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Abstract

Different frequencies amongst codons that encode the same amino acid (i.e. synonymous codons) have been
observed in multiple species. Studies focused on uncovering the forces that drive such codon usage showed that a
combined effect of mutational biases and translational selection works to produce different frequencies of synonym-
ous codons. However, only few have been able to measure and distinguish between these forces that may leave simi-
lar traces on the coding regions. Here, we have developed a codon model that allows the disentangling of mutation,
selection on amino acids and synonymous codons, and GC-biased gene conversion (gBGC) which we employed on an
extensive dataset of 415 chordates and 191 arthropods. We found that chordates need 15 more synonymous codon
categories than arthropods to explain the empirical codon frequencies, which suggests that the extent of codon usage
can vary greatly between animal phyla. Moreover, methylation at CpG sites seems to partially explain these patterns
of codon usage in chordates but not in arthropods. Despite the differences between the two phyla, our findings dem-
onstrate that in both, GC-rich codons are disfavored when mutations are GC-biased, and the opposite is true when
mutations are AT-biased. This indicates that selection on the genomic coding regions might act primarily to stabilize
its GC/AT content on a genome-wide level. Our study shows that the degree of synonymous codon usage varies
considerably among animals, but is likely governed by a common underlying dynamic.

Key words: synonymous codon usage, GC-biased gene conversion, mutational bias, evolution, chordates, arthropods,
nonmodel organisms.

Significance statement

The reasons for the differential usage of codons encoding for the same amino acid has puzzled scientists for decades. By examining the frequencies of synonymous codons
in different species, this study presents a novel model that sheds light on the underlying factors that drive differences in codon usage between chordates and arthropods.
Our analysis unveiled more extensive codon usage patterns in chordates compared to arthropods. Despite differences between the phyla, the study highlights that genome-wide
selection acts to balance mutational biases, as GC-rich codons are less favored under GC-biased mutations, while the opposite holds true for AT-biased mutations. This research
provides valuable insights into our understanding of the complex interplay between mutational biases and selection forces in shaping the variation at the synonymous sites,
and has important implications for future studies of genome evolution and adaptation.

Introduction Petrov 2008). Translational selection is expected to affect
highly expressed genes and correlates well with tRNA abun-
dance to increase translation efficiency, and has been found
to bias codon usage in a number of taxa, e.g. Drosophila
(Shields et al. 1988; Akashi 1994; Bierne and Eyre-Walker

Synonymous codons encode for the same amino acid and are
expected to be neutral and used interchangeably in the gen-
ome. However, synonymous codons appear at different fre-
quencies across protein-coding genes. This preferential

usage of synonymous codons is called codon usage bias and 2006), Caenorhabditis elegans (Duret and Mouchiroud
is widely spread across the tree of life (Subramanian 2008). 1999), as well as in Escherichia coli (lkemura 1981). On the
In order to explain the differential use of synonymous codons, other hand, mutational biases have been found to shape co-
two main narratives have been proposed: mutational biases don usage bias according to the base composition of the
and translational selection (Duret 2002; Hershberg and whole genome and GC-content in the third codon position
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(e.g. yeast (Sharp et al. 1995), and vertebrates (Urrutia and
Hurst 2001; Rao et al. 2011) including humans (Sueoka and
Kawanishi 2000)).

The exact causes of codon usage bias are still widely de-
bated, but it is of common agreement that it arises from
the interplay of selection, mutation, and genetic drift
(Bulmer 1991). Studies have found that mutational forces
are acting alongside the well-established effect of transla-
tional selection on codon usage bias in Drosophila
(Kliman and Hey 1994). Similarly, a correlation between
preferred codons and tRNA levels was discovered in sev-
eral vertebrate species, showing that weak translational se-
lection operates alongside mutations (Doherty and
Mclnerney 2013). Additionally, Galtier et al. (2018) recent-
ly described how GC-biased gene conversion (gBGC)—a
meiotic recombination-associated bias that favors GC-
over AT-alleles (Marais 2003)—has a widespread effect
on codon preferences across animal species. Therefore,
the debate has changed from identifying the forces respon-
sible for codon usage bias to determining which of these
forces are more significant.

The assessment of codon usage bias has traditionally relied
on heuristic methods, e.g. codon usage indices. The most
commonly used indices include the Codon Adaptation
Index (CAI) (Sharp and Li 1987), the Relative Synonymous
Codon Usage (RSCU) values (Sharp and Li 1986) and the
GC-content at the third position of synonymous codons
(e.g. Galtier et al. 2018). These cluster the different codons
in a small number of categories, usually as preferred and non-
preferred, but fail to fully account for the effects of mutation
and selection processes. To disentangle these effects, mech-
anistic approaches that rely on population genetics models
have been proposed. A maximume-likelihood approach in-
cludes the multi-allele model (Zeng 2010), which attempts
to categorize codons into four classes, and two Bayesian ap-
proaches, FMutSel (Yang and Nielsen 2008) and ROC
SEMPPR (Gilchrist et al. 2015), which quantify selection and
mutation’s impact on codon preference. However, none of
these approaches incorporates gBGC as a factor in codon
usage bias.

