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Abstract

Most traits are polygenic, and the contributing loci can be identified by genome-wide association studies. The genetic basis of
adaptation (adaptive architecture) is, however, difficult to characterize. Here, we propose to study the adaptive architecture
of traits by monitoring the evolution of their phenotypic variance during adaptation to a new environment in well-defined
laboratory conditions. Extensive computer simulations show that the evolution of phenotypic variance in a replicated experi-
mental evolution setting can distinguish between oligogenic and polygenic adaptive architectures. We compared gene ex-
pression variance in male Drosophila simulans before and after 100 generations of adaptation to a novel hot environment.
The variance change in gene expression was indistinguishable for genes with and without a significant change in mean ex-
pression after 100 generations of evolution. We suggest that the majority of adaptive gene expression evolution can be ex-
plained by a polygenic architecture. We propose that tracking the evolution of phenotypic variance across generations can
provide an approach to characterize the adaptive architecture.

Key words: phenotypic variance, temperature adaptation, Drosophila simulans, experimental evolution.

Significance

It is widely accepted that most complex traits have a polygenic basis. Nevertheless, it is difficult to predict which of these
loci are responding to selection when a population is exposed to a new selection regime. To address this situation, we
propose to infer the adaptive architecture for traits by tracking the evolution of their phenotypic variance during adap-
tation to a new environment. As a case study, we analyze the evolution of gene expression variance in outbred
Drosophila simulans populations adapting to a new temperature regime to infer the genetic architecture of adaptive
gene expression evolution. We suggest that the adaptive gene expression evolution is better explained by a polygenic
architecture.

Introduction al. 2020). Characterizing the adaptive architecture by map-

It is widely accepted that most complex traits have a
polygenic basis (Ayroles et al. 2009; Boyle et al. 2017,
Liu et al. 2019). Nevertheless, it is difficult to predict
which or even how many of these loci are responding
to selection when a population is exposed to a new selec-
tion regime (termed the “adaptive architecture” Barghi et

ping selected loci is not easy, in particular when more than a
handful of genes are involved. To circumvent this problem,
we introduce an approach, analogous to the Castle-Wright
estimator (Castle 1921), to infer the complexity of the
adaptive architecture (i.e. simple with few contributing
loci or complex with a polygenic basis). We propose to
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study the evolution of phenotypic variance, which may pro-
vide some insights into the key parameters of the adaptive
architecture.

The phenotypic variance of a quantitative trait is a key
determinant for its response to selection. It can be decom-
posed into genetic and environmental components
(Falconer and Mackay 1996). Over the past years, mathem-
atical models have been developed to describe the ex-
pected genetic variance of a quantitative trait under
selection and its maintenance in evolving populations
(Kimura and Crow 1964; Bulmer 1972; Turelli 1984;
Chevalet 1994). For infinitely large populations and traits
controlled by many independent loci with infinitesimal ef-
fect, changes in trait optimum are not expected to affect
the phenotypic variance (Lande 1976). A much more com-
plex picture is expected when the effect sizes are not equal,
the population size is finite, or the traits have a simpler gen-
etic basis (Barton and Turelli 1987; Keightley and Hill 1989;
Barton and Keightley 2002; Jain and Stephan 2015;
Franssen et al. 2017; Hayward and Sella 2022). For in-
stance, for traits with oligogenic architectures (typically
<10 contributing loci), the genetic variance could drop dra-
matically during adaptation, while with polygenic architec-
tures (>10 contributing loci), only minor effects on the
variance are expected (Jain and Stephan 2015; Barton
et al. 2017; Franssen et al. 2017). These insights suggest
that a time-resolved analysis of phenotypic variance has
the potential to shed light onto the complexity of the
underlying adaptive architecture.

Despite its potential importance for the understanding
of adaptation, we are faced with the situation that few em-
pirical data are available for the evolution of phenotypic
variance. The use of natural populations to study changes
in phenotypes, and even more so phenotypic variances, is
limited as the environmental heterogeneity cannot be con-
trolled and common garden experiments (CGE) are re-
quired to study the phenotypic variance, which is not
feasible for many species. A complementary approach to
study the evolution of phenotypic variance in natural popu-
lations is experimental evolution (Kawecki et al. 2012).
With replicated populations starting from the same foun-
ders and evolving under tightly controlled environmental
conditions, experimental evolution provides the opportun-
ity to study the evolution of phenotypic variance.

Most experimental evolution studies in sexual popula-
tions focused on the evolution of phenotypic means, rather
than variance (e.g. Chippindale et al. (1996), Burke et al.
(2010), Mallard et al. (2018), and Jaksicet al. (2020)). A not-
able exception is a study which applied fluctuating, stabiliz-
ing, and disruptive selection to a small number of wing
shape-related traits (Pélabon et al. 2010). Other studies
tracked the variance evolution of behavioral and cranial
traits under directional selection in mice (Careau et al.
2015; Penna et al. 2017). A challenge common to empirical

studies on phenotypic variance in outbred populations is
the partitioning of genetic and environmental variance.

Instead of looking at a preselected subset of phenotypes
which may cover less variation in genetic architecture, we
will focus on gene expression, a set of molecular pheno-
types, which can be easily quantified as microarrays, and
more recently, RNA-seq has become available.
Importantly, the expression levels of genes exhibit the
same properties (e.g. continuality and normality) as other
complex quantitative traits (Mackay et al. 2009). Thus,
gene expression has also been widely employed to study
the adaptation of locally adapted populations (Romero
etal. 2012; Sork 2017; Signor and Nuzhdin 2018) or ances-
tral and evolved populations in the context of experimental
evolution (Lenski et al. 1994; Ferea et al. 1999; Huang and
Agrawal 2016; Mallard et al. 2018).

In this study, we performed forward simulations that not
only match essential design features of typical experimental
evolution studies but also incorporate realistic parameters
of the genetic architecture. We recapitulate the classic re-
sults that even a moderately polygenic architecture (i.e.
25 contributing loci) is associated with a high stability of
the phenotypic variance of selected traits across different
phases of adaptation and evaluate the predictive perform-
ance under different scenarios. Applying this insight to a re-
cently published data set (Lai and Schl6tterer 2022), we
show that for putatively selected genes (differentially ex-
pressed [DE] genes), their average changes in expression
variance were indistinguishable from genes without
changes in mean expression. We propose that this pattern
reflects a polygenic basis of adaptive gene expression
evolution.

