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Abstract

Most traits are polygenic, and the contributing loci can be identified by genome-wide association studies. The genetic basis of 
adaptation (adaptive architecture) is, however, difficult to characterize. Here, we propose to study the adaptive architecture 
of traits by monitoring the evolution of their phenotypic variance during adaptation to a new environment in well-defined 
laboratory conditions. Extensive computer simulations show that the evolution of phenotypic variance in a replicated experi
mental evolution setting can distinguish between oligogenic and polygenic adaptive architectures. We compared gene ex
pression variance in male Drosophila simulans before and after 100 generations of adaptation to a novel hot environment. 
The variance change in gene expression was indistinguishable for genes with and without a significant change in mean ex
pression after 100 generations of evolution. We suggest that the majority of adaptive gene expression evolution can be ex
plained by a polygenic architecture. We propose that tracking the evolution of phenotypic variance across generations can 
provide an approach to characterize the adaptive architecture.

Key words: phenotypic variance, temperature adaptation, Drosophila simulans, experimental evolution.

Significance
It is widely accepted that most complex traits have a polygenic basis. Nevertheless, it is difficult to predict which of these 
loci are responding to selection when a population is exposed to a new selection regime. To address this situation, we 
propose to infer the adaptive architecture for traits by tracking the evolution of their phenotypic variance during adap
tation to a new environment. As a case study, we analyze the evolution of gene expression variance in outbred 
Drosophila simulans populations adapting to a new temperature regime to infer the genetic architecture of adaptive 
gene expression evolution. We suggest that the adaptive gene expression evolution is better explained by a polygenic 
architecture.

© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
It is widely accepted that most complex traits have a 
polygenic basis (Ayroles et al. 2009; Boyle et al. 2017; 
Liu et al. 2019). Nevertheless, it is difficult to predict 
which or even how many of these loci are responding 
to selection when a population is exposed to a new selec
tion regime (termed the “adaptive architecture” Barghi et 

al. 2020). Characterizing the adaptive architecture by map
ping selected loci is not easy, in particular when more than a 
handful of genes are involved. To circumvent this problem, 
we introduce an approach, analogous to the Castle–Wright 
estimator (Castle 1921), to infer the complexity of the 
adaptive architecture (i.e. simple with few contributing 
loci or complex with a polygenic basis). We propose to 
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study the evolution of phenotypic variance, which may pro
vide some insights into the key parameters of the adaptive 
architecture.

The phenotypic variance of a quantitative trait is a key 
determinant for its response to selection. It can be decom
posed into genetic and environmental components 
(Falconer and Mackay 1996). Over the past years, mathem
atical models have been developed to describe the ex
pected genetic variance of a quantitative trait under 
selection and its maintenance in evolving populations 
(Kimura and Crow 1964; Bulmer 1972; Turelli 1984; 
Chevalet 1994). For infinitely large populations and traits 
controlled by many independent loci with infinitesimal ef
fect, changes in trait optimum are not expected to affect 
the phenotypic variance (Lande 1976). A much more com
plex picture is expected when the effect sizes are not equal, 
the population size is finite, or the traits have a simpler gen
etic basis (Barton and Turelli 1987; Keightley and Hill 1989; 
Barton and Keightley 2002; Jain and Stephan 2015; 
Franssen et al. 2017; Hayward and Sella 2022). For in
stance, for traits with oligogenic architectures (typically 
<10 contributing loci), the genetic variance could drop dra
matically during adaptation, while with polygenic architec
tures (≥10 contributing loci), only minor effects on the 
variance are expected (Jain and Stephan 2015; Barton 
et al. 2017; Franssen et al. 2017). These insights suggest 
that a time-resolved analysis of phenotypic variance has 
the potential to shed light onto the complexity of the 
underlying adaptive architecture.

Despite its potential importance for the understanding 
of adaptation, we are faced with the situation that few em
pirical data are available for the evolution of phenotypic 
variance. The use of natural populations to study changes 
in phenotypes, and even more so phenotypic variances, is 
limited as the environmental heterogeneity cannot be con
trolled and common garden experiments (CGE) are re
quired to study the phenotypic variance, which is not 
feasible for many species. A complementary approach to 
study the evolution of phenotypic variance in natural popu
lations is experimental evolution (Kawecki et al. 2012). 
With replicated populations starting from the same foun
ders and evolving under tightly controlled environmental 
conditions, experimental evolution provides the opportun
ity to study the evolution of phenotypic variance.

Most experimental evolution studies in sexual popula
tions focused on the evolution of phenotypic means, rather 
than variance (e.g. Chippindale et al. (1996), Burke et al. 
(2010), Mallard et al. (2018), and Jakšić et al. (2020)). A not
able exception is a study which applied fluctuating, stabiliz
ing, and disruptive selection to a small number of wing 
shape–related traits (Pélabon et al. 2010). Other studies 
tracked the variance evolution of behavioral and cranial 
traits under directional selection in mice (Careau et al. 
2015; Penna et al. 2017). A challenge common to empirical 

studies on phenotypic variance in outbred populations is 
the partitioning of genetic and environmental variance.

Instead of looking at a preselected subset of phenotypes 
which may cover less variation in genetic architecture, we 
will focus on gene expression, a set of molecular pheno
types, which can be easily quantified as microarrays, and 
more recently, RNA-seq has become available. 
Importantly, the expression levels of genes exhibit the 
same properties (e.g. continuality and normality) as other 
complex quantitative traits (Mackay et al. 2009). Thus, 
gene expression has also been widely employed to study 
the adaptation of locally adapted populations (Romero 
et al. 2012; Sork 2017; Signor and Nuzhdin 2018) or ances
tral and evolved populations in the context of experimental 
evolution (Lenski et al. 1994; Ferea et al. 1999; Huang and 
Agrawal 2016; Mallard et al. 2018).