Previous research was restricted to a few model organ-
isms in animals and mainly focused on highly expressed
genes. Most extensive interspecific studies of codon usage
are focused on yeast (LaBella et al. 2019) and bacteria
(Sharp et al. 2005). With advancements in sequencing
technology, whole-genomic coding sequences from a
wider range of species are now accessible. This led recent
studies to shift their focus on inter-species variation in an-
imals as well. Doherty and Mclnerney (2013) analyzed a
range of vertebrate species, while Galtier et al. (2018) ex-
panded beyond vertebrates and included species across
the whole animal kingdom. However, data now exists
that allows a more detailed comparison of the patterns
of codon usage across phyla.

In this study, we devised a mechanistic model based on
the mutation-selection Moran model (Moran 1958), which
explains the fixed differences between species based on

population genetics forces. To estimate these forces, we de-
veloped a Bayesian estimator called DECUB (Disentangling
the Effect of Codon Usage Bias) which quantifies the joint ef-
fect of mutations, selection and gBGC across the whole gen-
ome. We focused on chordates and arthropods as these two
phyla are well studied with sufficient genomic sequence
availability, have both diverged during the Ediacaran
Period (635-538 MYA) (Dos Reis et al. 2015) and the
main driver of codon usage bias has been attributed to trans-
lational selection in arthropods but mutational biases in
chordates. We employed our model on coding sequences
from over 600 species belonging to these phyla to (i) disen-
tangle and evaluate the effects of the aforementioned con-
founding forces of codon usage, and (ii) compare their
patterns between the phyla. We found that codon usage
bias is more extensive in chordates compared to arthropods,
and that genome-wide codon usage in both taxa is co-
evolving with mutational biases.

Results

Modelling the Evolution of Codon Frequencies

In this study, we created a Moran model with mutations,
GC-bias, and selection to model the codon frequencies
along the genome. Mutations are modeled similarly to
the general time-reversible (GTR) substitution model
(Tavaré 1986) and GC-bias is incorporated to capture
the effects of gBGC. The joint effects of these on a given
codon | = iyi,i3 are summarized in the mutational coeffi-
cient of all three nucleotides 8, = B; 8, B,,. Selection acting
on said codon is modeled as a relative fitness coefficient
D,

As we are interested in capturing the variation at the
inter-species level, we used the stationary frequencies of
the fixed sites (supplementary text S1, S2, Supplementary
Material online), which can be described for each codon, as

1

e BD (1)
i; ﬂk¢k

Y, =

where the denominator is set such that the stationary fre-
quencies add up to 1.

Using the stationary distribution in equation (1), we de-
veloped a software called DECUB (Disentangling the
Effects of Codon Usage Bias), which takes as input codon
counts from a given taxon (e.g. population, species) and in-
fers the mutational coefficient of each nucleotide and the
fitness coefficients of each codon using a Bayesian frame-
work. All mutational coefficients are normalized based
on adenine (A) since the effect of gBGC does not influence
mutational biases towards A. Similarly, as methionine is an
essential amino acid encoded by a single codon and is
therefore not confounded with codon usage bias, all fitness
coefficients are normalized based on the codon ATG. The
general model presented in (1) can potentially assume a
fitness coefficient per codon. However, after performing
extensive simulations, we found that the model is
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unidentifiable after 53 fitness coefficients (supplementary
fig. S1, Supplementary Material online).

Assessing the Evolutionary Significance of the Model
Estimates

It is known that variation in the strength of gBGC and mu-
tations vary greatly in the genome, and spatially heteroge-
neous selection on codon usage bias scales with expression
(e.g. Gilchrist et al. 2015; Cope and Shah 2022). To establish
that our model accurately quantifies the strength of these
underlying processes, we conducted simulations using
genome-wide data from humans (Homo sapiens) and fruit
flies (Drosophila melanogaster) as case studies. We gener-
ated codon counts by incorporating variation in muta-
tions, gBGC, and codon fitnesses per gene, intending to
more realistically reflect observed variation across coding
sequences (CDS) in both species. While our model cannot
capture this heterogeneity or assess its position, we found
that DECUB measures the average value of those forces
across the collection of genome-wide codon data.