Results

Simulating Variance Evolution of Expression Traits with
Distinct Genetic Architectures

The central idea of this study is that the genetic complexity
of adaptive trait evolution can be inferred from the trajec-
tory of the phenotypic variance during adaptation: the
phenotypic variance remains relatively stable for traits
with a polygenic architecture, while it changes across gen-
erations for traits with a oligogenic architecture. Hence, as
the first step of this study, we explored to what extent these
theoretical predictions can be generalized to expression
traits obtained from a typical experimental evolution setting
by considering a broad parameter space and accounting for
linkage. Using population genetic parameters (e.g. number
of starting haplotypes and effective population size) esti-
mated from the evolution experiment (Barghi et al. 2019),
we simulated the independent evolution of 1,000 neutral
and 1,000 selected expression traits. To account for experi-
mental and environmental noise, we assigned heritabilities
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Fic. 1.—Simulating polygenic adaptation to a shift in trait optimum with different parameter combinations. a) For the computer simulations, we consider
a quantitative trait experiencing a sudden shift in trait optimum under stabilizing selection. Three underlying fitness functions are shown. The new trait op-
timum is shifted from the ancestral trait mean by one/three standard deviation of the ancestral trait distribution. The strength of stabilizing selection is modified
by changing the variance of the fitness function: 1.8, 3.6, and 5.4 standard deviations of the ancestral trait distribution. b) The negative correlation between
the allele frequencies and the effect sizes (r=—0.7). We consider such negative correlation when assigning the effect sizes to variants underlying a simulated
trait. ) The distribution of effect sizes of the contributing loci is determined by the shape parameter (o) of gamma sampling process (a=0.5, 2.5, and 100).

of expression traits based on an empirical distribution ob-
tained from a Drosophila melanogaster population
(Ayroles et al. 2009). The simulated selection regime con-
sists of a mild/distant shift in trait optimum with weak/inter-
mediate/strong  stabilizing selection (Fig. 1a and
supplementary fig. S1, Supplementary Material online) fol-
lowing the parameterization of a recent simulation study
(Hayward and Sella 2022). We assumed additivity and a
negative correlation between the ancestral allele frequency
and the effect size of contributing loci (Otte et al. 2021)
(Fig. 1b). With three different distributions of effect size
(Fig. 1), we investigated how the number of contributing
loci affects the evolution of gene expression variance with
and without selection.

We monitored the change in phenotypic variance over
100 generations, which was sufficient to reach the trait op-
timum for most parameter combinations (supplementary
fig. S2, Supplementary Material online). We compared
the change in variance relative to the start of the experi-
ment in populations with and without selection. First, we
studied a mild (one standard deviation of the ancestral
phenotypic distribution) shift in trait optimum. As expected
for a founder population derived from a substantially larger
natural population, we find that even under neutrality, the
phenotypic variance does not remain constant but gradual-
ly decreases during 100 generations of experimental evolu-
tion (Fig. 2). This pattern is unaffected by the genetic
architecture (both number of loci and effect size
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Fic. 2.—The trajectory of changes in phenotypic variance during adaptation to a mild optimum shift. The changes in phenotypic variance within 200
generations adapting to a moderate optimum shift are compared with the changes under neutrality on the y axis. The average variance changes (F) of
1,000 simulated traits (1,000 runs of simulation) are calculated as the ratio of phenotypic variance between each evolved time point (generation x) and
the ancestral state (62 /a3). The translucent band indicates the 95% confidence interval for 1,000 simulated traits. The simulations cover traits controlled
by varying numbers of loci underlying the adaptation with three different distributions of effect sizes (columns) under different strengths of stabilizing selection
(rows). Only traits with the most (dotted lines, 1,000 loci), intermediate (dash lines, 50 loci), and the least (solid lines, 5 loci) polygenic architectures are shown.
In all scenarios, the variance of the trait decreases drastically when the adaptation is controlled by a small number of loci (solid lines; 5 loci). In contrast, for traits
with extremely polygenic basis, the phenotypic variance decreases less over time (dotted lines).

distribution) of the neutral traits. We explain this loss of
variance by the fixation of variants segregating in the foun-
der population and the fact that we did not simulate new
mutations, as they do not contribute much to gene expres-
sion evolution in such short time scales (Rifkin et al. 2005;
Burke et al. 2010). Although our simulations used moder-
ate population sizes, they nicely recapitulate the patterns
described for populations without drift (Jain and Stephan
2015; Barton et al. 2017). A pronounced drop in

phenotypic variance is observed when a trait is approaching
a new optimum with few contributing loci (Fig. 2). When
more loci (with smaller effects) are contributing to the se-
lected phenotype, the difference to neutrality becomes
very small (Fig. 2). In addition to the number of contributing
loci, the heterogeneity in effect size among loci and the
shape of the fitness function have a major impact. The lar-
ger the difference in effect size is, the more pronounced
was the influence of the number of contributing loci
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Fic. 3.—The variance dynamics of modularly requlated traits during adaptation. We monitored the average variance changes relative to the ancestral state
of 2,000 simulated traits under modular regulation (100 modules of 20 expression traits) within 100 generations of adaptation. The number of contributing
loci to the modules was varied to simulate oligogenic (solid lines) and polygenic (dash lines) architectures. The effect size of each contributing loci was drawn
from a multivariate normal distribution. The covariance among expression traits was setto 0, 0.1, 0.5, and 0.8 for random, weak, moderate, and strong gen-
etic correlation among the selected traits (indicated by different colors), respectively. In all cases, we recapitulated the pattern that oligogenic architecture of

expression traits leads to a drastic drop in variance over time.

(Fig. 2). The opposite effect was seen for the width of the
fitness function—a wider fitness function decreased the in-
fluence of the number of contributing loci (Fig. 2).
Importantly, these patterns were not affected by the dur-
ation of the experiment—qualitatively identical patterns
were seen at different time points until generation 200.

For a more distant trait optimum (three standard devia-
tions of the ancestral phenotypic distribution away from
the ancestral value), we noticed some interesting dynamics
that were not apparent for a closer trait optimum
(supplementary fig. S3, Supplementary Material online).
The most striking one was the temporal heterogeneity of
the phenotypic variance when few loci of unequal effects
are contributing. During the early stage of adaptation,
the variance increased and dropped later below the vari-
ance in the founder population. With an increasing number
of contributing loci, this pattern disappeared and closely
matched the neutral case (supplementary fig. S3,
Supplementary Material online).

