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Abstract
Different frequencies amongst codons that encode the same amino acid (i.e. synonymous codons) have been 
observed in multiple species. Studies focused on uncovering the forces that drive such codon usage showed that a 
combined effect of mutational biases and translational selection works to produce different frequencies of synonym
ous codons. However, only few have been able to measure and distinguish between these forces that may leave simi
lar traces on the coding regions. Here, we have developed a codon model that allows the disentangling of mutation, 
selection on amino acids and synonymous codons, and GC-biased gene conversion (gBGC) which we employed on an 
extensive dataset of 415 chordates and 191 arthropods. We found that chordates need 15 more synonymous codon 
categories than arthropods to explain the empirical codon frequencies, which suggests that the extent of codon usage 
can vary greatly between animal phyla. Moreover, methylation at CpG sites seems to partially explain these patterns 
of codon usage in chordates but not in arthropods. Despite the differences between the two phyla, our findings dem
onstrate that in both, GC-rich codons are disfavored when mutations are GC-biased, and the opposite is true when 
mutations are AT-biased. This indicates that selection on the genomic coding regions might act primarily to stabilize 
its GC/AT content on a genome-wide level. Our study shows that the degree of synonymous codon usage varies 
considerably among animals, but is likely governed by a common underlying dynamic.

Key words: synonymous codon usage, GC-biased gene conversion, mutational bias, evolution, chordates, arthropods, 
nonmodel organisms.

Significance statement

The reasons for the differential usage of codons encoding for the same amino acid has puzzled scientists for decades. By examining the frequencies of synonymous codons 
in different species, this study presents a novel model that sheds light on the underlying factors that drive differences in codon usage between chordates and arthropods. 
Our analysis unveiled more extensive codon usage patterns in chordates compared to arthropods. Despite differences between the phyla, the study highlights that genome-wide 
selection acts to balance mutational biases, as GC-rich codons are less favored under GC-biased mutations, while the opposite holds true for AT-biased mutations. This research 
provides valuable insights into our understanding of the complex interplay between mutational biases and selection forces in shaping the variation at the synonymous sites, 
and has important implications for future studies of genome evolution and adaptation.
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Introduction
Synonymous codons encode for the same amino acid and are 
expected to be neutral and used interchangeably in the gen
ome. However, synonymous codons appear at different fre
quencies across protein-coding genes. This preferential 
usage of synonymous codons is called codon usage bias and 
is widely spread across the tree of life (Subramanian 2008). 
In order to explain the differential use of synonymous codons, 
two main narratives have been proposed: mutational biases 
and translational selection (Duret 2002; Hershberg and 

Petrov 2008). Translational selection is expected to affect 
highly expressed genes and correlates well with tRNA abun
dance to increase translation efficiency, and has been found 
to bias codon usage in a number of taxa, e.g. Drosophila 
(Shields et al. 1988; Akashi 1994; Bierne and Eyre-Walker 
2006), Caenorhabditis elegans (Duret and Mouchiroud 
1999), as well as in Escherichia coli (Ikemura 1981). On the 
other hand, mutational biases have been found to shape co
don usage bias according to the base composition of the 
whole genome and GC-content in the third codon position 
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(e.g. yeast (Sharp et al. 1995), and vertebrates (Urrutia and 
Hurst 2001; Rao et al. 2011) including humans (Sueoka and 
Kawanishi 2000)).

The exact causes of codon usage bias are still widely de
bated, but it is of common agreement that it arises from 
the interplay of selection, mutation, and genetic drift 
(Bulmer 1991). Studies have found that mutational forces 
are acting alongside the well-established effect of transla
tional selection on codon usage bias in Drosophila 
(Kliman and Hey 1994). Similarly, a correlation between 
preferred codons and tRNA levels was discovered in sev
eral vertebrate species, showing that weak translational se
lection operates alongside mutations (Doherty and 
McInerney 2013). Additionally, Galtier et al. (2018) recent
ly described how GC-biased gene conversion (gBGC)—a 
meiotic recombination-associated bias that favors GC- 
over AT-alleles (Marais 2003)—has a widespread effect 
on codon preferences across animal species. Therefore, 
the debate has changed from identifying the forces respon
sible for codon usage bias to determining which of these 
forces are more significant.

The assessment of codon usage bias has traditionally relied 
on heuristic methods, e.g. codon usage indices. The most 
commonly used indices include the Codon Adaptation 
Index (CAI) (Sharp and Li 1987), the Relative Synonymous 
Codon Usage (RSCU) values (Sharp and Li 1986) and the 
GC-content at the third position of synonymous codons 
(e.g. Galtier et al. 2018). These cluster the different codons 
in a small number of categories, usually as preferred and non
preferred, but fail to fully account for the effects of mutation 
and selection processes. To disentangle these effects, mech
anistic approaches that rely on population genetics models 
have been proposed. A maximum-likelihood approach in
cludes the multi-allele model (Zeng 2010), which attempts 
to categorize codons into four classes, and two Bayesian ap
proaches, FMutSel (Yang and Nielsen 2008) and ROC 
SEMPPR (Gilchrist et al. 2015), which quantify selection and 
mutation’s impact on codon preference. However, none of 
these approaches incorporates gBGC as a factor in codon 
usage bias.