Our analyses revealed highly significant Spearman’s p rank
correlations between the mean true fitness coefficient across
all genes and the estimated values (supplementary fig. S2, S3,
Supplementary Material online), indicating that our esti-
mates capture biological signal consistent with gene-wide
averages. Furthermore, relative errors below 20% indicate
strong concordance between simulated and estimated values
(supplementary fig. S4, Supplementary Material online).
Regarding the mutational biases, in cases of more homoge-
neous gBGC, like in Drosophila, our estimations correlated
significantly with the mean of the simulated values
(supplementary fig. S2, Supplementary Material online).
However, in the presence of recombination hotspots, as is
the case in humans, where areas of the genome experience
extreme values of gBGC, these correlations are lower
(supplementary fig. S3, Supplementary Material online).
These hotspots are typically found in only 1-2% of the gen-
ome (Glémin et al. 2015), predominantly outside coding re-
gions (Myers et al. 2005). However, in our simulations, we
assumed 2% of hotspots solely in coding regions, resulting
in a much higher level of heterogeneity than observed in real-
ity. Consequently, a majority of these extreme values were
concentrated in a small portion of the dataset. Due to this dis-
parity, we find that the estimated mutational biases for GC
alleles (5 and ;) tended to be closer to the median of the
distribution of simulated values rather than the mean
(supplementary fig. S5, Supplementary Material online).
However, this did not bias the estimation of any GC-rich co-
don fitness coefficients, proving the capability of our model
not only to capture mutational biases and fitness coefficients
but also to disentangle them based on pooled codon counts,
accurately measuring their mean value across coding genes.

Chordates Have More Pronounced Patterns of Codon
Usage Than Arthropods

To characterize the patterns of codon usage in arthropods
and chordates, we used codon counts from genome-wide

coding sequences of 606 species: 415 chordates and 191 ar-
thropods. All species are encoded as per the standard gen-
etic code. We set up our inferences by using an amino acid
mapping, which sets a fitness coefficient per amino acid,
plus one per stop codon (total 23 @ categories). Figure 1
shows the estimation of each mutational and fitness coef-
ficient on a logarithmic scale. Although the estimates were
distributed similarly, chordates were more homogeneous
in their estimates across the species studied compared
to arthropods.

The estimated mutational biases of thymine (#;) are
close to 0, therefore almost equal to S, the mutational ef-
fects of which were used to normalize all mutational coef-
ficients. Moreover, as would be expected, we see greater
variation in the mutation coefficients of GC alleles, which
are driven by the combined effect of mutations and gBGC.
The estimation of the fitness coefficients highlights the dif-
ferential usage of each amino acid, and because we did not
confine our analyses to the sense codons, it informs us on
how deleterious the stop codons are in comparison to
sense codons. Arthropods show a preference for TAA as
their stop codon, despite its median fitness being 13 times
lower than that of the lowest amino acid (arginine). On the
other hand, chordates prefer TGA as their stop codon,
with a median that is 7.3 times lower than that of the low-
est amino acid (also arginine).

The observation that the coefficients only change slight-
ly between phyla reflects how fitness coefficients inherent-
ly mirror the structure of the genetic code, representing
the usage of each amino acid relative to methionine along
the coding regions. We use the term “fitness” to convey
this relative preference and in reference to its function in
the Moran model. Note that the fitness coefficients can
contain forces beyond selection, such as other mutational
and recombination biases that have not been directly
modeled. However, we can use these estimates as a base-
line for our subsequent analysis. By building upon these es-
timates, we can introduce additional fitness coefficients to
investigate genome-wide patterns that extend beyond the
genetic code’s structure (i.e. codon usage bias) and the
mutational biases we have modeled.

The amino acid mapping expresses the genetic code and
is a natural approach to modeling fitness effects; however, it
ignores variation between synonymous codons, thus disre-
garding codon usage bias. To identify codons needing their
own fitness coefficient, we used an approach based on the
posterior predictive checks by Gelman and Hill (2006),
where we compared the error between the empirical codon
frequencies and the predicted ones from our model. Figure 2
shows the percentage of species whose estimates deviate
from each empirical codon count. In arthropods, most of
the observed variation can be sufficiently explained with
the amino acid mapping. However, more codon categories
are clearly needed to account for the more extensive vari-
ation amongst the synonymous codons in chordates. It isim-
portant to note that these added fitness coefficients aim to
capture codon-specific effects, which are most likely due to
codon usage bias, but can also encompass some amino acid
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Fig. 1. Estimation of mutational and fitness coefficients under an amino acid mapping. Logarithmic scale of each estimate which shows positive
values if a coefficient is estimated higher than the reference one or negative if lower. The mutational coefficients were normalized with 8, which
does not include the effects of gBGC and the fitness coefficients were normalized by the single codon for methionine.

effects which we cannot disentangle. For this reason, we have
henceforth used the term “codon usage bias” only when we
explicitly mention this phenomenon, and employ “codon
usage” or “codon preferences” when discussing codon-
specific fitness estimates that encompass codon usage bias.

We proceeded to add more fitness coefficients in a step-
wise manner to the codons whose estimates do not fit that
of the empirical distribution in more than 20% of species.
First, we added a fitness coefficient to the codon of each ami-
no acid that had the highest percentage of error. We pro-
ceeded to repeat this procedure until all variation was
below the 20% threshold, resulting in a final phylum-specific
mapping (Fig. 2). We note that chordates reached the
identifiability threshold with three codons exceeding 20%;
however, the errors of these were relatively low, not exceeding
25%. We employed the Bayesian and Deviance Information
Criteria (BIC and DIC) (Schwarz 1978; Spiegelhalter et al.
2002), where we aimed to find the best fitting mapping.
In all species but seven arthropods, the last codon
mapping was the optimal one (supplementary table S2,
Supplementary Material online). Hence, the final chordate
mapping has 52 fitness coefficients compared to arthropods
that are modeled with 37.

