,
we evaluate how far the inferred values deviate from the
true values for a range of ¢ and f, as illustrated in Fig. 6.
Note that the accuracy of the inference decreases and con-
fidence intervals (Cls) increase with an increase in o and S,
but still the latter intersect the true values. In the case
where 6 = 0.05 and f = 1.5, we had to increase the number
of sites from 10° to 8 X 10° for better convergence. The Cls
are the largest for f =1, corresponding to the case where
there is no BS, leading to significant uncertainty in learning
preferred frequencies, which affects other parameters.
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Additionally, we compare the SFS for 6 = 0.1 and f =2
in Fig. 4b, calculated from the simulated data depicted by
stars, with theoretical predictions derived using para-
meters inferred with PoMoBalance illustrated with dia-
monds. The SFSs agree quite well despite slight
inaccuracies in inferring parameters. The theoretical pre-
dictions are estimated numerically from the PoMo matrix
in Equation (2), using the Markovian property dP(t)/
dt = P(t)Q, where P(t) =exp(tQ). By matrix exponenti-
ation at very long times (t = 10°), we obtain the stationary
distribution for the PoMo states, which coincides with the
SFS. Further details about stationary frequencies in the
PoMoBalance model can be found in supplementary Fig.
S1, Supplementary Material online.
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Figure 5a—c depicts boxes and whiskers of the posterior
distributions derived from MCMC inference with the data
simulated with the Moran model. The data are simulated
under four evolutionary regimes: D for neutral mutations
or drift, GC for GC-biased gene conversion (gBGC), BS
for balancing selection, and GC + BS for the combination
of gBGC and BS. We plot the boxes alongside the ground
truth parameters (dashed for gBGC and BS, dotted-dashed
for neutral and gBGC + BS) for comparison. Refer to
supplementary Table S1, Supplementary Material online,
for posterior means and Cls for selected points. Figure 4b il-
lustrates the SFS for the last case. In the estimation of the
posterior in all cases, we discard the MCMC burn-in period.

Within the box plots in Fig. 5a, we display estimates for
the GC-bias rate in all four regimes, which align well with
the true values. Mutation rates are shown in Fig. 5b, and BS
strengths are depicted in Fig. 5¢ focusing solely on the GC
+ BS regime for brevity. Posterior plots for preferred fre-
quencies are not presented due to spike-like distributions
as MCMC chains converge to the true values B, = 2 dur-
ing the burn-in period. This corresponds to the BS peak in
Fig. 4b inset.

In Figs. 4c,d and 5d-f, we utilize the evolutionary simu-
lation framework SLiM proposed by Haller and Messer
(2019). For this simulation, we employed the great apes
tree in supplementary Fig. S2, Supplementary Material on-
line, implementing heterozygote advantage with SLiM (see
supplementary material 3, Supplementary Material online,
for details). The tree inferred with RevBayes in Fig. 4c is
comparable to the simulated tree, with posterior probabil-
ities at each node equal to 1. The SFS in Fig. 4c is extracted
from the data and features a well-distinguished peak that
is effectively captured by the inference.

In SLiM simulations, we implemented three regimes (D,
GG, and BS). The posterior distributions for GC-bias rate in
these regimes are illustrated in Fig. 5d. We obtain reason-
able estimates in the D and GC regimes, but in the BS re-
gime, o is overestimated. This occurrence is due to the
challenge of distinguishing ¢ and 7 for small virtual popu-
lations. While not easily discernible in the mutation rates
presented in Fig. 5e, it becomes apparent when examining
the inferred nucleotide base frequencies @ (refer to
supplementary Table S2, Supplementary Material online).
Increasing the virtual PoMo size to N =20 resolves this
problem partially resulting in much lower ggs-g; = 0.008.
In this analysis, our focus is on the estimation of BS
strength, which shows promising results in Fig. 5e. The pre-
ferred frequencies are also inferred accurately, similar to
the Moran simulator.

Additionally, in Table 4, we present scaled scores ob-
tained from tests conducted with MuteBaSS (HKAans,
NCD, NCDgpt, NCDyyp) and MULLET (Tytrans, Tatrans)
(Cheng and DeGiorgio 2019). The scores for summary sta-
tistics and likelihood-based methods were calculated using
the sliding windows approach, while our method is evalu-
ated through the logarithm of the Bayes factor (BF).