In this study, we performed forward simulations that not 
only match essential design features of typical experimental 
evolution studies but also incorporate realistic parameters 
of the genetic architecture. We recapitulate the classic re
sults that even a moderately polygenic architecture (i.e. 
25 contributing loci) is associated with a high stability of 
the phenotypic variance of selected traits across different 
phases of adaptation and evaluate the predictive perform
ance under different scenarios. Applying this insight to a re
cently published data set (Lai and Schlötterer 2022), we 
show that for putatively selected genes (differentially ex
pressed [DE] genes), their average changes in expression 
variance were indistinguishable from genes without 
changes in mean expression. We propose that this pattern 
reflects a polygenic basis of adaptive gene expression 
evolution.

Results

Simulating Variance Evolution of Expression Traits with 
Distinct Genetic Architectures

The central idea of this study is that the genetic complexity 
of adaptive trait evolution can be inferred from the trajec
tory of the phenotypic variance during adaptation: the 
phenotypic variance remains relatively stable for traits 
with a polygenic architecture, while it changes across gen
erations for traits with a oligogenic architecture. Hence, as 
the first step of this study, we explored to what extent these 
theoretical predictions can be generalized to expression 
traits obtained from a typical experimental evolution setting 
by considering a broad parameter space and accounting for 
linkage. Using population genetic parameters (e.g. number 
of starting haplotypes and effective population size) esti
mated from the evolution experiment (Barghi et al. 2019), 
we simulated the independent evolution of 1,000 neutral 
and 1,000 selected expression traits. To account for experi
mental and environmental noise, we assigned heritabilities 
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of expression traits based on an empirical distribution ob
tained from a Drosophila melanogaster population 
(Ayroles et al. 2009). The simulated selection regime con
sists of a mild/distant shift in trait optimum with weak/inter
mediate/strong stabilizing selection (Fig. 1a and 
supplementary fig. S1, Supplementary Material online) fol
lowing the parameterization of a recent simulation study 
(Hayward and Sella 2022). We assumed additivity and a 
negative correlation between the ancestral allele frequency 
and the effect size of contributing loci (Otte et al. 2021) 
(Fig. 1b). With three different distributions of effect size 
(Fig. 1c), we investigated how the number of contributing 
loci affects the evolution of gene expression variance with 
and without selection.

We monitored the change in phenotypic variance over 
100 generations, which was sufficient to reach the trait op
timum for most parameter combinations (supplementary 
fig. S2, Supplementary Material online). We compared 
the change in variance relative to the start of the experi
ment in populations with and without selection. First, we 
studied a mild (one standard deviation of the ancestral 
phenotypic distribution) shift in trait optimum. As expected 
for a founder population derived from a substantially larger 
natural population, we find that even under neutrality, the 
phenotypic variance does not remain constant but gradual
ly decreases during 100 generations of experimental evolu
tion (Fig. 2). This pattern is unaffected by the genetic 
architecture (both number of loci and effect size 

FIG. 1.—Simulating polygenic adaptation to a shift in trait optimum with different parameter combinations. a) For the computer simulations, we consider 
a quantitative trait experiencing a sudden shift in trait optimum under stabilizing selection. Three underlying fitness functions are shown. The new trait op
timum is shifted from the ancestral trait mean by one/three standard deviation of the ancestral trait distribution. The strength of stabilizing selection is modified 
by changing the variance of the fitness function: 1.8, 3.6, and 5.4 standard deviations of the ancestral trait distribution. b) The negative correlation between 
the allele frequencies and the effect sizes (r = −0.7). We consider such negative correlation when assigning the effect sizes to variants underlying a simulated 
trait. c) The distribution of effect sizes of the contributing loci is determined by the shape parameter (α) of gamma sampling process (α = 0.5, 2.5, and 100).
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distribution) of the neutral traits. We explain this loss of 
variance by the fixation of variants segregating in the foun
der population and the fact that we did not simulate new 
mutations, as they do not contribute much to gene expres
sion evolution in such short time scales (Rifkin et al. 2005; 
Burke et al. 2010). Although our simulations used moder
ate population sizes, they nicely recapitulate the patterns 
described for populations without drift (Jain and Stephan 
2015; Barton et al. 2017). A pronounced drop in 

phenotypic variance is observed when a trait is approaching 
a new optimum with few contributing loci (Fig. 2). When 
more loci (with smaller effects) are contributing to the se
lected phenotype, the difference to neutrality becomes 
very small (Fig. 2). In addition to the number of contributing 
loci, the heterogeneity in effect size among loci and the 
shape of the fitness function have a major impact. The lar
ger the difference in effect size is, the more pronounced 
was the influence of the number of contributing loci 

FIG. 2.—The trajectory of changes in phenotypic variance during adaptation to a mild optimum shift. The changes in phenotypic variance within 200 
generations adapting to a moderate optimum shift are compared with the changes under neutrality on the y axis. The average variance changes (F) of 
1,000 simulated traits (1,000 runs of simulation) are calculated as the ratio of phenotypic variance between each evolved time point (generation x) and 
the ancestral state (σ2

x /σ2
1). The translucent band indicates the 95% confidence interval for 1,000 simulated traits. The simulations cover traits controlled 

by varying numbers of loci underlying the adaptation with three different distributions of effect sizes (columns) under different strengths of stabilizing selection 
(rows). Only traits with the most (dotted lines, 1,000 loci), intermediate (dash lines, 50 loci), and the least (solid lines, 5 loci) polygenic architectures are shown. 
In all scenarios, the variance of the trait decreases drastically when the adaptation is controlled by a small number of loci (solid lines; 5 loci). In contrast, for traits 
with extremely polygenic basis, the phenotypic variance decreases less over time (dotted lines).
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(Fig. 2). The opposite effect was seen for the width of the 
fitness function—a wider fitness function decreased the in
fluence of the number of contributing loci (Fig. 2). 
Importantly, these patterns were not affected by the dur
ation of the experiment—qualitatively identical patterns 
were seen at different time points until generation 200.