Overall, our simulations indicate that with a larger num-
ber of contributing loci, the variance fitted the neutral pat-
tern better. Modifying dominance did not change the
overall patterns (supplementary fig. S4, Supplementary
Material online). Neither did a modular regulation of ex-
pression traits. We monitored the variance evolution in si-
mulations with 100 modules of 20 coregulated traits and
different numbers of contributing loci. Consistently, simple
genetic architectures lead to a drastic drop in phenotypic
variance (Fig. 3). The strength of coregulation has only a
minor impact on the pattern (Fig. 3). The robust influence

the number of contributing loci and their effect size distri-
bution on the temporal phenotypic variance dynamics sug-
gests that it should be possible to exploit this relationship to
characterize the adaptive architecture.

The Power to Infer the Adaptive Architecture from Trait
Variance Dynamics

A potentially interesting application of the relationship be-
tween number of contributing loci and evolution of vari-
ance is the inference of the adaptive architecture of a
given trait. For a single selected trait, it is possible to con-
trast the reduction in variance for this trait to the change
in variance at neutral traits. We used an F test to identify
a significantly higher loss of variance for focal traits than
neutral ones (~0.9 after 100 generations in our simula-
tions). Because the number of contributing loci is not
known, it is important to determine the lower bound for
the number of contributing loci that produces a pattern
of variance change that cannot be distinguished from neu-
trality (@ more complex architecture will result in a pattern
similar to neutrality). We inferred the lower bound by the
largest number of loci resulting in a significant difference
between a selected trait and the neutral expectation across
all simulated parameter combinations. Nevertheless, the
power of this approach depends strongly on the sample
size. When the entire population (N =300) is phenotyped
for the focal trait, the power to rule out an adaptive archi-
tecture of <5 loci by significant decrease in variance of a se-
lected trait is only 44%. This indicates the limited ability to
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Fic. 4.—Power for detecting significant variance change between groups of selected and neutral traits. For each set of the 1,000 traits (1,000 runs of
simulation) controlled by different numbers of loci (x axis) with varying effect sizes (columns) under each selection strength (rows), we calculated how often no
difference in variance change is detected between 1,000 neutral and 1,000 selected traits after 100 generations (y axis). The same genetic architecture is
assumed for all 1,000 selected traits with a sample size of 20. For each parameter combination, we have almost 100% power when all traits were controlled
by few lodi (five loci). It gradually increases with an increasing number of loci (red). A lack of significant difference indicates polygenic architecture of the adap-

tive traits.

distinguish polygenic from oligogenic architectures on a
single trait basis. With a more realistic sample size of 20 in-
dividuals, the distinction is even more difficult such that we
conclude that it is not possible to infer the adaptive archi-
tecture for a single expression trait (supplementary fig.
S5, Supplementary Material online).

Alternatively, it is possible to study multiple, presumably
independent, selected phenotypes together. Assuming a
similar genetic architecture of the selected traits, we
showed that the distribution of variance changes of
1,000 selected traits with a simple genetic architecture
(five loci) can be distinguished from neutral changes with
a t-test. Even with a sample size of 20 individuals, as in
our experimental data (see Materials and Methods),

significant differences from neutral expectations can be de-
tected for some parameters with a power close to 100%
(Fig. 4 and supplementary fig. S6, Supplementary
Material online). Because the distribution of variance
changes between selected and neutral polygenic traits
does not differ significantly, this suggests that oligogenic
and polygenic architectures of a group of selected traits
can be distinguished experimentally even with moderate
sample sizes.

In the simulations, we fixed most experimental para-
meters such as population sizes, generation, and sample
sizes to reflect the experimental design of typical experi-
mental evolution studies. Nevertheless, for future experi-
mental evolution studies, it is important to understand
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Fic. 5.—Power for detecting significant variance change between groups of selected and neutral traits under different a) sample sizes, b) generations, and
) population sizes. For each set of the 1,000 traits (1,000 runs of simulation) controlled by different numbers of loci (x axis) under different experimental
conditions, we calculated how often a difference in variance change is detected between 1,000 neutral and 1,000 selected traits (y axis). The same genetic
architecture is assumed for all 1,000 selected traits. a) The power gradually increases with larger sample sizes. b) Given the same number of loci, a higher power
is obtained when the experiment continues for more generations. c) Experiments with larger population size (N = 1200) have a higher power than those with a
smaller population size (N = 300). Overall, larger and longer evolution experiments with more phenotyped samples provide more power to reject simpler adap-
tive architectures and thus provide more confidence in a highly polygenic architecture when we observed no significant difference in variance.

how the experimental design affects the power. We per-
formed additional simulations to explore the impact of
sample size, number of generations, and population size.
As expected, the power increases with larger sample size,
allowing to discriminate architectures with a larger number
of contributing loci (Fig. 5a). Later generations are also
more informative than earlier generations (i.e. higher
power to reject a larger number of loci) (Fig. 5b). Larger
population sizes could also improve the determination of
polygenicity, as we find an increase in power for a popula-
tion size of 1,200 compared with 300 (Fig. 5¢). In summary,
larger and longer evolution experiments with larger sample
size are superior. They provide a better discrimination of
genetic architectures with a larger number of contributing
loci, i.e. a better distinction between oligogenic and poly-
genic architectures.

Empirical Data on Evolution of Gene Expression Variance
Suggests the Polygenic Basis

As a case study, we investigated the evolution of gene ex-
pression variance in replicated populations evolving in a
new hot temperature regime and inferred the adaptive
architecture of gene expression evolution. The evolved po-
pulations were derived from the same ancestral population
but evolved independently for more than 100 generations
in a novel temperature regime with daily temperature fluc-
tuations between 18 and 28 °C (Fig. 6a). Rather than rely-
ing on pooled samples which only allow mean estimates,
we quantified gene expression of 19 to 22 individuals
from reconstituted ancestral populations (FO) and 2 evolved
populations (F103) in a common garden setup (Lai and
Schldtterer 2022). Principal component analysis (PCA)

indicated that 11.9% of the variation in gene expression
can be explained by the first PC which separates evolved
and ancestral populations, reflecting clear expression
changes in response to the adaptation of novel hot tem-
perature regime (Fig. 6b). The means and variances of the
expression of each gene were estimated and compared be-
tween the two reconstituted ancestral populations and the
two evolved populations separately (see Materials and
Methods). Due to the usage of different lot numbers for
the RNA-seq library preparation (supplementary table S1,
Supplementary Material online), we only contrasted ances-
tral and evolved samples generated with the same lot num-
ber (see Materials and Methods) to avoid any unnecessary
confounding effects.