Although chordates exhibit greater variation in syn-
onymous codons, this pattern is comparatively more
uniform across species compared to species within
arthropods, which display less extensive bias but greater
heterogeneity within their taxa (supplementary fig. S6,
Supplementary Material online). Between arthropods and

4

chordates, however, the final mappings show clear differ-
ences in patterns of codon usage, with chordates needing
over twice the number of extra coefficients compared to ar-
thropods (29 vs. 14 extra codon fitness coefficients).

Fitness Coefficients Balance Mutational Effects

We established that chordates and arthropods show differ-
ent extent of codon usage; additionally, the mutation and fit-
ness coefficients vary considerably within these phyla (Fig. 1,
and supplementary fig. S6, Supplementary Material online).
To understand these differences, we focused our analyses
on the main representative chordate classes (mammals,
birds, reptiles and amphibians, and fish), which comprise
97% of the dataset. Similarly for arthropods, the subsequent
analyses focus on Diptera, Lepidoptera, and Hymenoptera
(flies and mosquitoes, butterflies and moths, and ants, wasps
and bees, respectively), which make up for 74% of the arthro-
pod dataset, and more specifically more than 83% of the col-
lected insect species (see Methods, supplementary table S3,
Supplementary Material online).

In our model, mutational biases also express gBGC. We in-
vestigated its role in codon usage by correlating the
GC-content of each codon with the bias of mutations to-
wards GC alleles. Figure 3 shows the slope of the codon fit-
nesses with increasing GC-content for each codon against
the difference between GC- and AT-mutational effects for
all taxa studied in chordates and arthropods. Both chordates
and arthropods have significant negative correlations
(Spearman’s p rank correlation of —0.891 and —0.901
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Fig. 2. Error plots between predicted and empirical codon frequencies in chordates and arthropods, differences between the amino acid map-
ping and the final codon mapping. Assuming no variation amongst synonymous codons (amino acid mapping, i.e. one @ per amino acid),
showed a more extensive codon usage pattern in chordates compared to arthropods. In chordates (left) 35 codons out of 64 had more
than 20% of their species being predicted outside the empirical distribution, whereas arthropods (right) had overall smaller errors and only
10 codons exceeding the 20% threshold. We proceeded to minimize these errors per codon by adding more fitness coefficients. Each new map-
ping adds a new fitness coefficient per amino acid to the codon that had the highest error in the previous mapping. The final codon mapping
(shown in the bottom plot) adds 29 extra coefficients to the chordates and 14 to arthropods, resulting in a total of 53 and 37 coefficients, re-
spectively. We note that three codons still exceed the 20% threshold, as the model reached the identifiability threshold in chordates.

respectively; p-value <2.2 X 107'®). These coefficients
were obtained after correcting for phylogenetic non-
independence using phylogenetic contrasts (Felsenstein
1985). These negative correlations indicate that the larger
the mutational bias towards GC (compared to AT), the less
favorable (i.e. the more negative the correlation coefficient)
a codon is as its GC-content increases (supplementary fig.
S7, S8, Supplementary Material online). Additionally, these
patterns do not seem to be an artifact of the model, as
upon integrating new coefficients, the newly added codons
do not show an association with their nucleotide compos-
ition (supplementary fig. S9, Supplementary Material online),
and both GC-only and AT-only codons were chosen in both
phyla.

A negative slope between the mutation bias towards GC
and the preference for GC-rich codons was also observed
among chordate and arthropod groups (all p-values
<8.4 X 107°). Fishes have the steepest negative slope
(> — 0.25), and along with reptiles, they show the highest
correlation coefficients (—0.929 and —0.919, compared to
—0.880 and —0.859 in mammals and birds, respectively), al-
though all taxa are correlated to a similar degree. Finally, rep-
tiles and amphibians have more homogeneous AT vs. GC
mutation preferences, showing a slope very close to
0. Dipterans show some of the largest variation between

the mutational differences (—1 to 2) with codon fitness
slopes ranging from around 0 to —0.75. We observed in hy-
menopterans that AT mutations were equal or sometimes
higher than GC, which is reflected in their fitnesses showing
a rise (slope that reaches approximately 0.3) in their esti-
mates as GC content increases. Finally, all arthropod taxa
were negatively correlated to a similar degree (—0.993,
—0.978 and —0.873 in Hymenoptera, Lepidoptera and
Diptera, respectively).