For a more distant trait optimum (three standard devia
tions of the ancestral phenotypic distribution away from 
the ancestral value), we noticed some interesting dynamics 
that were not apparent for a closer trait optimum 
(supplementary fig. S3, Supplementary Material online). 
The most striking one was the temporal heterogeneity of 
the phenotypic variance when few loci of unequal effects 
are contributing. During the early stage of adaptation, 
the variance increased and dropped later below the vari
ance in the founder population. With an increasing number 
of contributing loci, this pattern disappeared and closely 
matched the neutral case (supplementary fig. S3, 
Supplementary Material online).

Overall, our simulations indicate that with a larger num
ber of contributing loci, the variance fitted the neutral pat
tern better. Modifying dominance did not change the 
overall patterns (supplementary fig. S4, Supplementary 
Material online). Neither did a modular regulation of ex
pression traits. We monitored the variance evolution in si
mulations with 100 modules of 20 coregulated traits and 
different numbers of contributing loci. Consistently, simple 
genetic architectures lead to a drastic drop in phenotypic 
variance (Fig. 3). The strength of coregulation has only a 
minor impact on the pattern (Fig. 3). The robust influence 

the number of contributing loci and their effect size distri
bution on the temporal phenotypic variance dynamics sug
gests that it should be possible to exploit this relationship to 
characterize the adaptive architecture.

The Power to Infer the Adaptive Architecture from Trait 
Variance Dynamics

A potentially interesting application of the relationship be
tween number of contributing loci and evolution of vari
ance is the inference of the adaptive architecture of a 
given trait. For a single selected trait, it is possible to con
trast the reduction in variance for this trait to the change 
in variance at neutral traits. We used an F test to identify 
a significantly higher loss of variance for focal traits than 
neutral ones (∼0.9 after 100 generations in our simula
tions). Because the number of contributing loci is not 
known, it is important to determine the lower bound for 
the number of contributing loci that produces a pattern 
of variance change that cannot be distinguished from neu
trality (a more complex architecture will result in a pattern 
similar to neutrality). We inferred the lower bound by the 
largest number of loci resulting in a significant difference 
between a selected trait and the neutral expectation across 
all simulated parameter combinations. Nevertheless, the 
power of this approach depends strongly on the sample 
size. When the entire population (N = 300) is phenotyped 
for the focal trait, the power to rule out an adaptive archi
tecture of <5 loci by significant decrease in variance of a se
lected trait is only 44%. This indicates the limited ability to 

FIG. 3.—The variance dynamics of modularly regulated traits during adaptation. We monitored the average variance changes relative to the ancestral state 
of 2,000 simulated traits under modular regulation (100 modules of 20 expression traits) within 100 generations of adaptation. The number of contributing 
loci to the modules was varied to simulate oligogenic (solid lines) and polygenic (dash lines) architectures. The effect size of each contributing loci was drawn 
from a multivariate normal distribution. The covariance among expression traits was set to 0, 0.1, 0.5, and 0.8 for random, weak, moderate, and strong gen
etic correlation among the selected traits (indicated by different colors), respectively. In all cases, we recapitulated the pattern that oligogenic architecture of 
expression traits leads to a drastic drop in variance over time.
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distinguish polygenic from oligogenic architectures on a 
single trait basis. With a more realistic sample size of 20 in
dividuals, the distinction is even more difficult such that we 
conclude that it is not possible to infer the adaptive archi
tecture for a single expression trait (supplementary fig. 
S5, Supplementary Material online).

Alternatively, it is possible to study multiple, presumably 
independent, selected phenotypes together. Assuming a 
similar genetic architecture of the selected traits, we 
showed that the distribution of variance changes of 
1,000 selected traits with a simple genetic architecture 
(five loci) can be distinguished from neutral changes with 
a t-test. Even with a sample size of 20 individuals, as in 
our experimental data (see Materials and Methods), 

significant differences from neutral expectations can be de
tected for some parameters with a power close to 100% 
(Fig. 4 and supplementary fig. S6, Supplementary 
Material online). Because the distribution of variance 
changes between selected and neutral polygenic traits 
does not differ significantly, this suggests that oligogenic 
and polygenic architectures of a group of selected traits 
can be distinguished experimentally even with moderate 
sample sizes.

In the simulations, we fixed most experimental para
meters such as population sizes, generation, and sample 
sizes to reflect the experimental design of typical experi
mental evolution studies. Nevertheless, for future experi
mental evolution studies, it is important to understand 

FIG. 4.—Power for detecting significant variance change between groups of selected and neutral traits. For each set of the 1,000 traits (1,000 runs of 
simulation) controlled by different numbers of loci (x axis) with varying effect sizes (columns) under each selection strength (rows), we calculated how often no 
difference in variance change is detected between 1,000 neutral and 1,000 selected traits after 100 generations (y axis). The same genetic architecture is 
assumed for all 1,000 selected traits with a sample size of 20. For each parameter combination, we have almost 100% power when all traits were controlled 
by few loci (five loci). It gradually increases with an increasing number of loci (red). A lack of significant difference indicates polygenic architecture of the adap
tive traits.
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how the experimental design affects the power. We per
formed additional simulations to explore the impact of 
sample size, number of generations, and population size. 
As expected, the power increases with larger sample size, 
allowing to discriminate architectures with a larger number 
of contributing loci (Fig. 5a). Later generations are also 
more informative than earlier generations (i.e. higher 
power to reject a larger number of loci) (Fig. 5b). Larger 
population sizes could also improve the determination of 
polygenicity, as we find an increase in power for a popula
tion size of 1,200 compared with 300 (Fig. 5c). In summary, 
larger and longer evolution experiments with larger sample 
size are superior. They provide a better discrimination of 
genetic architectures with a larger number of contributing 
loci, i.e. a better distinction between oligogenic and poly
genic architectures.