As reported previously (Lai and Schlotterer 2022), we
identified 2,775 genes in the first population and 2,677
genes in the second population which significantly chan-
ged mean expression in the evolved flies (false discovery
rate [FDR] < 0.05) and significant parallel gene expression
evolution between 2 populations (Fig. 7a). The concord-
ance of both populations suggests that most of the altered
expression means are mainly driven by selection, rather
than by drift. In this study, we scaled the gene expression
change with the standard deviation in the ancestral popula-
tion to approximate the selection strength on each gene.
The differentially expressed genes in both populations
showed a broad distribution of expression change, but
the averaged mean expression changed by one standard
deviation (Fig. 7b), which is unlikely to be reached by drift
based on our simulations (<1% of the neutral traits drifted
by one standard deviation of the ancestral phenotypic vari-
ance). Given that these evolved populations have been sug-
gested to reach trait optimum (Christodoulaki et al. 2022),
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Fic. 6.—Schematic overview of the experimental procedures (a) and the divergence in gene expression during experimental evolution (b). a) Experimental
evolution: starting from 1 common founder population, 2 replicate populations evolved for 100 generations in a hot laboratory environment fluctuating be-
tween 18 and 28 °C. CGE: after 100 generations, the 2 evolved replicate populations were maintained together with the reconstituted ancestral population
for 2 generations in a hot laboratory environment fluctuating between 18 and 28 °C. After this common garden procedure, males from each population were
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the observed mean shift in expression of about one stand-
ard deviation corresponds to a mild shift in trait optimum
in our computer simulations.

In both replicates, the expression variance of putative
neutral (non-DE) genes dropped to 84% of the ancestral
variance, which is quite close to the neutral cases in our si-
mulations. While it would be desirable to test each puta-
tively selected (DE) gene independently, the moderate
sample size (~20 per population) does not provide
sufficient power to do so (supplementary fig. S8,
Supplementary Material online). Rather, we considered all
putatively selected (DE) genes jointly and compared their
variance changes with the ones of putatively neutral
(non-DE) genes to characterize the genetic basis of the ex-
pression evolution of the selected genes as a group. Our
power analysis suggests a decent power for this test
(Fig. 4). Remarkably, we find that the changes in variance
of putatively selected genes with significant mean expres-
sion changes are indistinguishable from the genes that do
not change their mean expression (t-test, P-value > 0.05;
Fig. 7c¢). The magnitude of gene expression variance
changes in both sets of genes (median F-value = 0.85 and
0.84 for DE and non-DE genes, respectively, in population
1 and 0.82 and 0.84 in population 2) is quite close to the
neutral conditions in our computer simulations. This

suggests that selection on mean expression did not signifi-
cantly change the expression variance during adaptation,
and thus, the expression of most putatively adaptive genes
has polygenic basis (i.e. more than five contributing loci).

Discussion

Population genetics has a long tradition of characterizing
adaptation based on the genomic signature of selected
loci (Nielsen 2005). Nevertheless, for selected phenotypes
with a polygenic architecture, the contribution of individual
loci to phenotypic change may be too subtle to be detected
with classic population genetic methods (Pritchard et al.
2010). Although identification of many small-effect loci is
challenging, it may be possible to determine the number
of contributing loci based on the dynamics of phenotypic
variance.

Inspired by the Castle-Wright estimator (Castle 1921)
that estimates the number of loci contributing to a quanti-
tative trait from the phenotypic variance of the F2, we pro-
pose that the temporal heterogeneity of the phenotypic
variance can potentially be used to infer the number of
loci contributing to the adaptive response of a phenotype
as well as other parameters of the adaptive architecture.
Reasoning that experimental evolution is probably the
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Fic. 7.—Evolution of phenotypic mean and variance over 100 generations of adaptation in empirical data. a) The evolution of gene expression means
during adaptation in the two replicates. For the genes with significant changes (DE), the changes are correlated between replicates (Spearman'’s
rho = 0.53). For the genes without significant changes (non-DE), the correlation between replicates is much lower (Spearman’s rho = 0.2). b) The evolution
of gene expression means scaled by the ancestral variation. For the DE genes, the median change is around one standard deviation of the ancestral expression
value, suggesting mild shift in trait optimum in the novel environment. For the non-DE genes, the changes in expression are mostly negligible. The same pattern
is seen in the second replicate. ¢) The change in expression variance during adaptation for DE and non-DE genes. In both replicates, the distribution of variance
changes is indistinguishable between DE genes and non-DE genes (t-test, P> 0.05 for both replicates). The almost identical pattern is observed when the
BCV (see Materials and Methods) is used to estimate the expression variance (supplementary fig. S4, Supplementary Material online).

best approach to obtain phenotypic time series, we per-
formed computer simulations specifically tailored to typical
experimental evolution studies with Drosophila. We de-
monstrated that, in an experimental evolution setup, the
temporal dynamics of the phenotypic variance can be
used to estimate the number of contributing loci and other
parameters such as the distribution of effect size.

One potential limitation of our analysis is that we as-
sumed neutrality of non-DE genes; it may, however, be

possible that they are also subject to stabilizing selection
but without a shift in trait optimum. In this case, the
same change in variance is expected for both groups of
traits—even under an oligogenic architecture, as shown
by computer simulations (supplementary fig. S7a and b
and supplementary information, Supplementary Material
online). If stabilizing selection is also operating on non-DE
genes, the change in variance should be correlated be-
tween replicate populations because each trait experiences
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the same strength of stabilizing selection (each trait has the
same heritability in both replicates, but it differs between
traits). This prediction was confirmed in our computer simu-
lations (supplementary fig. S7¢, Supplementary Material
online). Our empirical data indicate, however, that the cor-
relation of variance change differs between DE and non-DE
genes. The change in variance exhibited a stronger correl-
ation between the two evolution replicates of the DE genes
(r=0.07) than between the two replicates of the non-DE
genes (r=0.02). This implies that stabilizing selection had
only a weak or no effect on the variance of non-DE genes.
This difference in correlation is highly significant when we
compared the correlation coefficient of DE genes with the
same number of randomly drawn non-DE genes (P<
0.01; supplementary fig. S7d, Supplementary Material on-
line). Given that the distribution of correlation coefficients
for non-DE genes is very close to the expectations under
neutrality from computer simulations, we think that the be-
havior is better approximated by neutrality for most of the
non-DE genes, rather than assuming similar levels of stabil-
izing selection for both classes of genes. It is not clear, how-
ever, whether our results reflect a much broader fitness
function determining the evolution of non-DE genes per
se or the simple laboratory environment relaxes selection
on non-DE genes.