The data were generated via SLiM, similarly to Figs. 4c
and 6d-f under drift, gBGC, and BS regimes. For the details
of the calculations, please refer to supplementary material
4, Supplementary Material online.

The strongest evidence of BS is indicated by our method
(log(BF)), followed by HKAans and Totrans. However, the
scores of HKA.ns are highly dependent on the window
sizes. Please note that these results must be interpreted
with caution, as the scores are calculated for different ap-
proaches operating on different scales.

Detection of BS in Drosophila erecta

In this analysis, we examine sequences derived from experi-
mental genomic data of various Drosophila subspecies. We
specifically explore the example of sexual dimorphism in
the tmse gene region, featuring the tan gene observed in
Drosophila erecta females, as studied by Yassin et al.
(2016). Table 5 presents the results of Tajima’s D (Tajima
1989), HKA-like (Begun et al. 2007), and HKA.,s (Cheng
and DeGiorgio 2019) tests indicating the potential pres-
ence of BS in the tyse region in contrast to neutral se-
quences 5-kb upstream and 10-kb downstream from the
region.

The conclusion is drawn from a significant elevation of
Tajimas D in the region of interest. Regarding the HKA-like
test, we observe a notably higher proportion of poly-
morphic sites (Pol) between dark and light Drosophila
erecta lines compared to divergent (Div) sites between
both erecta lines and Drosophila orena, a closely related
species to erecta. This increased polymorphism suggests
the presence of BS. However, the y? test performed on
these short sequences does not yield a significant result.
In Yassin et al. (2016), the test is conducted on longer
sequences containing the tyse region and leads to a
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Table 4. Scaled by the scores calculated in the neutral case tests run with MuteBaSS (HKA a5, NCD, NCDgp, NCDgp) and MULLET (Tgrans, Totrans)
(Cheng and DeGiorgio 2019), obtained by averaging the scores in sliding window analyses with optimal window sizes and a shift of 10 nucleotides vs

log(BF) calculated from PoMoBalance inference

Scaled score SLiM data IHKA s | [INCD|| INCDop | [INCDys | [ Trtransll [ Tatransll [l log (BF)||
Drift 1.0 1.0 1.0 1.0 1.0 1.0 1.0
GC-bias 0.07 1.0018 1.003 1.004 1.01 0.94 1.01
BS 12.68 1.0024 1.012 1.057 2.26 4.44 146.05

The data were generated with SLiM on the tree shown in Fig. 4c under neutral conditions, with gBGC or BS.

Table 5. Results of Tajima’s D and HKA-like tests include the number of
polymorphic sites (Pol) between dark and light Drosophila erecta lines

and divergent (Div) sites between both erecta lines and Drosophila orena
in the tyse region, along with two neutral regions

Gene region Tajima’sD  Pol Div Pol/Div HKA ans
tmse 3.99 51 285 1.78 0.031
5-kb upstream -1.1 40 519 077 -65%x10"°
10-kb downstream 0.88 32 335 0.95 —0.175

The HKAans method is performed with MuteBaSS on Drosophila erecta (dark and
light variants), melanogaster, and simulans by averaging scores within
700-nucleotide windows with a step size of 10 nucleotides.

significant result. The HKA,,s method is executed using
MuteBaSS on Drosophila erecta (dark and light variants),
melanogaster, and simulans. Negative scores for the up-
stream and downstream regions indicate the absence of
BS, unlike the positive score for the tyse region, confirming
the presence of BS.

We begin the inference with PoMoSelect to determine
the tree and the level of gBGC in Drosophila subspecies.
We analyze tyse region in Drosophila erecta dark and light
as well as santomea, yakuba, melanogaster, and simulans.
The tree topology obtained with PoMoSelect, as shown
in Fig. 7 (left), closely resembles the topology obtained
by Yassin et al. (2016) using the multispecies coalescent
method.