Empirical Data on Evolution of Gene Expression Variance 
Suggests the Polygenic Basis

As a case study, we investigated the evolution of gene ex
pression variance in replicated populations evolving in a 
new hot temperature regime and inferred the adaptive 
architecture of gene expression evolution. The evolved po
pulations were derived from the same ancestral population 
but evolved independently for more than 100 generations 
in a novel temperature regime with daily temperature fluc
tuations between 18 and 28 °C (Fig. 6a). Rather than rely
ing on pooled samples which only allow mean estimates, 
we quantified gene expression of 19 to 22 individuals 
from reconstituted ancestral populations (F0) and 2 evolved 
populations (F103) in a common garden setup (Lai and 
Schlötterer 2022). Principal component analysis (PCA) 

indicated that 11.9% of the variation in gene expression 
can be explained by the first PC which separates evolved 
and ancestral populations, reflecting clear expression 
changes in response to the adaptation of novel hot tem
perature regime (Fig. 6b). The means and variances of the 
expression of each gene were estimated and compared be
tween the two reconstituted ancestral populations and the 
two evolved populations separately (see Materials and 
Methods). Due to the usage of different lot numbers for 
the RNA-seq library preparation (supplementary table S1, 
Supplementary Material online), we only contrasted ances
tral and evolved samples generated with the same lot num
ber (see Materials and Methods) to avoid any unnecessary 
confounding effects.

As reported previously (Lai and Schlötterer 2022), we 
identified 2,775 genes in the first population and 2,677 
genes in the second population which significantly chan
ged mean expression in the evolved flies (false discovery 
rate [FDR] < 0.05) and significant parallel gene expression 
evolution between 2 populations (Fig. 7a). The concord
ance of both populations suggests that most of the altered 
expression means are mainly driven by selection, rather 
than by drift. In this study, we scaled the gene expression 
change with the standard deviation in the ancestral popula
tion to approximate the selection strength on each gene. 
The differentially expressed genes in both populations 
showed a broad distribution of expression change, but 
the averaged mean expression changed by one standard 
deviation (Fig. 7b), which is unlikely to be reached by drift 
based on our simulations (<1% of the neutral traits drifted 
by one standard deviation of the ancestral phenotypic vari
ance). Given that these evolved populations have been sug
gested to reach trait optimum (Christodoulaki et al. 2022), 

FIG. 5.—Power for detecting significant variance change between groups of selected and neutral traits under different a) sample sizes, b) generations, and 
c) population sizes. For each set of the 1,000 traits (1,000 runs of simulation) controlled by different numbers of loci (x axis) under different experimental 
conditions, we calculated how often a difference in variance change is detected between 1,000 neutral and 1,000 selected traits (y axis). The same genetic 
architecture is assumed for all 1,000 selected traits. a) The power gradually increases with larger sample sizes. b) Given the same number of loci, a higher power 
is obtained when the experiment continues for more generations. c) Experiments with larger population size (N = 1200) have a higher power than those with a 
smaller population size (N = 300). Overall, larger and longer evolution experiments with more phenotyped samples provide more power to reject simpler adap
tive architectures and thus provide more confidence in a highly polygenic architecture when we observed no significant difference in variance.
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the observed mean shift in expression of about one stand
ard deviation corresponds to a mild shift in trait optimum 
in our computer simulations.

In both replicates, the expression variance of putative 
neutral (non-DE) genes dropped to 84% of the ancestral 
variance, which is quite close to the neutral cases in our si
mulations. While it would be desirable to test each puta
tively selected (DE) gene independently, the moderate 
sample size (∼20 per population) does not provide 
sufficient power to do so (supplementary fig. S8, 
Supplementary Material online). Rather, we considered all 
putatively selected (DE) genes jointly and compared their 
variance changes with the ones of putatively neutral 
(non-DE) genes to characterize the genetic basis of the ex
pression evolution of the selected genes as a group. Our 
power analysis suggests a decent power for this test 
(Fig. 4). Remarkably, we find that the changes in variance 
of putatively selected genes with significant mean expres
sion changes are indistinguishable from the genes that do 
not change their mean expression (t-test, P-value > 0.05; 
Fig. 7c). The magnitude of gene expression variance 
changes in both sets of genes (median F-value = 0.85 and 
0.84 for DE and non-DE genes, respectively, in population 
1 and 0.82 and 0.84 in population 2) is quite close to the 
neutral conditions in our computer simulations. This 

suggests that selection on mean expression did not signifi
cantly change the expression variance during adaptation, 
and thus, the expression of most putatively adaptive genes 
has polygenic basis (i.e. more than five contributing loci).

Discussion
Population genetics has a long tradition of characterizing 
adaptation based on the genomic signature of selected 
loci (Nielsen 2005). Nevertheless, for selected phenotypes 
with a polygenic architecture, the contribution of individual 
loci to phenotypic change may be too subtle to be detected 
with classic population genetic methods (Pritchard et al. 
2010). Although identification of many small-effect loci is 
challenging, it may be possible to determine the number 
of contributing loci based on the dynamics of phenotypic 
variance.