Previous research was restricted to a few model organ
isms in animals and mainly focused on highly expressed 
genes. Most extensive interspecific studies of codon usage 
are focused on yeast (LaBella et al. 2019) and bacteria 
(Sharp et al. 2005). With advancements in sequencing 
technology, whole-genomic coding sequences from a 
wider range of species are now accessible. This led recent 
studies to shift their focus on inter-species variation in an
imals as well. Doherty and McInerney (2013) analyzed a 
range of vertebrate species, while Galtier et al. (2018) ex
panded beyond vertebrates and included species across 
the whole animal kingdom. However, data now exists 
that allows a more detailed comparison of the patterns 
of codon usage across phyla.

In this study, we devised a mechanistic model based on 
the mutation–selection Moran model (Moran 1958), which 
explains the fixed differences between species based on 

population genetics forces. To estimate these forces, we de
veloped a Bayesian estimator called DECUB (Disentangling 
the Effect of Codon Usage Bias) which quantifies the joint ef
fect of mutations, selection and gBGC across the whole gen
ome. We focused on chordates and arthropods as these two 
phyla are well studied with sufficient genomic sequence 
availability, have both diverged during the Ediacaran 
Period (635–538 MYA) (Dos Reis et al. 2015) and the 
main driver of codon usage bias has been attributed to trans
lational selection in arthropods but mutational biases in 
chordates. We employed our model on coding sequences 
from over 600 species belonging to these phyla to (i) disen
tangle and evaluate the effects of the aforementioned con
founding forces of codon usage, and (ii) compare their 
patterns between the phyla. We found that codon usage 
bias is more extensive in chordates compared to arthropods, 
and that genome-wide codon usage in both taxa is co- 
evolving with mutational biases.

Results
Modelling the Evolution of Codon Frequencies
In this study, we created a Moran model with mutations, 
GC-bias, and selection to model the codon frequencies 
along the genome. Mutations are modeled similarly to 
the general time-reversible (GTR) substitution model 
(Tavaré 1986) and GC-bias is incorporated to capture 
the effects of gBGC. The joint effects of these on a given 
codon I = i1i2i3 are summarized in the mutational coeffi
cient of all three nucleotides βI = βi1 βi2 βi3 . Selection acting 
on said codon is modeled as a relative fitness coefficient 
ΦI.

As we are interested in capturing the variation at the 
inter-species level, we used the stationary frequencies of 
the fixed sites (supplementary text S1, S2, Supplementary 
Material online), which can be described for each codon, as

ψI =
1

􏽐64
k=1 βkΦk

βIΦI, (1) 

where the denominator is set such that the stationary fre
quencies add up to 1.

Using the stationary distribution in equation (1), we de
veloped a software called DECUB (Disentangling the 
Effects of Codon Usage Bias), which takes as input codon 
counts from a given taxon (e.g. population, species) and in
fers the mutational coefficient of each nucleotide and the 
fitness coefficients of each codon using a Bayesian frame
work. All mutational coefficients are normalized based 
on adenine (A) since the effect of gBGC does not influence 
mutational biases towards A. Similarly, as methionine is an 
essential amino acid encoded by a single codon and is 
therefore not confounded with codon usage bias, all fitness 
coefficients are normalized based on the codon ATG. The 
general model presented in (1) can potentially assume a 
fitness coefficient per codon. However, after performing 
extensive simulations, we found that the model is 
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unidentifiable after 53 fitness coefficients (supplementary 
fig. S1, Supplementary Material online).

Assessing the Evolutionary Significance of the Model 
Estimates
It is known that variation in the strength of gBGC and mu
tations vary greatly in the genome, and spatially heteroge
neous selection on codon usage bias scales with expression 
(e.g. Gilchrist et al. 2015; Cope and Shah 2022). To establish 
that our model accurately quantifies the strength of these 
underlying processes, we conducted simulations using 
genome-wide data from humans (Homo sapiens) and fruit 
flies (Drosophila melanogaster) as case studies. We gener
ated codon counts by incorporating variation in muta
tions, gBGC, and codon fitnesses per gene, intending to 
more realistically reflect observed variation across coding 
sequences (CDS) in both species. While our model cannot 
capture this heterogeneity or assess its position, we found 
that DECUB measures the average value of those forces 
across the collection of genome-wide codon data.

Our analyses revealed highly significant Spearman’s ρ rank 
correlations between the mean true fitness coefficient across 
all genes and the estimated values (supplementary fig. S2, S3, 
Supplementary Material online), indicating that our esti
mates capture biological signal consistent with gene-wide 
averages. Furthermore, relative errors below 20% indicate 
strong concordance between simulated and estimated values 
(supplementary fig. S4, Supplementary Material online). 
Regarding the mutational biases, in cases of more homoge
neous gBGC, like in Drosophila, our estimations correlated 
significantly with the mean of the simulated values 
(supplementary fig. S2, Supplementary Material online). 
However, in the presence of recombination hotspots, as is 
the case in humans, where areas of the genome experience 
extreme values of gBGC, these correlations are lower 
(supplementary fig. S3, Supplementary Material online). 
These hotspots are typically found in only 1–2% of the gen
ome (Glémin et al. 2015), predominantly outside coding re
gions (Myers et al. 2005). However, in our simulations, we 
assumed 2% of hotspots solely in coding regions, resulting 
in a much higher level of heterogeneity than observed in real
ity. Consequently, a majority of these extreme values were 
concentrated in a small portion of the dataset. Due to this dis
parity, we find that the estimated mutational biases for GC 
alleles (βC and βG) tended to be closer to the median of the 
distribution of simulated values rather than the mean 
(supplementary fig. S5, Supplementary Material online). 
However, this did not bias the estimation of any GC-rich co
don fitness coefficients, proving the capability of our model 
not only to capture mutational biases and fitness coefficients 
but also to disentangle them based on pooled codon counts, 
accurately measuring their mean value across coding genes.