To gain further insight into the relative importance of
mutational biases and fitness coefficients in determining
the patterns of codon usage in chordates and arthropods,
we performed a sensitivity analysis. We used the Shannon
entropy (Shannon 1948), as this measure has been previously
used to study patterns of codon usage (Suzuki et al. 2004)
and is effective in assessing the likelihood of the codon fre-
quencies changing due to variations in the population para-
meters. We varied the estimated mutation and fitness
coefficients by +10% and captured the difference in entropy
caused to the stationary distribution of the model (see
Methods for more details). Figure 4 shows the differences
in entropy of each f and @ coefficient. It is evident that
the mutational biases had a much larger effect on the en-
tropy, with f; having the largest effect in chordates, as
10% variability results in 0.51% change on the stationary

5
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Fig. 3. Negative correlation between mutational biases towards GC and increasing GC-content of codon fitness coefficients in chordates and
arthropods. The larger the difference between the mutational coefficients of GC and AT nucleotides, the more negative the slope of fitnesses is,
i.e. the less favorable a codon will be if it is richer in GC-content. In both chordates (left) and arthropods (right), this relationship is inverse with
significant Spearman’s rank correlation coefficients p, both overall and per inner taxa (box in the upper right corner of each graph). Clade-specific
correlations are shown for the classes Actinopteri (fish), Mammalia (mammals), Aves (birds), and Amphibia and Reptilia (amphibians & reptiles)
in chordates and the orders Diptera (flies & mosquitoes), Lepidoptera (butterflies & moths), and Hymenoptera (ants, bees & wasps) in

arthropods.

distribution. This effect is 18.6 times larger than the effect of
codon fitnesses with an average change of 0.027% (excluding
the stop codons). In arthropods, this effect is even larger,
with S, affecting 31.7 times more compared to the effect
of the fitness coefficients (0.9% vs. 0.029%).

CpG/TpG Sites in Chordates Affect Codon Usage
Patterns

CpG/TpG sites are known to affect codon usage patterns in
humans (Scaiewicz et al. 2006). As we observed a strong rela-
tionship between the codon GC-content and their fitnesses,
we aimed to test how much of it could be explained by CpG/
TpG sites in chordates and arthropods. Methylated CpG di-
nucleotides are more likely to change into TpG dinucleotides
compared to hypomethylated ones, therefore resulting in a
depletion of CpG sites and a surplus of TpG (Simmen 2008;
Miyahara et al. 2015). We employed a one-sample
Wilcoxon signed-rank test to test whether CpG (and TpG)
codons are less (more) favorable than what is expected due
to their GC-content. In chordates, we observed significant dif-
ferences between the dinucleotides’ coefficients and their ex-
pected GC content (p-value <2.2 X 10~'®), while arthropods
show insignificant differences (Fig. 5). After correcting for
multiple testing (False Discovery Rate, FDR Benjamini and
Hochberg 1995), these results seem to not be driven by a
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single group, as significant p-values are recovered also for
the chordate classes studied (apart from fish TpG surplus,
supplementary table S4, Supplementary Material online).
In addition, all arthropod orders are insignificant
(supplementary table S4, Supplementary Material online).
Therefore, CpG codons seem to affect codon usage patterns
only in chordates, but not in arthropods.

Discussion

Our study introduces a mechanistic model of codon evolu-
tion that can distinguish between selection and mutational
biases while accounting for gBGC. Previous research has
introduced mechanistic models to estimate mutation
and selection coefficients based on population dynamics
(e.g. Sharp et al. 2005; Yang and Nielsen 2008; Zeng 2010)
or protein synthesis rates and protein structures
(Gilchrist et al. 2015; Cope and Gilchrist 2022). However,
our model, DECUB, also takes into account the effects of
gBGC. gBGC has been identified in vertebrates (Figuet
et al. 2015) and other insect species (Kent et al. 2012;
Wallberg et al. 2015), and there is increasing evidence
that its impact is widespread across all metazoans (Pessia
et al. 2012; Galtier et al. 2018) and failure to account for
it can lead to over or underestimation of selection on
codon usage (De Oliveira et al. 2021; Cope and Shah 2022).
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both are multiple orders of magnitude higher than codon fitnesses (18.6X and 31.7X higher in chordates and arthropods, respectively).

DECUB is modeled similarly to the FMutSel model intro-
duced by Yang and Nielsen (2008) and the Moran birth-
death process highlighted in Sella and Hirsh (2005).
However, in addition to modeling gBGC, our model ex-
pands the parameter space to include fitness coefficients
of the stop codons, which have not been accounted for
in previous studies. This incorporation highlighted a higher
fitness of the stop codon TGA in vertebrates, supporting
previous studies on the effect of gBGC on the mammalian
stop codons (Ho and Hurst 2022; Trexler et al. 2023).

While DECUB was utilized in this study to investigate
phylum-specific patterns of codon usage, it has applications
beyond this. It can be implemented on a more refined taxo-
nomic level, such as species families or genera, or even on a
per-species basis, enabling us to infer adaptations in codon
usage specific to particular lineages. Additionally, DECUB
has the potential to investigate sudden changes in the pat-
terns of codon usage, such as those resulting from modifica-
tions in the genomic base composition or lineage-specific
alterations to the genetic code.