Inspired by the Castle–Wright estimator (Castle 1921) 
that estimates the number of loci contributing to a quanti
tative trait from the phenotypic variance of the F2, we pro
pose that the temporal heterogeneity of the phenotypic 
variance can potentially be used to infer the number of 
loci contributing to the adaptive response of a phenotype 
as well as other parameters of the adaptive architecture. 
Reasoning that experimental evolution is probably the 

FIG. 6.—Schematic overview of the experimental procedures (a) and the divergence in gene expression during experimental evolution (b). a) Experimental 
evolution: starting from 1 common founder population, 2 replicate populations evolved for 100 generations in a hot laboratory environment fluctuating be
tween 18 and 28 °C. CGE: after 100 generations, the 2 evolved replicate populations were maintained together with the reconstituted ancestral population 
for 2 generations in a hot laboratory environment fluctuating between 18 and 28 °C. After this common garden procedure, males from each population were 
subjected to RNA-seq. b) PCA of the transcriptomic profiles of individuals from the ancestral population (Anc.) and the hot-evolved population (Evo.). Circles 
indicate individuals of the first replicate (Anc. No. 27 and Evo. No. 4). Triangles represent individuals of the second replicate (Anc. No. 28 and Evo. No. 9). The 
two replicates were made with two different batches of library cards for RNA-seq library preparation. The impact of the library card batch can be seen from the 
separation of the ancestral replicates which were reconstituted from the same isofemale lines.
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best approach to obtain phenotypic time series, we per
formed computer simulations specifically tailored to typical 
experimental evolution studies with Drosophila. We de
monstrated that, in an experimental evolution setup, the 
temporal dynamics of the phenotypic variance can be 
used to estimate the number of contributing loci and other 
parameters such as the distribution of effect size.

One potential limitation of our analysis is that we as
sumed neutrality of non-DE genes; it may, however, be 

possible that they are also subject to stabilizing selection 
but without a shift in trait optimum. In this case, the 
same change in variance is expected for both groups of 
traits—even under an oligogenic architecture, as shown 
by computer simulations (supplementary fig. S7a and b
and supplementary information, Supplementary Material
online). If stabilizing selection is also operating on non-DE 
genes, the change in variance should be correlated be
tween replicate populations because each trait experiences 

FIG. 7.—Evolution of phenotypic mean and variance over 100 generations of adaptation in empirical data. a) The evolution of gene expression means 
during adaptation in the two replicates. For the genes with significant changes (DE), the changes are correlated between replicates (Spearman’s 
rho = 0.53). For the genes without significant changes (non-DE), the correlation between replicates is much lower (Spearman’s rho = 0.2). b) The evolution 
of gene expression means scaled by the ancestral variation. For the DE genes, the median change is around one standard deviation of the ancestral expression 
value, suggesting mild shift in trait optimum in the novel environment. For the non-DE genes, the changes in expression are mostly negligible. The same pattern 
is seen in the second replicate. c) The change in expression variance during adaptation for DE and non-DE genes. In both replicates, the distribution of variance 
changes is indistinguishable between DE genes and non-DE genes (t-test, P > 0.05 for both replicates). The almost identical pattern is observed when the 
BCV (see Materials and Methods) is used to estimate the expression variance (supplementary fig. S4, Supplementary Material online).
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the same strength of stabilizing selection (each trait has the 
same heritability in both replicates, but it differs between 
traits). This prediction was confirmed in our computer simu
lations (supplementary fig. S7c, Supplementary Material
online).  Our empirical data indicate, however, that the cor
relation of variance change differs between DE and non-DE 
genes. The change in variance exhibited a stronger correl
ation between the two evolution replicates of the DE genes 
(r = 0.07) than between the two replicates of the non-DE 
genes (r = 0.02). This implies that stabilizing selection had 
only a weak or no effect on the variance of non-DE genes. 
This difference in correlation is highly significant when we 
compared the correlation coefficient of DE genes with the 
same number of randomly drawn non-DE genes (P <  
0.01; supplementary fig. S7d, Supplementary Material on
line). Given that the distribution of correlation coefficients 
for non-DE genes is very close to the expectations under 
neutrality from computer simulations, we think that the be
havior is better approximated by neutrality for most of the 
non-DE genes, rather than assuming similar levels of stabil
izing selection for both classes of genes. It is not clear, how
ever, whether our results reflect a much broader fitness 
function determining the evolution of non-DE genes per 
se or the simple laboratory environment relaxes selection 
on non-DE genes.

Given the limited power to infer the number of contrib
uting loci for each expression phenotype (supplementary 
fig. S5, Supplementary Material online), we grouped all pu
tatively selected expression traits and limited our inference 
of the adaptive architecture to these genes jointly. This ap
proach makes the implicit assumption that all expression 
traits in this group are independent of each other and 
have similar level of complexity in their adaptive architec
tures. Thus, the joint inference could potentially comprom
ise the detection of a minor subset of genes whose 
expression evolution is under simple genetic control.

Because we could only analyze phenotypic data from 
2 time points and the founder population and replicate 
populations evolved for 103 generations, we were not 
able to obtain a more quantitative estimate of the number 
of contributing loci, in particular as other parameters of 
the adaptive architecture are not known and need to be 
coestimated. In addition, with only two time points, for 
a few parameter combinations, an oligogenic response 
can also result in a similar phenotypic variance change as 
a polygenic one (supplementary figs. S3 and S6, 
Supplementary Material online) but with a much higher par
allel response of genomic markers (supplementary fig. S8, 
Supplementary Material online). This can be seen in an in
tuitive case when a single/few major effect allele(s) starts 
at a low frequency and sweeps up to fixation (Yoo et al. 
1980). Because the genomic signature in the same experi
ment uncovered a highly heterogeneous selection response 
(Barghi et al. 2019), we can exclude the unlikely 

explanation of an oligogenic architecture of expression evo
lution in our empirical study. Hence, not only more time 
points describing the phenotypic trajectory but also genom
ic data could improve the inference of the adaptive archi
tecture in experimental evolution studies.