Chordates Have More Pronounced Patterns of Codon 
Usage Than Arthropods
To characterize the patterns of codon usage in arthropods 
and chordates, we used codon counts from genome-wide 

coding sequences of 606 species: 415 chordates and 191 ar
thropods. All species are encoded as per the standard gen
etic code. We set up our inferences by using an amino acid 
mapping, which sets a fitness coefficient per amino acid, 
plus one per stop codon (total 23 Φ categories). Figure 1
shows the estimation of each mutational and fitness coef
ficient on a logarithmic scale. Although the estimates were 
distributed similarly, chordates were more homogeneous 
in their estimates across the species studied compared 
to arthropods.

The estimated mutational biases of thymine (βT) are 
close to 0, therefore almost equal to βA, the mutational ef
fects of which were used to normalize all mutational coef
ficients. Moreover, as would be expected, we see greater 
variation in the mutation coefficients of GC alleles, which 
are driven by the combined effect of mutations and gBGC. 
The estimation of the fitness coefficients highlights the dif
ferential usage of each amino acid, and because we did not 
confine our analyses to the sense codons, it informs us on 
how deleterious the stop codons are in comparison to 
sense codons. Arthropods show a preference for TAA as 
their stop codon, despite its median fitness being 13 times 
lower than that of the lowest amino acid (arginine). On the 
other hand, chordates prefer TGA as their stop codon, 
with a median that is 7.3 times lower than that of the low
est amino acid (also arginine).

The observation that the coefficients only change slight
ly between phyla reflects how fitness coefficients inherent
ly mirror the structure of the genetic code, representing 
the usage of each amino acid relative to methionine along 
the coding regions. We use the term “fitness” to convey 
this relative preference and in reference to its function in 
the Moran model. Note that the fitness coefficients can 
contain forces beyond selection, such as other mutational 
and recombination biases that have not been directly 
modeled. However, we can use these estimates as a base
line for our subsequent analysis. By building upon these es
timates, we can introduce additional fitness coefficients to 
investigate genome-wide patterns that extend beyond the 
genetic code’s structure (i.e. codon usage bias) and the 
mutational biases we have modeled.

The amino acid mapping expresses the genetic code and 
is a natural approach to modeling fitness effects; however, it 
ignores variation between synonymous codons, thus disre
garding codon usage bias. To identify codons needing their 
own fitness coefficient, we used an approach based on the 
posterior predictive checks by Gelman and Hill (2006), 
where we compared the error between the empirical codon 
frequencies and the predicted ones from our model. Figure 2
shows the percentage of species whose estimates deviate 
from each empirical codon count. In arthropods, most of 
the observed variation can be sufficiently explained with 
the amino acid mapping. However, more codon categories 
are clearly needed to account for the more extensive vari
ation amongst the synonymous codons in chordates. It is im
portant to note that these added fitness coefficients aim to 
capture codon-specific effects, which are most likely due to 
codon usage bias, but can also encompass some amino acid 
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effects which we cannot disentangle. For this reason, we have 
henceforth used the term “codon usage bias” only when we 
explicitly mention this phenomenon, and employ “codon 
usage” or “codon preferences” when discussing codon- 
specific fitness estimates that encompass codon usage bias.

We proceeded to add more fitness coefficients in a step- 
wise manner to the codons whose estimates do not fit that 
of the empirical distribution in more than 20% of species. 
First, we added a fitness coefficient to the codon of each ami
no acid that had the highest percentage of error. We pro
ceeded to repeat this procedure until all variation was 
below the 20% threshold, resulting in a final phylum-specific 
mapping (Fig. 2). We note that chordates reached the 
identifiability threshold with three codons exceeding 20%; 
however, the errors of these were relatively low, not exceeding 
25%. We employed the Bayesian and Deviance Information 
Criteria (BIC and DIC) (Schwarz 1978; Spiegelhalter et al. 
2002), where we aimed to find the best fitting mapping. 
In all species but seven arthropods, the last codon 
mapping was the optimal one (supplementary table S2, 
Supplementary Material online). Hence, the final chordate 
mapping has 52 fitness coefficients compared to arthropods 
that are modeled with 37.

Although chordates exhibit greater variation in syn
onymous codons, this pattern is comparatively more 
uniform across species compared to species within 
arthropods, which display less extensive bias but greater 
heterogeneity within their taxa (supplementary fig. S6, 
Supplementary Material online). Between arthropods and 

chordates, however, the final mappings show clear differ
ences in patterns of codon usage, with chordates needing 
over twice the number of extra coefficients compared to ar
thropods (29 vs. 14 extra codon fitness coefficients).

Fitness Coefficients Balance Mutational Effects
We established that chordates and arthropods show differ
ent extent of codon usage; additionally, the mutation and fit
ness coefficients vary considerably within these phyla (Fig. 1, 
and supplementary fig. S6, Supplementary Material online). 
To understand these differences, we focused our analyses 
on the main representative chordate classes (mammals, 
birds, reptiles and amphibians, and fish), which comprise 
97% of the dataset. Similarly for arthropods, the subsequent 
analyses focus on Diptera, Lepidoptera, and Hymenoptera 
(flies and mosquitoes, butterflies and moths, and ants, wasps 
and bees, respectively), which make up for 74% of the arthro
pod dataset, and more specifically more than 83% of the col
lected insect species (see Methods, supplementary table S3, 
Supplementary Material online).