The gBGC rate o5, inferred with PoMoSelect alongside
the tree in Fig. 7 (right), is shown in Fig. 8a with box plot on
the left, and it is quite low, as observed in experiments
(Robinson et al. 2014). Refer to supplementary Table S3,
Supplementary Material online, for the inferred para-
meters and effective sample sizes (ESS). The rest of the
box plots in Fig. 8 show the posterior distributions of
the parameters inferred with PoMoBalance for four
Drosophila subspecies, namely D. erecta dark and light, mel-
anogaster, and simulans. Here we discard sequences of D.
santomea and yakuba since they introduce noise into BS
detection due to low numbers of individuals in the dataset,
while still acceptable for PoMoSelect analysis. The results
for all subspecies are presented in the supplementary
Figs. S3 and S4, Supplementary Material online.

The posterior distribution for opomoBalance in Fig. 8a, in-
ferred with PoMoBalance, is much wider than those for
Opomoselect @S it is challenging to detect GC-bias and BS
simultaneously. Thus, we advocate a mixed approach by
running PoMoSelect and PoMoBalance in parallel to get
more accurate estimates. For example, we learn the tree
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topology from PoMoSelect and then fix the estimated top-
ology for PoMoBalance analysis. The mutation rates in
Fig. 8b show great convergence and ESS > 200 for all
MCMC chains. The presence of BS is detected in most of
the spectra, indicated by > 1 in Fig. 8c, while for 8,7,
we observe purging of selection, indicated by f < 1. The
preferred frequencies in Fig. 8d coincide or are not far
away from the positions of BS peaks in the experimental
SFS as shown in Fig. 9.

We performed all analyses using the UK Crop Diversity:
Bioinformatics  high-performance computing (HPC)
Resource and the parallel implementation of RevBayes
with 24 parallel processes. The computational time was
85 h for PoMoSelect (6 subspecies, each containing 6-25
individuals) and 118 h (4 subspecies, each containing 6-
25 individuals) for PoMoBalance to analyze the tyse region.
For comparison, multispecies coalescent analysis for two
species with introgression but without BS would take 5
days (Flouri et al. 2020).

Discussion

Our study validated the implementations of PoMoSelect
and PoMoBalance through simulation-based calibration
in section “Validation Analysis for PoMoSelect and
PoMoBalance”. Additionally, we conducted a diverse set
of tests using data generated from both our custom simu-
lator, based on the Moran model, and the evolutionary
simulation framework SLiM in section “Modelling the BS
with PoMoBalance” (Haller and Messer 2019). The
PoMos demonstrated notable adaptability, particularly in
the context of inferring data simulated via SLiM, which in-
corporates more complex evolutionary dynamics than the
Moran model.

While SLiM, grounded in the Wright—Fisher model,
shares similarities with the Moran model, it introduces
additional complexities such as genetic recombination,
population demography (changes in population sizes),
and diploid organisms with intricate interactions between
drift and heterozygote advantage. Despite these chal-
lenges, PoMoBalance performs well in locating BS poly-
morphic peaks. To align SLiM diploids with PoMos, we
treated them as two haplotypes in PoMos.

Notably, while overestimating the GC-bias rate,
PoMoBalance excelled in identifying preferred frequencies,
specifically in the middle of the SFS, corresponding to het-
erozygote advantage in SLiM. This represents a unique
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Fig. 8. Posterior distributions derived from experimental data extracted from the tyse region of six subspecies, as shown in Fig. 7 for PoMoSelect
inference, and four Drosophila subspecies, namely D. erecta dark and light, melanogaster, and simulans for PoMoBalance inference. The corre-
sponding SFS for the PoMobalance is presented in Fig. 9. a) Estimated rates of gBGC with PoMoSelect on the left and PoMoBalance on the right.
b) Mutation rates, c) strength of BS, and d) preferred frequencies for BS, all inferred using PoMoBalance.

advantage compared to previous methods, which, while
suggestive of the presence of BS, cannot pinpoint specific
combinations of alleles, strengths, and preferred frequen-
cies of BS. It is important to acknowledge potential corre-
lations between S and o, which limits their inference. To
address this, we advocate for incorporating extra moves
into the MCMC, as discussed in section “Bayesian
Inference Using PoMoBalance with RevBayes”. The com-
parative analysis with MuteBaSS and MULLET indicates
that our method demonstrates the strongest evidence of
BS for data involving the heterozygote advantage.
However, this result must be interpreted with caution
since we assess the performance of our method using
the BF approach, while we derive averaged statistics for
the other methods (see supplementary material 4,
Supplementary Material online).