The extension of the concept proposed in this study to 
natural populations could face several challenges that war
rant extra caution and further investigation. First, the above
mentioned challenge of sample size would be more 
pronounced in a natural setup. Second, phenotypic time ser
ies over evolutionary relevant time scales are costly (but see 
Clutton-Brock et al. (2004) for an example of time series in 
the wild), and third, the distinction of environmental hetero
geneity from genetic changes is considerably more challen
ging than under controlled laboratory conditions.

Materials and Methods

Computer Simulations

Software and Fixed Parameters

We performed forward simulations with MimicrEE2 
(Vlachos and Kofler 2018) using the qff mode to illustrate 
the influence of the genetic architecture on the evolution 
of phenotypic variance during the adaptation to a new 
trait optimum (Fig. 1a and supplementary fig. S1, 
Supplementary Material online). With 189 founder haplo
types (Barghi et al. 2019), we simulated quantitative gene 
expression traits in a population with an effective population 
size of 300 (reflecting the estimated effective population size 
in an experimentally evolving population (Barghi et al. 2019)). 
We used the empirical linkage map from Drosophila simulans 
(Howie et al. 2019) to account for linkage. For each trait, 
we assume an additive model and a negative correlation 
(r = −0.7, reflecting the observed relationship from Otte 
et al. (2021)) between the effect size and starting frequency 
(Fig. 1b). We used the correlate() function implemented in 
“fabricatr” R package (Blair et al. 2019) to generate the effect 
sizes. We do not simulate de novo mutations as they are not 
contributing to adaptation on this short time scale (Rifkin et al. 
2005; Burke et al. 2010).

Parameterization of Different Genetic Architectures

The central idea of this study is that the genetic complexity 
of adaptive trait evolution can be inferred from the trajec
tory of the phenotypic variance during adaptation. Hence, 
we varied the genetic architecture of simulated expression 
traits in two aspects. First, we varied the number of contrib
uting loci (M = 5, 25, 50, 100, 200, and 1,000). Second, we 
varied the distribution of the effect sizes of the loci control
ling a trait by changing the shape parameter of gamma 
sampling process (shape = 0.5, 2.5, and 100; Fig. 1c). The 
mean of the effect sizes from three different shape para
meters was standardized to 1/M. As the focus of our study 
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is on expression traits, we used the distribution of heritabil
ities obtained from empirical gene expression data (Ayroles 
et al. 2009) to assign the environmental/technical variance 
to a simulated trait (i.e. for each simulated trait, its heritabil
ity and associated environmental/technical variance are 
sampled from the empirical distribution). We note that 
the heritabilities in Ayroles et al. (2009) may be overesti
mated because of the use of pooled sample measurements, 
but we are still lacking gene expression heritability esti
mates based on individual sequencing in the fruit flies field.

Selection Regimes

To simulate stabilizing selection with trait optimum shift, 
we provided the Gaussian fitness functions with mean of 
Xanc. + a

������
Vanc.
√

and standard deviation of b
������
Vanc.
√

, where 
Xanc. is the ancestral phenotypic mean and Vanc. is the an
cestral genetic variance (Fig. 1a). The inclusion of the par
ameter Vanc. scales the selection strength, which allows 
the comparison across simulation runs from the entire par
ameter space. Parameter “a” determines the distance of 
optimum shift, which is set to one (similar to the empirical 
case; Fig. 7b) or three (following Hayward and Sella (2022)). 
Parameter “b” indicates the phenotypic constraint would 
be at trait optimum. The value 3.6 for parameter “b” was 
taken from Hayward and Sella (2022). In this study, we in
crease and decrease it by 50% to explore its impact (1.8 or 
5.4). For the neutral case, we assumed no variation in fit
ness among all individuals.

Replication and Simulated Data Analysis

In total, 162 parameter combinations were simulated (6 dif
ferent numbers of loci × 3 distributions of effect sizes × 3 dif
ferent widths of fitness function × 3 selection regimes). For 
each scenario, we performed 1,000 independent runs of 
simulation to represent 1,000 different traits. Each trait was 
affected by a different set of loci and evolved independently.

We compared the phenotypic variance of selected and 
neutral traits for each genetic architecture. For each trait 
under each scenario, the phenotypic variance was esti
mated at different generations and compared with the an
cestral phenotypic variance at generation 1 to illustrate the 
dynamic of phenotypic variance during the evolution 
(F = σ2

x/σ2
1), where x stands for the number of generations. 

We note that we do not assume that the ancestral popula
tion has reached an equilibrium because the ancestral 
population in a typical experimental evolution study is often 
phenotyped in the new environment.

Additional Parameter Changes for Different 
Experimental Evolution Setup

In addition, we evaluated how different experimental de
signs (e.g. different population sizes in the experiment) af
fect the ability to discriminate between different adaptive 

architectures. With all other parameters fixed, we increased 
the population size to 1,200 and simulated the evolution of 
traits controlled by a different number of loci (M = 5, 25, 
50, 100, 200, and 1,000) with varying effect sizes (shape 
parameter of gamma sampling process = 2.5) using a 
Gaussian fitness function with a mean of Xanc. +

������
Vanc.
√

and a standard deviation of 3.6
������
Vanc.
√

.