In our model, mutational biases also express gBGC. We in
vestigated its role in codon usage by correlating the 
GC-content of each codon with the bias of mutations to
wards GC alleles. Figure 3 shows the slope of the codon fit
nesses with increasing GC-content for each codon against 
the difference between GC- and AT-mutational effects for 
all taxa studied in chordates and arthropods. Both chordates 
and arthropods have significant negative correlations 
(Spearman’s ρ rank correlation of −0.891 and −0.901 
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Fig. 1. Estimation of mutational and fitness coefficients under an amino acid mapping. Logarithmic scale of each estimate which shows positive 
values if a coefficient is estimated higher than the reference one or negative if lower. The mutational coefficients were normalized with βA which 
does not include the effects of gBGC and the fitness coefficients were normalized by the single codon for methionine.
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respectively; p-value <2.2 × 10−16). These coefficients 
were obtained after correcting for phylogenetic non- 
independence using phylogenetic contrasts (Felsenstein 
1985). These negative correlations indicate that the larger 
the mutational bias towards GC (compared to AT), the less 
favorable (i.e. the more negative the correlation coefficient) 
a codon is as its GC-content increases (supplementary fig. 
S7, S8, Supplementary Material online). Additionally, these 
patterns do not seem to be an artifact of the model, as 
upon integrating new coefficients, the newly added codons 
do not show an association with their nucleotide compos
ition (supplementary fig. S9, Supplementary Material online), 
and both GC-only and AT-only codons were chosen in both 
phyla.

A negative slope between the mutation bias towards GC 
and the preference for GC-rich codons was also observed 
among chordate and arthropod groups (all p-values 
<8.4 × 10−6). Fishes have the steepest negative slope 
(> − 0.25), and along with reptiles, they show the highest 
correlation coefficients (−0.929 and −0.919, compared to 
−0.880 and −0.859 in mammals and birds, respectively), al
though all taxa are correlated to a similar degree. Finally, rep
tiles and amphibians have more homogeneous AT vs. GC 
mutation preferences, showing a slope very close to 
0. Dipterans show some of the largest variation between 

the mutational differences (−1 to 2) with codon fitness 
slopes ranging from around 0 to −0.75. We observed in hy
menopterans that AT mutations were equal or sometimes 
higher than GC, which is reflected in their fitnesses showing 
a rise (slope that reaches approximately 0.3) in their esti
mates as GC content increases. Finally, all arthropod taxa 
were negatively correlated to a similar degree (−0.993, 
−0.978 and −0.873 in Hymenoptera, Lepidoptera and 
Diptera, respectively).

To gain further insight into the relative importance of 
mutational biases and fitness coefficients in determining 
the patterns of codon usage in chordates and arthropods, 
we performed a sensitivity analysis. We used the Shannon 
entropy (Shannon 1948), as this measure has been previously 
used to study patterns of codon usage (Suzuki et al. 2004) 
and is effective in assessing the likelihood of the codon fre
quencies changing due to variations in the population para
meters. We varied the estimated mutation and fitness 
coefficients by ±10% and captured the difference in entropy 
caused to the stationary distribution of the model (see 
Methods for more details). Figure 4 shows the differences 
in entropy of each β and Φ coefficient. It is evident that 
the mutational biases had a much larger effect on the en
tropy, with βT having the largest effect in chordates, as 
10% variability results in 0.51% change on the stationary 
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Fig. 2. Error plots between predicted and empirical codon frequencies in chordates and arthropods, differences between the amino acid map
ping and the final codon mapping. Assuming no variation amongst synonymous codons (amino acid mapping, i.e. one Φ per amino acid), 
showed a more extensive codon usage pattern in chordates compared to arthropods. In chordates (left) 35 codons out of 64 had more 
than 20% of their species being predicted outside the empirical distribution, whereas arthropods (right) had overall smaller errors and only 
10 codons exceeding the 20% threshold. We proceeded to minimize these errors per codon by adding more fitness coefficients. Each new map
ping adds a new fitness coefficient per amino acid to the codon that had the highest error in the previous mapping. The final codon mapping 
(shown in the bottom plot) adds 29 extra coefficients to the chordates and 14 to arthropods, resulting in a total of 53 and 37 coefficients, re
spectively. We note that three codons still exceed the 20% threshold, as the model reached the identifiability threshold in chordates.
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distribution. This effect is 18.6 times larger than the effect of 
codon fitnesses with an average change of 0.027% (excluding 
the stop codons). In arthropods, this effect is even larger, 
with βA affecting 31.7 times more compared to the effect 
of the fitness coefficients (0.9% vs. 0.029%).