Given the limited power to infer the number of contrib-
uting loci for each expression phenotype (supplementary
fig. S5, Supplementary Material online), we grouped all pu-
tatively selected expression traits and limited our inference
of the adaptive architecture to these genes jointly. This ap-
proach makes the implicit assumption that all expression
traits in this group are independent of each other and
have similar level of complexity in their adaptive architec-
tures. Thus, the joint inference could potentially comprom-
ise the detection of a minor subset of genes whose
expression evolution is under simple genetic control.

Because we could only analyze phenotypic data from
2 time points and the founder population and replicate
populations evolved for 103 generations, we were not
able to obtain a more quantitative estimate of the number
of contributing loci, in particular as other parameters of
the adaptive architecture are not known and need to be
coestimated. In addition, with only two time points, for
a few parameter combinations, an oligogenic response
can also result in a similar phenotypic variance change as
a polygenic one (supplementary figs. S3 and S6,
Supplementary Material online) but with a much higher par-
allel response of genomic markers (supplementary fig. S8,
Supplementary Material online). This can be seen in an in-
tuitive case when a single/few major effect allele(s) starts
at a low frequency and sweeps up to fixation (Yoo et al.
1980). Because the genomic signature in the same experi-
ment uncovered a highly heterogeneous selection response
(Barghi et al. 2019), we can exclude the unlikely

explanation of an oligogenic architecture of expression evo-
lution in our empirical study. Hence, not only more time
points describing the phenotypic trajectory but also genom-
ic data could improve the inference of the adaptive archi-
tecture in experimental evolution studies.

The extension of the concept proposed in this study to
natural populations could face several challenges that war-
rant extra caution and further investigation. First, the above-
mentioned challenge of sample size would be more
pronounced in a natural setup. Second, phenotypic time ser-
ies over evolutionary relevant time scales are costly (but see
Clutton-Brock et al. (2004) for an example of time series in
the wild), and third, the distinction of environmental hetero-
geneity from genetic changes is considerably more challen-
ging than under controlled laboratory conditions.

Materials and Methods

Computer Simulations
Software and Fixed Parameters

We performed forward simulations with MimicrEE2
(Vlachos and Kofler 2018) using the gff mode to illustrate
the influence of the genetic architecture on the evolution
of phenotypic variance during the adaptation to a new
trait optimum (Fig. 1a and supplementary fig. S1,
Supplementary Material online). With 189 founder haplo-
types (Barghi et al. 2019), we simulated quantitative gene
expression traits in a population with an effective population
size of 300 (reflecting the estimated effective population size
in an experimentally evolving population (Barghi et al. 2019)).
We used the empirical linkage map from Drosophila simulans
(Howie et al. 2019) to account for linkage. For each trait,
we assume an additive model and a negative correlation
(r=-0.7, reflecting the observed relationship from Otte
et al. (2021)) between the effect size and starting frequency
(Fig. 1b). We used the correlate() function implemented in
“fabricatr” R package (Blair et al. 2019) to generate the effect
sizes. We do not simulate de novo mutations as they are not
contributing to adaptation on this short time scale (Rifkin et al.
2005; Burke et al. 2010).

Parameterization of Different Genetic Architectures

The central idea of this study is that the genetic complexity
of adaptive trait evolution can be inferred from the trajec-
tory of the phenotypic variance during adaptation. Hence,
we varied the genetic architecture of simulated expression
traits in two aspects. First, we varied the number of contrib-
uting loci (M =5, 25, 50, 100, 200, and 1,000). Second, we
varied the distribution of the effect sizes of the loci control-
ling a trait by changing the shape parameter of gamma
sampling process (shape =0.5, 2.5, and 100; Fig. 1¢). The
mean of the effect sizes from three different shape para-
meters was standardized to 1/M. As the focus of our study
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is on expression traits, we used the distribution of heritabil-
ities obtained from empirical gene expression data (Ayroles
et al. 2009) to assign the environmental/technical variance
to a simulated trait (i.e. for each simulated trait, its heritabil-
ity and associated environmental/technical variance are
sampled from the empirical distribution). We note that
the heritabilities in Ayroles et al. (2009) may be overesti-
mated because of the use of pooled sample measurements,
but we are still lacking gene expression heritability esti-
mates based on individual sequencing in the fruit flies field.

Selection Regimes

To simulate stabilizing selection with trait optimum shift,
we provided the Gaussian fitness functions with mean of
Xanc. + ax/Vane, and standard deviation of by/Vinc, where
Xanc. is the ancestral phenotypic mean and Vi, is the an-
cestral genetic variance (Fig. 1a). The inclusion of the par-
ameter V. scales the selection strength, which allows
the comparison across simulation runs from the entire par-
ameter space. Parameter “a” determines the distance of
optimum shift, which is set to one (similar to the empirical
case; Fig. 7b) or three (following Hayward and Sella (2022)).
Parameter “b"” indicates the phenotypic constraint would
be at trait optimum. The value 3.6 for parameter “b" was
taken from Hayward and Sella (2022). In this study, we in-
crease and decrease it by 50% to explore its impact (1.8 or
5.4). For the neutral case, we assumed no variation in fit-
ness among all individuals.

Replication and Simulated Data Analysis

In total, 162 parameter combinations were simulated (6 dif-
ferent numbers of loci x 3 distributions of effect sizes x 3 dif-
ferent widths of fitness function x 3 selection regimes). For
each scenario, we performed 1,000 independent runs of
simulation to represent 1,000 different traits. Each trait was
affected by a different set of loci and evolved independently.

We compared the phenotypic variance of selected and
neutral traits for each genetic architecture. For each trait
under each scenario, the phenotypic variance was esti-
mated at different generations and compared with the an-
cestral phenotypic variance at generation 1 to illustrate the
dynamic of phenotypic variance during the evolution
(F =02 /0%), where x stands for the number of generations.
We note that we do not assume that the ancestral popula-
tion has reached an equilibrium because the ancestral
population in a typical experimental evolution study is often
phenotyped in the new environment.

Additional Parameter Changes for Different
Experimental Evolution Setup

In addition, we evaluated how different experimental de-
signs (e.g. different population sizes in the experiment) af-
fect the ability to discriminate between different adaptive

architectures. With all other parameters fixed, we increased
the population size to 1,200 and simulated the evolution of
traits controlled by a different number of loci (M =5, 25,
50, 100, 200, and 1,000) with varying effect sizes (shape
parameter of gamma sampling process=2.5) using a
Gaussian fitness function with a mean of Xznc. + +/Vanc.
and a standard deviation of 3.64/Vanc..