In section “Detection of BS in Drosophila erecta”, we ap-
plied PoMoSelect and PoMoBalance to analyze experimen-
tal genomic data from Drosophila erecta, specifically
focusing on the tmse region known to exhibit BS (Yassin
et al. 2016). Our application of PoMos reproduced previ-
ous insights by Yassin et al. (2016) into the phylogenetic
relationships among Drosophila subspecies.

Note that the outcomes of the inference for CG-bias
rate and mutation rates are presented in terms of the vir-
tual PoMos population sizes, which typically differ from
the actual population sizes. To accurately reflect the actual
population dynamics in Drosophila, it is necessary to map
the values of 4, o, §, and B from virtual PoMos size to ef-
fective population size (see supplementary material 2,
Supplementary Material online). This mapping results in
substantially reduced parameter values for ¢ and y, as
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Fig. 9. SFS representation for the tyse region corresponding to the PoMoBalance analysis in Fig. 8 for four subspecies of Drosophila, depicted in

stars, compared with the inferred SFS indicated by diamonds.

found by Borges et al. (2019), given the large effective
population sizes characteristic of Drosophila (Kelley et al.
2005). The mapping for the preferred frequency is relative-
ly straightforward, and we plan to propose a mapping for
the BS strengths and the nonreversible coefficients in fu-
ture research.

Through PoMoBalance analysis, we detect BS in the ma-
jority of allele combinations, in contrast to the absence of
BS peaks in neutral regions. Additionally, we observe the
purging of selection for AT alleles, signifying the removal
of polymorphisms at a rate higher than expected under
neutral conditions. While this discovery showcases the
flexibility of our method, interpreting its biological impli-
cations is challenging. Moreover, such interpretation
might be unnecessary, as the mean value for f,; is only
slightly smaller than 1, indicating neutrality expectations
and suggesting a relatively weak effect.

Conclusion

We incorporated the PoMoBalance model, a generalized
form of PoMos capable of detecting BS, into RevBayes, a
widely used phylogenetic software based on Bayesian infer-
ence. This integration enriches the resources available to
researchers engaged in phylogenetic analysis, providing a
robust framework for precise species tree inference and
concurrent parameter estimation. Notably, our implemen-
tation allows for the estimation of BS, including preferred
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frequencies and specific alleles under selection, while
also disentangling it from other forms of selection.
PoMoBalance exhibits versatility in capturing various se-
lection types, including purging selection, observed when
the level of observed polymorphisms is lower than ex-
pected via genetic drift and DS. These effects may arise
from a combination of dominance effects, such as under-
dominance, or purifying selection in the context of back-
ground selection, etc.

In general, we provide a comprehensive framework to
use PoMos for the estimation of phylogenetic trees,
GC-bias, and BS. The approach involves several key steps.
First, we employ the PoMoSelect to estimate tree top-
ology, GC-bias rate, and mutations. Subsequently, we use
PoMoBalance to estimate all parameters, allowing branch
lengths to vary while maintaining a fixed topology learned
from PoMoSelect. It is worthwhile to validate the results by
comparing the inferred values with PoMoBalance esti-
mates that include a fixed GC-bias rate learned from
PoMoSelect. The selection of the best candidates is based
on the agreement between the inferred SFS and that
estimated from the data. Lastly, in this framework,
PoMoBalance is selectively applied to regions that are like-
ly under BS, such as the MHC locus in Homo sapiens.

The adaptability and versatility of PoMos address a need
in the analysis of complex genomic datasets since our
framework provides accurate phylogenetic inferences
across multiple timescales and demonstrate potential for
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application in genome-wide scans through the parallel in-
ference of multiple genomic regions. The other benefit of
PoMos is scalability in terms of the number of species; it is
capable of handling dozens of species (Borges et al. 2022b).
In future, we aim to investigate additional genomic factors
intertwined with BS, with a specific focus on exploring the
role of linkage disequilibrium and its impact on the detec-
tion of BS.

Software Availability

The software RevBayes (Hohna et al. 2016, 2017, 2018)
is available at https://revbayes.github.io/. PoMoBalance
tutorial at https://revbayes.github.io/tutorials/pomo
balance/.

Supplementary Material

Supplementary material is available at Molecular Biology
and Evolution online.
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