Expanding previous research that studied a small num-
ber of representatives per phylum, DECUB was applied
here to a vast dataset of over 600 species of chordates
and arthropods. We found that codon usage is more ex-
tensive in chordates compared to arthropods (Fig. 2).
Behura and Severson (2012) showed that dipteran and hy-
menopteran insects have a low extent of codon usage,
which is in agreement with our results. Additionally, they

also suggested that insects have a pattern of codon usage
that is unique to each species, explaining the variation we
also observed within arthropods.

Although the extent of codon usage bias varies between
chordates and arthropods, we showed that, in both, muta-
tional biases have a more significant impact on shaping
genome-wide patterns of codon usage than codon fit-
nesses (Fig. 4). Corroborating these results, the global co-
don patterns appear to be dominated by a combination
of mutational biases towards AT and gBGC also in yeast
(LaBella et al. 2019). Mutations have been described previ-
ously as the main driver of codon usage in vertebrates (e.g.
Doherty and Mclnerney 2013), however, their effect on
arthropod patterns is less extensive compared to natural
selection (Kliman and Hey 1994).

Our analysis revealed a strong negative correlation be-
tween the GC mutational biases—which also include the
effects of gBGC—and selection forces acting on the
GC-content of each codon (Fig. 3). Indeed, despite an ex-
cess of GC to AT mutations, GC alleles are more likely to
be fixed in mammals due to gBGC or GC-biased selection
(Smith and Eyre-Walker 2001; Behura and Severson 2013).
Birds are known to exhibit similar patterns of gBGC to
mammals (Duret and Galtier 2009; Figuet et al. 2015).
However, there is also growing evidence that this phenom-
enon affects fish (Escobar et al. 2011), whereas its impact
on reptiles appears to be less significant (Figuet et al.
2015). These studies support our estimations of
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mutational biases driven by mutations and gBGC, where
reptiles and amphibians exhibited smaller biases towards
GC compared to the other chordate classes. In insects,
Vicario et al. (2007) found that most genes in Drosophila
are under GC-biased selection, while Behura and
Severson (2012) reported that GC-biases affect codon
usage in Diptera, whereas AT-biases are more pronounced
in Hymenoptera. This observation corroborates our ana-
lysis on arthropods, where mutational biases in Diptera
were GC-biased, whereas Hymenoptera was the only taxon
with increased AT-bias favoring codons with a higher
GC-content.

Finally, our results showed a depletion of CpG and an ex-
cess of TpG codons compared to the expected GC-content
in chordates but not in arthropods (Fig. 5). Methylation in
CpG dinucleotides has been shown to hypermutate into
TpG through deamination of their cytosine, resulting in a
depletion of CpG sites and a surplus of TpG (Simmen
2008; Miyahara et al. 2015). Most CpG sites are methylated
in vertebrates (Bird 2002), however among arthropods, dip-
terans exhibit minimal to absent levels of methylation,
while other holometabola species (i.e. lepidopterans and
hymenopterans) show methylation, but in reduced levels
in their protein-coding sequences (Provataris et al. 2018).
In contrast, Jabbari and Bernardi (2004) have suggested
that differences in GC-content and not methylation may
cause CpG shortages. However, our analysis actively com-
pared CpG codons with their expected GC content and
found significant differences in chordates, which showcases
that methylation in CpG sites rather than GC-content is
driving these differences between the two phyla. This differ-
ence due to methylation on dinucleotides acting on chor-
dates but not in arthropods can partly explain the more
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extensive variation in the codon usage patterns in chor-
dates (Fig. 2).

In summary, despite differences between chordates and
arthropods, in both, mutational biases have a significant
impact on shaping genome-wide patterns of codon usage.
In all taxa, as GC-mutational biases increase, GC-rich co-
dons become less favorable and vice versa for AT-biased
mutations. These contrasting patterns are highlighted in
fishes where a strong GC-mutation bias has the most dele-
terious effect on GC-rich codons, while in some hymenop-
terans the opposite pattern is observed (Fig. 3). This
inverse relationship between the mutations towards GC
and the fitness coefficients is not merely an artifact of
the model (Fig. 3), while it also cannot be explained by
methylation in arthropods (Fig. 5).

A possible explanation might be that stabilizing selection is
preventing an excess of GC or AT content in the coding re-
gions of the genome, which would limit the occurrence of
mRNAs that are either too GC- or AU-rich. Indeed, data
from humans, chicken, and Drosophila show that
GC-content in mRNAs ranges between 30% and 70%
(Courel et al. 2019). However, we must exercise caution
when considering this hypothesis since, apart from methyla-
tion in CpG sites, we cannot differentiate selection for trans-
lational efficiency in our fitness coefficients from other
mutational biases that cannot be captured by our model.
Testing this hypothesis may require comparing the mutation
rates between GC and AT alleles, gBGC, and codon substitu-
tions rates across the chordate or arthropods phylogeny to
determine whether these have co-evolved to stabilize GC con-
tent on the coding regions. However, this validation presents
challenges and it necessitates polymorphic data as well as ex-
perimentally obtained mutation and gBGC rates, which are
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proportions of the selected studied taxa.

currently unavailable for most nonmodel organisms included
in our analysis.