Simulation Considering Modularity

Given the software limitation of MimicrEE2, we extend our
simulation to account for modular regulation of gene ex-
pression using SLiM (Haller and Messer 2023). This simula-
tion burnt in with 20,000 generations of neutral evolution
of 5,000 weakly linked loci (r=0.001) in an ancestral popu-
lation sizing 10,000 (Ne = 10,000) to reach mutation—drift—
linkage balance. After the burn-in phase, we sampled 300
individuals from the ancestral population to seed the simu-
lation experiment, mirroring the experimental evolution
setup. We simulated the evolution of 100 independent ex-
pression modules of 20 genes per module, yielding a total
of 2,000 expression traits. The genetic loci regulating genes
in one module were assumed to have no effect on the
genes in the other modules. To vary the genetic architec-
ture of each expression module, either all or 5% of all seg-
regating variants were assigned effect sizes sampling from
a multivariate normal distribution of 20 variates (trait),
standing for highly polygenic or oligogenic basis of the
traits. We simulated random, weak, moderate, and strong
positive modularity with trait covariance of 0, 0.1, 0.5, and
0.8 correspondingly. As for the selection regime, we simu-
late the same stabilizing selection with trait optimum shift
of one standard deviation of the ancestral trait. For each
module, the high dimensional fitness landscape of 20 traits
follows a multivariate Gaussian fitness function:

1& (71 — 20)°
w = exp<—§;72\/s

where z; is the observed phenotypic value for a trait /; zg is
the optimum phenotypic value, which is one standard devi-
ation away of the ancestral value (Xanc. + +/Vanc.); and Vs is
the variance of the fitness profile (3.64/Vanc.). TWo genetic
architectures (polygenic and oligogenic), four scenarios of
modular effects lead to a total of eight unique parameter
setups. Each was repeated 100 times to get 100 expression
modules (2,000 expression traits) per scenario. Similarly, we
compared the phenotypic variance of the traits for each
genetic architecture. We further extended the simulation
to the scenario by assuming connected modules (i.e. a
gene shares the genetic architecture within and
between modules, but the level of genetic correlation dif-
fers). This scenario vyielded qualitatively similar results
(supplementary fig. S9, Supplementary Material online).

Genome Biol. Evol. 16(4) https://doi.org/10.1093/gbe/evae077 Advance Access publication 15 April 2024 11

Gz0zZ AINF 0E Uo Jasn UBsIA) 18BJISISAIUN SyosIuIZIpawWISBULIBISA AQ G1L09Y9//..09BAS /9 /ejonie/eqb/woo dno-olwapeoe)/:sdiy Wwolj papeojumMo(]


http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae077#supplementary-data

Lai et al.

GBE

Evaluating the Ability to Distinguish Adaptive
Architectures Based on Trait Variance Evolution

We propose that the temporal dynamics of the phenotypic
variance of selected traits can be exploited to characterize
the genetic basis of adaptation. This concept could be ap-
plied either to a single trait under selection or to a group
of selected traits. Depending on whether a single trait or
a group of traits is studied, different research objectives
can be pursued. Generally speaking, a more complex archi-
tecture is expected to result in a variance pattern that re-
sembles neutral evolution (i.e. no change in variance). A
lower bound for the number of contributing loci can be in-
ferred by asking for the maximum number of contributing
loci causing a variance change during evolution, which sig-
nificantly deviates from neutral expectations. With increas-
ing uncertainty about the key parameters, the precision of
this approach is reduced. Given that many parameters are
typically not known, we performed computer simulations
for different numbers of loci with a distribution of effect
sizes and asked for each focal parameter combination
whether a significant deviation from neutral expectations
was observed. The number of simulation runs, which devi-
ate from neutral expectations for x loci, is used as power es-
timate to reject the null hypothesis of no difference to the
variance under neutrality under a given architecture and
sample size. In other words, it reflects the confidence to ex-
clude an adaptive architecture with x or fewer contributing
loci when we observed no significant difference in variance.

Power Estimates for the Analysis of a Single Trait

For each simulated trait under different genetic controls, we
tested whether the variance of this trait changed more than
expected under neutrality (F of 0.9 according to the neutral si-
mulations) after 100 generations of selection. First, we as-
sumed that all simulated 300 individuals were phenotyped
at both time points. For the 1,000 traits with a given genetic
architecture (x contributing loci) under each selection scen-
ario, we calculated the power to reject the null hypothesis
of an adaptive architecture of no difference to the variance
under neutrality under a given architecture and sample size.
Since it is not possible to phenotype all individuals, we also in-
vestigated whether and how a reduced sample size compro-
mises the power to reject an adaptive architecture of a single
trait based on the change in variance. We randomly selected
20 individuals from each simulation run to estimate the vari-
ance and tested whether the magnitude of variance change
for a given trait under selection is significantly different from
the neutral expectation.

Power Estimates for the Analysis on a Group of Traits

We assessed the power to infer the adaptive architecture
for a group of selected traits under the assumption that

most traits of interest have similar level of complexity. In
this case, a test on the average variance changes (F) be-
tween a group of selected traits and another group of neu-
tral traits is required. As described, we simulated 1,000
independent selected and 1,000 neutral traits for each gen-
etic architecture and selection regime and estimated the
variance before and after 100 generations of evolution
for the selected and neutral traits. For each trait, we mea-
sured the phenotypic variance for a sample of 20 individuals
and we performed a t-test to compare the distribution of
variance change (F) between selected and neutral traits.
The power was determined by 100 iterations of sampling
20 individuals from a simulated population of 300
individuals.

We further evaluated how different experimental de-
signs affect the power to detect simpler adaptive architec-
tures. We used the data from the scenario with shape
parameter 2.5 and Gaussian fitness functions with mean
of Xanc. + +vVianc. and standard deviation of 3.64/Vinc.
With this data set, we calculated the power for different
sample sizes (n=20, 30, 50, 70), generation times
(gen =25, 50, 100, 200), and population sizes (N =300
and 1,200).

Experimental Evolution

The setup of populations and evolution experiment has
been described by Barghi et al. (2019), Hsu et al. (2019,
2020), Jaksic¢ et al. (2020), and Lai and Schlotterer (2022).
Briefly, 10 outbred D. simulans populations seeded from
202 isofemale lines were exposed to a laboratory experi-
ment at 28/18 °C with 12 h light/12 h dark photoperiod
for more than 100 generations. Each replicate consisted
of 1,000 to 1,250 adults for each generation.