CpG/TpG Sites in Chordates Affect Codon Usage 
Patterns
CpG/TpG sites are known to affect codon usage patterns in 
humans (Scaiewicz et al. 2006). As we observed a strong rela
tionship between the codon GC-content and their fitnesses, 
we aimed to test how much of it could be explained by CpG/ 
TpG sites in chordates and arthropods. Methylated CpG di
nucleotides are more likely to change into TpG dinucleotides 
compared to hypomethylated ones, therefore resulting in a 
depletion of CpG sites and a surplus of TpG (Simmen 2008; 
Miyahara et al. 2015). We employed a one-sample 
Wilcoxon signed-rank test to test whether CpG (and TpG) 
codons are less (more) favorable than what is expected due 
to their GC-content. In chordates, we observed significant dif
ferences between the dinucleotides’ coefficients and their ex
pected GC content (p-value <2.2 × 10−16), while arthropods 
show insignificant differences (Fig. 5). After correcting for 
multiple testing (False Discovery Rate, FDR Benjamini and 
Hochberg 1995), these results seem to not be driven by a 

single group, as significant p-values are recovered also for 
the chordate classes studied (apart from fish TpG surplus, 
supplementary table S4, Supplementary Material online). 
In addition, all arthropod orders are insignificant 
(supplementary table S4, Supplementary Material online). 
Therefore, CpG codons seem to affect codon usage patterns 
only in chordates, but not in arthropods.

Discussion
Our study introduces a mechanistic model of codon evolu
tion that can distinguish between selection and mutational 
biases while accounting for gBGC. Previous research has 
introduced mechanistic models to estimate mutation 
and selection coefficients based on population dynamics 
(e.g. Sharp et al. 2005; Yang and Nielsen 2008; Zeng 2010) 
or protein synthesis rates and protein structures 
(Gilchrist et al. 2015; Cope and Gilchrist 2022). However, 
our model, DECUB, also takes into account the effects of 
gBGC. gBGC has been identified in vertebrates (Figuet 
et al. 2015) and other insect species (Kent et al. 2012; 
Wallberg et al. 2015), and there is increasing evidence 
that its impact is widespread across all metazoans (Pessia 
et al. 2012; Galtier et al. 2018) and failure to account for 
it can lead to over or underestimation of selection on 
codon usage (De Oliveira et al. 2021; Cope and Shah 2022). 
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Fig. 3. Negative correlation between mutational biases towards GC and increasing GC-content of codon fitness coefficients in chordates and 
arthropods. The larger the difference between the mutational coefficients of GC and AT nucleotides, the more negative the slope of fitnesses is, 
i.e. the less favorable a codon will be if it is richer in GC-content. In both chordates (left) and arthropods (right), this relationship is inverse with 
significant Spearman’s rank correlation coefficients ρ, both overall and per inner taxa (box in the upper right corner of each graph). Clade-specific 
correlations are shown for the classes Actinopteri (fish), Mammalia (mammals), Aves (birds), and Amphibia and Reptilia (amphibians & reptiles) 
in chordates and the orders Diptera (flies & mosquitoes), Lepidoptera (butterflies & moths), and Hymenoptera (ants, bees & wasps) in 
arthropods.
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DECUB is modeled similarly to the FMutSel model intro
duced by Yang and Nielsen (2008) and the Moran birth– 
death process highlighted in Sella and Hirsh (2005). 
However, in addition to modeling gBGC, our model ex
pands the parameter space to include fitness coefficients 
of the stop codons, which have not been accounted for 
in previous studies. This incorporation highlighted a higher 
fitness of the stop codon TGA in vertebrates, supporting 
previous studies on the effect of gBGC on the mammalian 
stop codons (Ho and Hurst 2022; Trexler et al. 2023).

While DECUB was utilized in this study to investigate 
phylum-specific patterns of codon usage, it has applications 
beyond this. It can be implemented on a more refined taxo
nomic level, such as species families or genera, or even on a 
per-species basis, enabling us to infer adaptations in codon 
usage specific to particular lineages. Additionally, DECUB 
has the potential to investigate sudden changes in the pat
terns of codon usage, such as those resulting from modifica
tions in the genomic base composition or lineage-specific 
alterations to the genetic code.

Expanding previous research that studied a small num
ber of representatives per phylum, DECUB was applied 
here to a vast dataset of over 600 species of chordates 
and arthropods. We found that codon usage is more ex
tensive in chordates compared to arthropods (Fig. 2). 
Behura and Severson (2012) showed that dipteran and hy
menopteran insects have a low extent of codon usage, 
which is in agreement with our results. Additionally, they 

also suggested that insects have a pattern of codon usage 
that is unique to each species, explaining the variation we 
also observed within arthropods.

Although the extent of codon usage bias varies between 
chordates and arthropods, we showed that, in both, muta
tional biases have a more significant impact on shaping 
genome-wide patterns of codon usage than codon fit
nesses (Fig. 4). Corroborating these results, the global co
don patterns appear to be dominated by a combination 
of mutational biases towards AT and gBGC also in yeast 
(LaBella et al. 2019). Mutations have been described previ
ously as the main driver of codon usage in vertebrates (e.g. 
Doherty and McInerney 2013), however, their effect on 
arthropod patterns is less extensive compared to natural 
selection (Kliman and Hey 1994).