Simulation Considering Modularity

Given the software limitation of MimicrEE2, we extend our 
simulation to account for modular regulation of gene ex
pression using SLiM (Haller and Messer 2023). This simula
tion burnt in with 20,000 generations of neutral evolution 
of 5,000 weakly linked loci (r = 0.001) in an ancestral popu
lation sizing 10,000 (Ne = 10,000) to reach mutation–drift– 
linkage balance. After the burn-in phase, we sampled 300 
individuals from the ancestral population to seed the simu
lation experiment, mirroring the experimental evolution 
setup. We simulated the evolution of 100 independent ex
pression modules of 20 genes per module, yielding a total 
of 2,000 expression traits. The genetic loci regulating genes 
in one module were assumed to have no effect on the 
genes in the other modules. To vary the genetic architec
ture of each expression module, either all or 5% of all seg
regating variants were assigned effect sizes sampling from 
a multivariate normal distribution of 20 variates (trait), 
standing for highly polygenic or oligogenic basis of the 
traits. We simulated random, weak, moderate, and strong 
positive modularity with trait covariance of 0, 0.1, 0.5, and 
0.8 correspondingly. As for the selection regime, we simu
late the same stabilizing selection with trait optimum shift 
of one standard deviation of the ancestral trait. For each 
module, the high dimensional fitness landscape of 20 traits 
follows a multivariate Gaussian fitness function:

ω = exp −
1
2

􏽘20

i=1

(zi − z0)2

2Vs

􏼠 􏼡

where zi is the observed phenotypic value for a trait i; z0 is 
the optimum phenotypic value, which is one standard devi
ation away of the ancestral value (Xanc. +

������
Vanc.
√

); and Vs is 
the variance of the fitness profile (3.6

������
Vanc.
√

). Two genetic 
architectures (polygenic and oligogenic), four scenarios of 
modular effects lead to a total of eight unique parameter 
setups. Each was repeated 100 times to get 100 expression 
modules (2,000 expression traits) per scenario. Similarly, we 
compared the phenotypic variance of the traits for each 
genetic architecture. We further extended the simulation 
to the scenario by assuming connected modules (i.e. a 
gene shares the genetic architecture within and 
between modules, but the level of genetic correlation dif
fers). This scenario yielded qualitatively similar results 
(supplementary fig. S9, Supplementary Material online).
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Evaluating the Ability to Distinguish Adaptive 
Architectures Based on Trait Variance Evolution

We propose that the temporal dynamics of the phenotypic 
variance of selected traits can be exploited to characterize 
the genetic basis of adaptation. This concept could be ap
plied either to a single trait under selection or to a group 
of selected traits. Depending on whether a single trait or 
a group of traits is studied, different research objectives 
can be pursued. Generally speaking, a more complex archi
tecture is expected to result in a variance pattern that re
sembles neutral evolution (i.e. no change in variance). A 
lower bound for the number of contributing loci can be in
ferred by asking for the maximum number of contributing 
loci causing a variance change during evolution, which sig
nificantly deviates from neutral expectations. With increas
ing uncertainty about the key parameters, the precision of 
this approach is reduced. Given that many parameters are 
typically not known, we performed computer simulations 
for different numbers of loci with a distribution of effect 
sizes and asked for each focal parameter combination 
whether a significant deviation from neutral expectations 
was observed. The number of simulation runs, which devi
ate from neutral expectations for x loci, is used as power es
timate to reject the null hypothesis of no difference to the 
variance under neutrality under a given architecture and 
sample size. In other words, it reflects the confidence to ex
clude an adaptive architecture with x or fewer contributing 
loci when we observed no significant difference in variance.

Power Estimates for the Analysis of a Single Trait

For each simulated trait under different genetic controls, we 
tested whether the variance of this trait changed more than 
expected under neutrality (F of 0.9 according to the neutral si
mulations) after 100 generations of selection. First, we as
sumed that all simulated 300 individuals were phenotyped 
at both time points. For the 1,000 traits with a given genetic 
architecture (x contributing loci) under each selection scen
ario, we calculated the power to reject the null hypothesis 
of an adaptive architecture of no difference to the variance 
under neutrality under a given architecture and sample size. 
Since it is not possible to phenotype all individuals, we also in
vestigated whether and how a reduced sample size compro
mises the power to reject an adaptive architecture of a single 
trait based on the change in variance. We randomly selected 
20 individuals from each simulation run to estimate the vari
ance and tested whether the magnitude of variance change 
for a given trait under selection is significantly different from 
the neutral expectation.

Power Estimates for the Analysis on a Group of Traits

We assessed the power to infer the adaptive architecture 
for a group of selected traits under the assumption that 

most traits of interest have similar level of complexity. In 
this case, a test on the average variance changes (F ) be
tween a group of selected traits and another group of neu
tral traits is required. As described, we simulated 1,000 
independent selected and 1,000 neutral traits for each gen
etic architecture and selection regime and estimated the 
variance before and after 100 generations of evolution 
for the selected and neutral traits. For each trait, we mea
sured the phenotypic variance for a sample of 20 individuals 
and we performed a t-test to compare the distribution of 
variance change (F ) between selected and neutral traits. 
The power was determined by 100 iterations of sampling 
20 individuals from a simulated population of 300 
individuals.

We further evaluated how different experimental de
signs affect the power to detect simpler adaptive architec
tures. We used the data from the scenario with shape 
parameter 2.5 and Gaussian fitness functions with mean 
of Xanc. +

������
Vanc.
√

and standard deviation of 3.6
������
Vanc.
√

. 
With this data set, we calculated the power for different 
sample sizes (n = 20, 30, 50, 70), generation times 
(gen = 25, 50, 100, 200), and population sizes (N = 300 
and 1,200).

Experimental Evolution

The setup of populations and evolution experiment has 
been described by Barghi et al. (2019), Hsu et al. (2019, 
2020), Jakšić et al. (2020), and Lai and Schlötterer (2022). 
Briefly, 10 outbred D. simulans populations seeded from 
202 isofemale lines were exposed to a laboratory experi
ment at 28/18 °C with 12 h light/12 h dark photoperiod 
for more than 100 generations. Each replicate consisted 
of 1,000 to 1,250 adults for each generation.