CGE

The collection of samples from the evolution experiment for
RNA-seq was preceded by two generations of common
garden (CGE). The CGE was performed at generation 103
of the evolution in the hot environment, and this CGE has
been described in Hsu et al. (2019), Hsu et al. (2020),
Jaksi¢et al. (2020), and Lai and Schl6tterer (2022). In brief,
an ancestral population was reconstituted by pooling 5 ma-
ted females from 184 founder isofemale lines (Nouhaud
et al. 2016). No significant allele frequency differences
are expected between the reconstituted ancestral popula-
tions and the original ancestral populations initiating the
experiment (Nouhaud et al. 2016). Furthermore, we do
not anticipate that deleterious alleles acquired during the
maintenance of the isofemale lines had a major impact
on the phenotypic variance in the reconstituted ancestral
population. The reason is that novel deleterious mutations
occurring during the maintenance of the isofemale lines are
present in a single isofemale line only. Given the large
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number of isofemale lines (184), such deleterious alleles oc-
curin a low frequency in the reconstituted population with
a small influence on the phenotypic variance (Walsh and
Lynch 2018). Furthermore, most of these deleterious alleles
are present in heterozygous individuals and masked
because deleterious alleles tend to be recessive
(Charlesworth and Charlesworth 2010). As described previ-
ously (Lai and Schlotterer 2022), 2 replicates of the recon-
stituted ancestral population and 2 independently evolved
populations at generation 103 were reared for 2 genera-
tions with controlled egg density (400 eggs/bottle) at the
same temperature regime as in the evolution experiment.
Freshly eclosed flies were transferred onto new food for
mating. Sexes were separated under CO, anesthesia at
day 3 after eclosure and left to recover from CO, for two
days, and at the age of five days, whole-body mated flies
of each sex were snap-frozen at 2 PM in liquid nitrogen
and stored at —80 °C until RNA extraction. More than 30
individual male flies from two reconstituted ancestral popu-
lations (replicate no. 27 and no. 28) and two evolved popu-
lations (replicate no. 4 and no. 9) were subjected to
RNA-seq. The protocols of RNA extraction and library prep-
aration are described in Lai and Schl6tterer (2022). We ac-
cess whole-body expression to interrogate all possible
regulatory changes at the organismal level (including
changes in allometry as well as cell type composition). We
believe that this will be better translated to many organis-
mal traits, but we acknowledge that tissue/single-cell
expression profiles will inform us the acute transcriptional
regulation.

RNA-Seq Data Analysis for Mean and Variance Evolution

The processed RNA-seq data were obtained from Lai and
Schlotterer (2022). To characterize the adaptive architec-
ture of gene expression evolution, we compared the evolu-
tionary dynamics of the variance between the genes with
significant mean change and those without. The underlying
assumption is that genes with significant mean expression
changes are under selection and the rest of the transcrip-
tome is not responding to the new environment (neutral).
The genes with/without significant mean evolution for
two evolved populations were taken from Lai and
Schlotterer (2022).

We quantified the variance changes during adaptation
for each gene by using the variance estimates of the
expression (logCPM) of each gene in each population
from (Lai and Schlotterer (2022). Briefly, raw read counts
of each gene were normalized with the TMM method im-
plemented in edgeR. We then applied natural log trans-
formation to the expression of each gene (counts per
million [CPM]) to fit normal assumption for all subsequent
analyses and make mean and variance independent from
each other.

Due to the moderate sample size, we performed add-
itional checks for the uncertainty of variance estimates.
Jackknifing was applied to measure the uncertainty of esti-
mator (Fukunaga and Hummels 1989). The procedure was
conducted independently on four populations, and we cal-
culated the 95% confidence interval of the estimated vari-
ance (supplementary fig. S10, Supplementary Material
online). Additionally, the robustness of variance
estimation was also supported by the high correlation
(rho=0.79, Spearman’s rank correlation) in variance esti-
mates between the two independently reconstituted an-
cestral populations. The change of gene expression
variance was determined by the F statistics calculated as
the ratio between the variance within the ancestral popula-
tion and the variance within the evolved population of each
gene. To test whether selection on mean expression gener-
ally alters the expression variance, we compared the F sta-
tistics of genes with significant changes in mean
expression to the genes without.

We note that the natural log transformation (as in Lai
and Schlotterer (2022)) does not attempt to quantify and
partition the noise due to the read sampling process at
the gene level from the across-individual variance. Since
we were primarily interested in the latter, we evaluated
the effect of read sampling noise. We did an additional
check by distinguishing the true biological variation and
the measurement error (Eqg. (1), from the user’s guide of
edgeR (Robinson et al. 2010)) of each gene using the stat-
istical method implemented in edgeR, where the true vari-
ance across individuals (biological coefficient of variation
[BCV]) of each gene can be estimated (tag-wised
dispersion).

Total CV? = technical CV? + biological CV? (Eq. (1))

The proportion of technical CV? in total CV2 was calculated.
We showed that the average proportion of technical CV?
gradually decreased with increasing sample size
(supplementary fig. S3, Supplementary Material online),
and for our sample size (n =22), itis 17%. The correlation
between BCV? and the variance estimates after log trans-
formation is 0.98 (Spearman'’s rho), suggesting that the
two estimates are similar. As a sanity check, we repeated
the comparisons of the variance changes in selected (DE)
and neutral (non-DE) genes using BCV2. Similarly, the
changes in variance of putative adaptive genes are indistin-
guishable from the genes that do not change their mean
expression (t-test, P-value > 0.05; supplementary fig. S11,
Supplementary Material online).

Supplementary Material

Supplementary material is available at Genome Biology and
Evolution online.

Genome Biol. Evol. 16(4) https://doi.org/10.1093/gbe/evae077 Advance Access publication 15 April 2024 13

Gz0zZ AINF 0E Uo Jasn UBsIA) 18BJISISAIUN SyosIuIZIpawWISBULIBISA AQ G1L09Y9//..09BAS /9 /ejonie/eqb/woo dno-olwapeoe)/:sdiy Wwolj papeojumMo(]


http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae077#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae077#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae077#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae077#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae077#supplementary-data

Lai et al.

GBE

Acknowledgments

Special thanks to David Houle, who provided fantastic sup-
port during the collection and establishment of the isofe-
male lines in Florida. We thank all member of the Institut
far Populationsgenetik for discussion. We are grateful to
Reinhard Biirger, David Houle, Dagny Asta Runarsdottir,
and anonymous reviewers for helpful comments on
earlier versions of the manuscript. Neda Barghi, Francois
Mallard, and Kathrin Otte contributed to the CGE.
lllumina sequencing was performed at the VBCF NGS Unit
(www.vbcf.ac.at).