This study betters our understanding of the molecular
mechanisms involved in the determination of codon
composition in animals, the extent of which seems to vary
considerably. It also provides insights into the variations in
synonymous sites in light of these mechanisms. It is well
known that failure to account for this variation breaks the as-
sumption of neutral evolution of synonymous sites and can
bias estimates of the ratio of nonsynonymous to synonym-
ous substitution rates, i.e. @ = dN/dS (Goldman and Yang
1994; Muse and Gaut 1994; Spielman and Wilke 2015), a par-
ameter commonly used to detect natural selection acting on
the protein. Therefore, our results highlight the importance
for clade-specific approaches in the study of variation at syn-
onymous sites and the detection of natural selection.

Methods

A Model of Codon Evolution

To assess the evolutionary impact of the forces that govern
codon usage bias, we devised a population genetic
model on the 64 codons using a Moran model with
reversible mutations and selection (supplementary text

S1, Supplementary Material online). Mutations are revers-
ible, biased, and modeled as the GTR substitution model
(Tavaré 1986), where the mutation rates are proportional
to the stationary frequencies 7 between the four nucleo-
tides. gBGC is incorporated as a selection coefficient y fa-
voring GC-alleles (Nagylaki 1983). Genetic drift is
modeled according to the Moran model (Moran 1958)
in a population of N individuals, where in each generation
one individual is chosen to reproduce and one to die.
Finally, selection acting on codons is modeled as a relative
fitness coefficient ¢. We further derived the stationary dis-
tribution of this model, which defines the frequencies of
each of the 64 codons in terms of the aforementioned
forces:

Y, X T, 7[,.27[,,3y(N—U(‘G,C(h)+10,c(i2)+15,c(i3))¢;\1—1

1 1
= Eﬂ;ﬁ;zﬁlg D = E,BI¢I: (2)

where i;iyi3 are the three nucleotides of codon I and 15(i)
is the indicator function of nucleotide i. The indicator func-
tion guarantees that the y parameter contributes to a given
codon frequency only if it has a GC nucleotide, thus mod-
eling for gBGC.
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Using the stationary distribution of equation (2), we devel-
oped DECUB, a Bayesian estimator that estimates the effects
of different evolutionary forces on codon usage from codon
counts. As we cannot disentangle them, we combined
them into a single parameter f, representing mutational
biases. Finally, the normalization factor K is the sum of the sta-
tionary frequencies of all codons k, with K= Zi; B P
such that the stationary distribution adds up to 1.

We normalized each S by 7,, the stationary frequency of
Adenine, which does not include the effects of gBGC.
Similarly, the fitness coefficient @, = fM encompasses the ef-
fect of selection with genetic drift and is normalized by @arc,
the fitness coefficient of methionine, as methionine is an essen-
tial amino acid and is encoded by a single codon, therefore it is
not confounded with codon usage bias. In summary,

N—1
T C/G N-1
Br A /BC/G A y an I < ) 3)

Mapping and Coefficient Estimation

Mapping is the process of assigning a coefficient to be es-
timated by the model to a single codon or a group of co-
dons. This can refer to an amino acid mapping, where
every coefficient is placed per amino acid and assumes
no variation within synonymous codons, or a more
codon-usage-specific mapping. We started with an amino
acid mapping that includes 23 fitness categories, one for
each amino acid and one for each stop codon. Then, for
each codon, we calculated the number of species where
the predicted frequency is outside the 0.05-0.95 interval
of the empirical codon frequency, based on the posterior
predictive checks by Gelman and Hill (2006). In a stepwise
manner, we added an extra fitness coefficient per amino
acid to the codon with the highest error.

We continued this process until all codons had an error
smaller than 20%, which means that we are predicting its
frequency correctly for at least 80% of the species. Using
this procedure, we defined a phylum-specific codon map-
ping for chordates and arthropods, which we incorporated
in DECUB, along with the amino acid one. The posterior
mean and standard deviation of all parameter estimates
of the amino acid and final codon mappings (two chains
per mapping) can be found in the supplementary table
S1, Supplementary Material online.

The procedure of adding one extra fitness coefficient to
each amino acid was repeated in total four times, resulting
in four mappings: i.e. the amino acid one, and three codon
specific. To compare the fit of these mappings, we employed
the Bayesian and Deviance Information Criteria (BIC and
DIC) (Schwarz 1978; Spiegelhalter et al. 2002), where we
aimed to find the model with the best fit (lowest score).
We then calculated the difference between all the models
and the optimal ones (e.g. ADIC = DICpodel — DICoptimal)
and only accepted if the difference was larger than 10
(Spiegelhalter et al. 2002) (supplementary table S2,
Supplementary Material online). As chordates reached the
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identifiability threshold, we could not add more fitness coef-
ficients. For arthropods, we stopped at the last phylum-
specific mapping because the ADIC values between that
and the previous one were close to 0, suggesting further
mappings would have been redundant (supplementary fig.
$10, Supplementary Material online).