Our analysis revealed a strong negative correlation be
tween the GC mutational biases—which also include the 
effects of gBGC—and selection forces acting on the 
GC-content of each codon (Fig. 3). Indeed, despite an ex
cess of GC to AT mutations, GC alleles are more likely to 
be fixed in mammals due to gBGC or GC-biased selection 
(Smith and Eyre-Walker 2001; Behura and Severson 2013). 
Birds are known to exhibit similar patterns of gBGC to 
mammals (Duret and Galtier 2009; Figuet et al. 2015). 
However, there is also growing evidence that this phenom
enon affects fish (Escobar et al. 2011), whereas its impact 
on reptiles appears to be less significant (Figuet et al. 
2015). These studies support our estimations of 
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Fig. 4. Relative difference in entropy measuring the evolutionary effect of each coefficient in arthropods and chordates. Violin plots with box
plots of the relative difference in entropy of every species, both in chordates (violin plots on the left for each parameter comparison) and ar
thropods (violin plots on the right for each parameter comparison). The entropy difference for the mutational biases (left) measures the effect a 
perturbation of 10% of each β has on the stationary distribution. For the fitness coefficients, the summarized effects of all sense and all stop 
codon fitness coefficients can be seen on the right. The effect of mutational effects are different between chordates and arthropods but 
both are multiple orders of magnitude higher than codon fitnesses (18.6× and 31.7× higher in chordates and arthropods, respectively).
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mutational biases driven by mutations and gBGC, where 
reptiles and amphibians exhibited smaller biases towards 
GC compared to the other chordate classes. In insects, 
Vicario et al. (2007) found that most genes in Drosophila 
are under GC-biased selection, while Behura and 
Severson (2012) reported that GC-biases affect codon 
usage in Diptera, whereas AT-biases are more pronounced 
in Hymenoptera. This observation corroborates our ana
lysis on arthropods, where mutational biases in Diptera 
were GC-biased, whereas Hymenoptera was the only taxon 
with increased AT-bias favoring codons with a higher 
GC-content.

Finally, our results showed a depletion of CpG and an ex
cess of TpG codons compared to the expected GC-content 
in chordates but not in arthropods (Fig. 5). Methylation in 
CpG dinucleotides has been shown to hypermutate into 
TpG through deamination of their cytosine, resulting in a 
depletion of CpG sites and a surplus of TpG (Simmen 
2008; Miyahara et al. 2015). Most CpG sites are methylated 
in vertebrates (Bird 2002), however among arthropods, dip
terans exhibit minimal to absent levels of methylation, 
while other holometabola species (i.e. lepidopterans and 
hymenopterans) show methylation, but in reduced levels 
in their protein-coding sequences (Provataris et al. 2018). 
In contrast, Jabbari and Bernardi (2004) have suggested 
that differences in GC-content and not methylation may 
cause CpG shortages. However, our analysis actively com
pared CpG codons with their expected GC content and 
found significant differences in chordates, which showcases 
that methylation in CpG sites rather than GC-content is 
driving these differences between the two phyla. This differ
ence due to methylation on dinucleotides acting on chor
dates but not in arthropods can partly explain the more 

extensive variation in the codon usage patterns in chor
dates (Fig. 2).

In summary, despite differences between chordates and 
arthropods, in both, mutational biases have a significant 
impact on shaping genome-wide patterns of codon usage. 
In all taxa, as GC-mutational biases increase, GC-rich co
dons become less favorable and vice versa for AT-biased 
mutations. These contrasting patterns are highlighted in 
fishes where a strong GC-mutation bias has the most dele
terious effect on GC-rich codons, while in some hymenop
terans the opposite pattern is observed (Fig. 3). This 
inverse relationship between the mutations towards GC 
and the fitness coefficients is not merely an artifact of 
the model (Fig. 3), while it also cannot be explained by 
methylation in arthropods (Fig. 5).

A possible explanation might be that stabilizing selection is 
preventing an excess of GC or AT content in the coding re
gions of the genome, which would limit the occurrence of 
mRNAs that are either too GC- or AU-rich. Indeed, data 
from humans, chicken, and Drosophila show that 
GC-content in mRNAs ranges between 30% and 70% 
(Courel et al. 2019). However, we must exercise caution 
when considering this hypothesis since, apart from methyla
tion in CpG sites, we cannot differentiate selection for trans
lational efficiency in our fitness coefficients from other 
mutational biases that cannot be captured by our model. 
Testing this hypothesis may require comparing the mutation 
rates between GC and AT alleles, gBGC, and codon substitu
tions rates across the chordate or arthropods phylogeny to 
determine whether these have co-evolved to stabilize GC con
tent on the coding regions. However, this validation presents 
challenges and it necessitates polymorphic data as well as ex
perimentally obtained mutation and gBGC rates, which are 

Fig. 5. Differences in the fitness of codons with CpG sites compared to their expected GC content. CpG deficit and TpG surplus are expected due 
to methylation. The nonparametric Wilcoxon signed-rank test was used to compare CpG/TpG sites with their expected estimate due to GC 
content in chordates and arthropods. Significant results are shown with an *, colors represent the different taxa.
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currently unavailable for most nonmodel organisms included 
in our analysis.

This study betters our understanding of the molecular 
mechanisms involved in the determination of codon 
composition in animals, the extent of which seems to vary 
considerably. It also provides insights into the variations in 
synonymous sites in light of these mechanisms. It is well 
known that failure to account for this variation breaks the as
sumption of neutral evolution of synonymous sites and can 
bias estimates of the ratio of nonsynonymous to synonym
ous substitution rates, i.e. ω = dN/dS (Goldman and Yang 
1994; Muse and Gaut 1994; Spielman and Wilke 2015), a par
ameter commonly used to detect natural selection acting on 
the protein. Therefore, our results highlight the importance 
for clade-specific approaches in the study of variation at syn
onymous sites and the detection of natural selection.