CGE

The collection of samples from the evolution experiment for 
RNA-seq was preceded by two generations of common 
garden (CGE). The CGE was performed at generation 103 
of the evolution in the hot environment, and this CGE has 
been described in Hsu et al. (2019), Hsu et al. (2020), 
Jakšić et al. (2020), and Lai and Schlötterer (2022). In brief, 
an ancestral population was reconstituted by pooling 5 ma
ted females from 184 founder isofemale lines (Nouhaud 
et al. 2016). No significant allele frequency differences 
are expected between the reconstituted ancestral popula
tions and the original ancestral populations initiating the 
experiment (Nouhaud et al. 2016). Furthermore, we do 
not anticipate that deleterious alleles acquired during the 
maintenance of the isofemale lines had a major impact 
on the phenotypic variance in the reconstituted ancestral 
population. The reason is that novel deleterious mutations 
occurring during the maintenance of the isofemale lines are 
present in a single isofemale line only. Given the large 
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number of isofemale lines (184), such deleterious alleles oc
cur in a low frequency in the reconstituted population with 
a small influence on the phenotypic variance (Walsh and 
Lynch 2018). Furthermore, most of these deleterious alleles 
are present in heterozygous individuals and masked 
because deleterious alleles tend to be recessive 
(Charlesworth and Charlesworth 2010). As described previ
ously (Lai and Schlötterer 2022), 2 replicates of the recon
stituted ancestral population and 2 independently evolved 
populations at generation 103 were reared for 2 genera
tions with controlled egg density (400 eggs/bottle) at the 
same temperature regime as in the evolution experiment. 
Freshly eclosed flies were transferred onto new food for 
mating. Sexes were separated under CO2 anesthesia at 
day 3 after eclosure and left to recover from CO2 for two 
days, and at the age of five days, whole-body mated flies 
of each sex were snap-frozen at 2 PM in liquid nitrogen 
and stored at −80 °C until RNA extraction. More than 30 
individual male flies from two reconstituted ancestral popu
lations (replicate no. 27 and no. 28) and two evolved popu
lations (replicate no. 4 and no. 9) were subjected to 
RNA-seq. The protocols of RNA extraction and library prep
aration are described in Lai and Schlötterer (2022). We ac
cess whole-body expression to interrogate all possible 
regulatory changes at the organismal level (including 
changes in allometry as well as cell type composition). We 
believe that this will be better translated to many organis
mal traits, but we acknowledge that tissue/single-cell 
expression profiles will inform us the acute transcriptional 
regulation.

RNA-Seq Data Analysis for Mean and Variance Evolution

The processed RNA-seq data were obtained from Lai and 
Schlötterer (2022). To characterize the adaptive architec
ture of gene expression evolution, we compared the evolu
tionary dynamics of the variance between the genes with 
significant mean change and those without. The underlying 
assumption is that genes with significant mean expression 
changes are under selection and the rest of the transcrip
tome is not responding to the new environment (neutral). 
The genes with/without significant mean evolution for 
two evolved populations were taken from Lai and 
Schlötterer (2022).

We quantified the variance changes during adaptation 
for each gene by using the variance estimates of the 
expression (logCPM) of each gene in each population 
from (Lai and Schlötterer (2022). Briefly, raw read counts 
of each gene were normalized with the TMM method im
plemented in edgeR. We then applied natural log trans
formation to the expression of each gene (counts per 
million [CPM]) to fit normal assumption for all subsequent 
analyses and make mean and variance independent from 
each other.

Due to the moderate sample size, we performed add
itional checks for the uncertainty of variance estimates. 
Jackknifing was applied to measure the uncertainty of esti
mator (Fukunaga and Hummels 1989). The procedure was 
conducted independently on four populations, and we cal
culated the 95% confidence interval of the estimated vari
ance (supplementary fig. S10, Supplementary Material
online). Additionally, the robustness of variance 
estimation was also supported by the high correlation 
(rho = 0.79, Spearman’s rank correlation) in variance esti
mates between the two independently reconstituted an
cestral populations. The change of gene expression 
variance was determined by the F statistics calculated as 
the ratio between the variance within the ancestral popula
tion and the variance within the evolved population of each 
gene. To test whether selection on mean expression gener
ally alters the expression variance, we compared the F sta
tistics of genes with significant changes in mean 
expression to the genes without.

We note that the natural log transformation (as in Lai 
and Schlötterer (2022)) does not attempt to quantify and 
partition the noise due to the read sampling process at 
the gene level from the across-individual variance. Since 
we were primarily interested in the latter, we evaluated 
the effect of read sampling noise. We did an additional 
check by distinguishing the true biological variation and 
the measurement error (Eq. (1), from the user’s guide of 
edgeR (Robinson et al. 2010)) of each gene using the stat
istical method implemented in edgeR, where the true vari
ance across individuals (biological coefficient of variation 
[BCV]) of each gene can be estimated (tag-wised 
dispersion).

Total CV2 = technical CV2 + biological CV2 (Eq. (1)) 

The proportion of technical CV2 in total CV2 was calculated. 
We showed that the average proportion of technical CV2 

gradually decreased with increasing sample size 
(supplementary fig. S3, Supplementary Material online), 
and for our sample size (n = 22), it is 17%. The correlation 
between BCV2 and the variance estimates after log trans
formation is 0.98 (Spearman’s rho), suggesting that the 
two estimates are similar. As a sanity check, we repeated 
the comparisons of the variance changes in selected (DE) 
and neutral (non-DE) genes using BCV2. Similarly, the 
changes in variance of putative adaptive genes are indistin
guishable from the genes that do not change their mean 
expression (t-test, P-value > 0.05; supplementary fig. S11, 
Supplementary Material online).

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.
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