We employed DECUB which uses a Bayesian estimator to
estimate all mutational and fitness coefficients using the fi-
nal phylum-specific mapping of chordates and arthropods.
We then proceeded to group the estimations of A and T mu-
tational biases together, similarly for G and C, and then
group the fitness coefficients by their codon GC-content
(supplementary fig. S7, S8, Supplementary Material online).
Using a linear model, we calculated the slope of fitness coef-
ficients with increasing GC-content. We then calculated the
Spearman Rank Correlation Coefficient (Spearman 1904) be-
tween this and the difference between G/C and A/T muta-
tional biases. To test for phylogenetic non-independence
which can influence the correlation coefficients and p-values,
we used Moran’s | coefficient from the phylosignal package
in R (Gittleman and Kot 1990; Keck et al. 2016). We then cal-
culated phylogenetic contrasts using the ape package in R
(Felsenstein 1985; Paradis and Schliep 2019) for chordates
and arthropods, as well as for each respective order and class
based on their respective phylogenies. These contrasts were
used to calculate Spearman’s p coefficient.

Model Validation Through Simulations

We conducted extensive simulations to establish that our
model (1) accurately represents the underlying processes
we are modeling and (2) assess our ability to capture
genome-wide trends, considering the presence of across
genes spatial heterogeneity. We used genome-wide data
from humans (Homo sapiens) and fruit flies (Drosophila
melanogaster) as a representative of each of our phyla in
our study as there is a plethora of data available for these
model organisms. We estimated nucleotide frequencies
and combined them with estimates of gBGC to calculate
the mutational bias parameters (f8) for each gene based
on equation (3). For humans, we calculated nucleotide fre-
quencies across the majority of human autosomes (after
removing outliers) obtained from Ensembl (Accession
Number: GCA_000001405.29; Martin et al. 2022). gBGC
was sampled for each gene based on Glémin et al
(2015), where they provided distributions of gBGC for in-
side and outside hotspots (see Fig. 7 in their publication).
We simulated 2% of the genes in hotspots, as typically re-
combination hotspots are found in 1-2% of the whole
genome (Glémin et al. 2015). To calculate the variation
in codon fitness, we obtained the whole CDS also from
Ensembl (Accession Number: GCA_000001405.29) and
derived amino acid preferences relative to methionine,
introducing, on top, codon-specific variation based on dif-
ferences between synonymous codons of the same amino
acid. For fruit flies, we calculated nucleotide frequencies
across the chromosome arms 2L, 2R, 3L, and 3R obtained
from FlyBase (release FB2023_06; Gramates et al. 2022)
and the codon fitnesses based on the CDS from the
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same release. Estimates of gBGC were obtained from
Jackson and Charlesworth (2021). Finally, we utilized these
estimates to generate codon counts for 10,000 genes in
fruit flies and 20,000 in humans for a total of 100 simula-
tions. The combined codon counts were then input into
DECUB to estimate parameters, which were then com-
pared with the gene-wide average simulated values.

Dataset Information

Codon counts were collected from the Codon Statistics
Database (Subramanian et al. 2022) for a total of 606 species,
415 Chordata and 191 Arthropoda. All species are encoded
using the standard genetic code (translation Table 1 Osawa
et al. 1992). The dataset includes counts for all 64 codons, in-
cluding three stop codons along with the sense ones.

The dataset for chordates contains species from 13 taxa,
most of those being shown at the Class level, with most sub-
sequent analyses focusing on a subset of these classes,
namely Mammals, Birds, Fish, and all Reptiles and
Amphibians combined, which represent almost 97% of all
chordates dataset. Similarly, for arthropods, we have 12
taxa of species, the orders of which diverged at similar
time points to chordates’ classes. Here, we focused on the
orders Diptera (flies and mosquitoes), Lepidoptera (butter-
flies and moths), and Hymenoptera (ants, bees, and wasps),
which represent the majority of species in Hexapoda and
comprise 74% of the arthropods dataset (Fig. 6).

Entropy and Sensitivity Analysis

To measure the evolutionary significance of the mutation
and selection bias in the codon frequencies, we calculated
the impact of perturbing each of those parameters by +
10% on the predicted frequencies. To summarize this ef-
fect, we used the Shannon entropy (Shannon 1948):

64
Hy) == wlog(y), (4)
1=1

where y, is the predicted frequency of codon I. After ob-
taining the entropy we calculated the relative difference as:

1

o=t

IH(w™) = H(y ), (5)

where y* and y~ are the recalculated stationary distribu-
tion when we increased and decreased each parameter by
10%, respectively.

Supplementary Material

Supplementary material is available at Molecular Biology
and Evolution online.
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