Methods
A Model of Codon Evolution
To assess the evolutionary impact of the forces that govern 
codon usage bias, we devised a population genetic 
model on the 64 codons using a Moran model with 
reversible mutations and selection (supplementary text 

S1, Supplementary Material online). Mutations are revers
ible, biased, and modeled as the GTR substitution model 
(Tavaré 1986), where the mutation rates are proportional 
to the stationary frequencies π between the four nucleo
tides. gBGC is incorporated as a selection coefficient γ fa
voring GC-alleles (Nagylaki 1983). Genetic drift is 
modeled according to the Moran model (Moran 1958) 
in a population of N individuals, where in each generation 
one individual is chosen to reproduce and one to die. 
Finally, selection acting on codons is modeled as a relative 
fitness coefficient ϕ. We further derived the stationary dis
tribution of this model, which defines the frequencies of 
each of the 64 codons in terms of the aforementioned 
forces:

ψI ∝ πi1 πi2 πi3 γ
(N−1)(1G,C(i1)+1G,C(i2)+1G,C(i3))ϕN−1

I

=
1
K

βi1 βi2 βi3 ΦI =
1
K

βIΦI, (2) 

where i1i2i3 are the three nucleotides of codon I and 1G,C(i) 
is the indicator function of nucleotide i. The indicator func
tion guarantees that the γ parameter contributes to a given 
codon frequency only if it has a GC nucleotide, thus mod
eling for gBGC.

Fig. 6. Phylogenetic reconstruction and relative counts of species in the dataset, belonging to Chordata and Arthropoda. The phylogenetic tree 
on the right represents the 415 chordates species spanning over 13 taxa, while the one on the left represents the arthropods, which summarizes 
191 species belonging to 12 taxa. For chordates, the taxa with an asterisk next to their names represent a class that was named conventionally by 
a more commonly known name (e.g. giving the name of the subphyla Tunicata and Cephalochordata to the correspondent class name), or the 
specific Class has not an official name yet on NCBI (Schoch et al. 2020), therefore was named by its most represented Order (e.g. Crocodylia, 
Testudines, Coelacanths). In arthropods, we recovered 10 main orders belonging to hexapods (note Collembola* is named here after the most 
recognized class name), and also summarized the orders found in the subphyla Chelicerata (spiders and scorpions) and Crustacea (crustaceans) 
which are shown on the phylogeny as a group named after their subphylum followed by an asterisk. The evolutionary time-scales were recovered 
using TimeTree (Kumar et al. 2022) and visualized with FigTree (v. 1.4.4; http://tree.bio.ed.ac.uk/software/figtree/), with both trees sharing similar 
timescales (approximately diverged around 550–600 million years ago, congruent with Dos Reis et al. 2015). Finally, the middle graph shows the 
proportions of the selected studied taxa.

The Patterns of Codon Usage between Chordates and Arthropods · https://doi.org/10.1093/molbev/msae080 MBE

9

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/5/m
sae080/7658666 by Veterinaerm

edizinische U
niversitaet W

ien user on 21 August 2025

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae080#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae080#supplementary-data
http://tree.bio.ed.ac.uk/software/figtree/


Using the stationary distribution of equation (2), we devel
oped DECUB, a Bayesian estimator that estimates the effects 
of different evolutionary forces on codon usage from codon 
counts. As we cannot disentangle them, we combined 
them into a single parameter β, representing mutational 
biases. Finally, the normalization factor K is the sum of the sta
tionary frequencies of all codons k, with K =

􏽐64
k=1 βkΦk, 

such that the stationary distribution adds up to 1.
We normalized each β by πA, the stationary frequency of 

Adenine, which does not include the effects of gBGC. 
Similarly, the fitness coefficient ΦI = ϕN−1

I encompasses the ef
fect of selection with genetic drift and is normalized by ΦATG, 
the fitness coefficient of methionine, as methionine is an essen
tial amino acid and is encoded by a single codon, therefore it is 
not confounded with codon usage bias. In summary,

βT =
πT

πA
, βC/G =

πC/G

πA
γN−1 and ΦI =

ϕI

ϕATG

􏼒 􏼓N−1

. (3) 

Mapping and Coefficient Estimation
Mapping is the process of assigning a coefficient to be es
timated by the model to a single codon or a group of co
dons. This can refer to an amino acid mapping, where 
every coefficient is placed per amino acid and assumes 
no variation within synonymous codons, or a more 
codon-usage-specific mapping. We started with an amino 
acid mapping that includes 23 fitness categories, one for 
each amino acid and one for each stop codon. Then, for 
each codon, we calculated the number of species where 
the predicted frequency is outside the 0.05–0.95 interval 
of the empirical codon frequency, based on the posterior 
predictive checks by Gelman and Hill (2006). In a stepwise 
manner, we added an extra fitness coefficient per amino 
acid to the codon with the highest error.

We continued this process until all codons had an error 
smaller than 20%, which means that we are predicting its 
frequency correctly for at least 80% of the species. Using 
this procedure, we defined a phylum-specific codon map
ping for chordates and arthropods, which we incorporated 
in DECUB, along with the amino acid one. The posterior 
mean and standard deviation of all parameter estimates 
of the amino acid and final codon mappings (two chains 
per mapping) can be found in the supplementary table 
S1, Supplementary Material online.

The procedure of adding one extra fitness coefficient to 
each amino acid was repeated in total four times, resulting 
in four mappings: i.e. the amino acid one, and three codon 
specific. To compare the fit of these mappings, we employed 
the Bayesian and Deviance Information Criteria (BIC and 
DIC) (Schwarz 1978; Spiegelhalter et al. 2002), where we 
aimed to find the model with the best fit (lowest score). 
We then calculated the difference between all the models 
and the optimal ones (e.g. ΔDIC = DICmodel − DICoptimal) 
and only accepted if the difference was larger than 10 
(Spiegelhalter et al. 2002) (supplementary table S2, 
Supplementary Material online). As chordates reached the 

identifiability threshold, we could not add more fitness coef
ficients. For arthropods, we stopped at the last phylum- 
specific mapping because the ΔDIC values between that 
and the previous one were close to 0, suggesting further 
mappings would have been redundant (supplementary fig. 
S10, Supplementary Material online).

We employed DECUB which uses a Bayesian estimator to 
estimate all mutational and fitness coefficients using the fi
nal phylum-specific mapping of chordates and arthropods. 
We then proceeded to group the estimations of A and T mu
tational biases together, similarly for G and C, and then 
group the fitness coefficients by their codon GC-content 
(supplementary fig. S7, S8, Supplementary Material online). 
Using a linear model, we calculated the slope of fitness coef
ficients with increasing GC-content. We then calculated the 
Spearman Rank Correlation Coefficient (Spearman 1904) be
tween this and the difference between G/C and A/T muta
tional biases. To test for phylogenetic non-independence 
which can influence the correlation coefficients and p-values, 
we used Moran’s I coefficient from the phylosignal package 
in R (Gittleman and Kot 1990; Keck et al. 2016). We then cal
culated phylogenetic contrasts using the ape package in R 
(Felsenstein 1985; Paradis and Schliep 2019) for chordates 
and arthropods, as well as for each respective order and class 
based on their respective phylogenies. These contrasts were 
used to calculate Spearman’s ρ coefficient.

Model Validation Through Simulations
We conducted extensive simulations to establish that our 
model (1) accurately represents the underlying processes 
we are modeling and (2) assess our ability to capture 
genome-wide trends, considering the presence of across 
genes spatial heterogeneity. We used genome-wide data 
from humans (Homo sapiens) and fruit flies (Drosophila 
melanogaster) as a representative of each of our phyla in 
our study as there is a plethora of data available for these 
model organisms. We estimated nucleotide frequencies 
and combined them with estimates of gBGC to calculate 
the mutational bias parameters (β) for each gene based 
on equation (3). For humans, we calculated nucleotide fre
quencies across the majority of human autosomes (after 
removing outliers) obtained from Ensembl (Accession 
Number: GCA_000001405.29; Martin et al. 2022). gBGC 
was sampled for each gene based on Glémin et al. 
(2015), where they provided distributions of gBGC for in
side and outside hotspots (see Fig. 7 in their publication). 
We simulated 2% of the genes in hotspots, as typically re
combination hotspots are found in 1–2% of the whole 
genome (Glémin et al. 2015). To calculate the variation 
in codon fitness, we obtained the whole CDS also from 
Ensembl (Accession Number: GCA_000001405.29) and 
derived amino acid preferences relative to methionine, 
introducing, on top, codon-specific variation based on dif
ferences between synonymous codons of the same amino 
acid. For fruit flies, we calculated nucleotide frequencies 
across the chromosome arms 2L, 2R, 3L, and 3R obtained 
from FlyBase (release FB2023_06; Gramates et al. 2022) 
and the codon fitnesses based on the CDS from the 
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same release. Estimates of gBGC were obtained from 
Jackson and Charlesworth (2021). Finally, we utilized these 
estimates to generate codon counts for 10,000 genes in 
fruit flies and 20,000 in humans for a total of 100 simula
tions. The combined codon counts were then input into 
DECUB to estimate parameters, which were then com
pared with the gene-wide average simulated values.

Dataset Information
Codon counts were collected from the Codon Statistics 
Database (Subramanian et al. 2022) for a total of 606 species, 
415 Chordata and 191 Arthropoda. All species are encoded 
using the standard genetic code (translation Table 1 Osawa 
et al. 1992). The dataset includes counts for all 64 codons, in
cluding three stop codons along with the sense ones.

The dataset for chordates contains species from 13 taxa, 
most of those being shown at the Class level, with most sub
sequent analyses focusing on a subset of these classes, 
namely Mammals, Birds, Fish, and all Reptiles and 
Amphibians combined, which represent almost 97% of all 
chordates dataset. Similarly, for arthropods, we have 12 
taxa of species, the orders of which diverged at similar 
time points to chordates’ classes. Here, we focused on the 
orders Diptera (flies and mosquitoes), Lepidoptera (butter
flies and moths), and Hymenoptera (ants, bees, and wasps), 
which represent the majority of species in Hexapoda and 
comprise 74% of the arthropods dataset (Fig. 6).

Entropy and Sensitivity Analysis
To measure the evolutionary significance of the mutation 
and selection bias in the codon frequencies, we calculated 
the impact of perturbing each of those parameters by ± 
10% on the predicted frequencies. To summarize this ef
fect, we used the Shannon entropy (Shannon 1948):

H(ψ) = −
􏽘64

I=1

ψI log (ψI), (4) 

where ψI is the predicted frequency of codon I. After ob
taining the entropy we calculated the relative difference as:

RD =
1

H(ψ)
|H(ψ+) − H(ψ−)|, (5) 

where ψ+ and ψ− are the recalculated stationary distribu
tion when we increased and decreased each parameter by 
10%, respectively.

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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