Author Contributions

W.-Y.L and C.S. conceived the study. V.N. prepared all
RNA-seq and supervised the maintenance of the evolution
experiment. A.M.J supervised the CGE. W.-Y.L performed
the simulation and data analysis. W.-Y.L. and C.S. wrote
the manuscript.

Funding

This research was funded by the Austrian Science Fund
(FWF, 10.55776/W1225 and 10.55776/P32935) and the
European Research Council (ERC, ArchAdapt).

Conflict of Interest

None declared.

Data Availability

All sequencing data are available in the European
Nucleotide Archive (ENA) under the accession number
PRJEB37011. Scripts for the analysis have been made avail-
able on the GitHub repository of this study (https:/github.
com/cloudweather34/simulation-evolution-of-phenotypic-
variance).

Literature Cited

Ayroles JF, Carbone MA, Stone EA, Jordan KW, Lyman RF, Magwire
MM, Rollmann SM, Duncan LH, Lawrence F, Anholt RR, et al.
Systems genetics of complex traits in Drosophila melanogaster.
Nat Genet. 2009:41(3):299-307. https:/doi.org/10.1038/ng.332.

Barghi N, Hermisson J, Schlttterer C. Polygenic adaptation: a unifying
framework to understand positive selection. Nat Rev Genet. 2020:
21:769-781.

Barghi N, Tobler R, Nolte V, Jaksi¢ AM, Mallard F, Otte KA, Dolezal M,
Taus T, Kofler R, Schlotterer C. Genetic redundancy fuels polygenic
adaptation in Drosophila. PLoS Biol. 2019:17(2):e3000128. https:/
doi.org/10.1371/journal.pbio.3000128.

Barton NH, Etheridge AM, Véber A. The infinitesimal model: definition,
derivation, and implications. Theor Popul Biol. 2017:118:50-73.
https:/doi.org/10.1016/).TPB.2017.06.001.

Barton NH, Keightley PD. Understanding quantitative genetic vari-
ation. Nat Rev Genet. 2002:3(1):11-21. https:/doi.org/10.1038/
nrg700.

Barton NH, Turelli M. Adaptive landscapes, genetic distance and the
evolution of quantitative characters. Genet Res. 1987:49(2):
157-173. https:/doi.org/10.1017/50016672300026951.

Blair G, Cooper, J, Coppock A, Humphreys M, Rudkin A, Fultz N, Hall
DC: fabricatr: imagine your data before you collect it; 2019 [ac-
cessed 2019 December 14]. https:/cran.r-project.org/web/
packages/fabricatr/index.html.

Boyle EA, Li VI, Pritchard JK. An expanded view of complex traits: from
polygenic to omnigenic. Cell 2017:169(7):1177-1186. https:/doi.
org/10.1016/J.CELL.2017.05.038.

Bulmer MG. The genetic variability of polygenic characters under opti-
mizing selection, mutation and drift. Genet Res. 1972:19(1):
17-25. https:/doi.org/10.1017/50016672300014221.

Burke MK, Dunham JP, Shahrestani P, Thornton KR, Rose MR, Long
AD. Genome-wide analysis of a long-term evolution experiment
with Drosophila. Nature 2010:467(7315):587-590. https:/doi.
org/10.1038/nature09352.

Careau V, Wolak ME, Carter PA, Garland T Jr. Evolution of the additive
genetic variance-covariance matrix under continuous directional
selection on a complex behavioural phenotype. Proc Biol Sci.
2015:282(1819):20151119.  https:/doi.org/10.1098/rspb.2015.
1119.

Castle WE. An improved method of estimating the number of genetic
factors concerned in the cases of blending inheritance. Science
1921:54(1393):223. https:/doi.org/10.1126/science.54.1393.
223.

Charlesworth B, Deborah C. Elements of evolutionary genetics.
Greenwood Village (CO): Roberts and Company Publishers; 2010.

Chevalet C. An approximate theory of selection assuming a finite num-
ber of quantitative trait loci. Genet Select Evol. 1994:26(5):
379-400. https:/doi.org/10.1186/1297-9686-26-5-379.

Chippindale AK, Chu TJF, Rose MR. Complex trade-offs and the evolu-
tion of starvation resistance in Drosophila melanogaster. Evolution
1996:50:753-766.  https:/doi.org/10.1111/].1558-5646.1996.
tb03885.x.

Christodoulaki E, Nolte V, Lai W-Y, Schiétterer C. Natural variation in
Drosophila shows weak pleiotropic effects. Genome Biol.
2022:23(1):1-12. https:/doi.org/10.1186/513059-022-02680-4.

Clutton-Brock TH, Pemberton JM, Josephine M. Soay sheep: popula-
tion dynamics and selection on St. Kilda. Cambridge: Cambridge
University Press; 2004.

Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th
ed. Harlow: Addison Wesley Longman; 1996.

Ferea TL, Botstein D, Brown PO, Rosenzweig RF. Systematic changes in
gene expression patterns following adaptive evolution in yeast.
Proc Natl Acad Sci U S A. 1999:96(17):9721-9726. https:/doi.
org/10.1073/pnas.96.17.9721.

Franssen SU, Kofler R, Schlttterer C. Uncovering the genetic signature
of quantitative trait evolution with replicated time series data.
Heredity (Edinb). 2017:118(1):42-51. https:/doi.org/10.1038/
hdy.2016.98.

Fukunaga K, Hummels DM. Leave-one-out procedures for non-
parametric error estimates. |EEE Trans Pattern Anal Mach Intell.
1989:11(4):421-423. https:/doi.org/10.1109/34.19039.

Haller BC, Messer PW. SLiM 4: multispecies eco-evolutionary model-
ing. Am Nat. 2023:201(5):E127-E139. https:/doi.org/10.1086/
723601.

Hayward LK, Sella G. Polygenic adaptation after a sudden change in
environment. elife 2022:11:e66697. https:/doi.org/10.7554/
elife.66697.

Howie JM, Mazzucco R, Taus T, Nolte V, Schlotterer C. DNA motifs are
not general predictors of recombination in two Drosophila sister
species. Genome Biol Evol. 2019:11(4):1345-1357. https:/doi.
org/10.1093/gbe/evz082.

14 Genome Biol. Evol. 16(4) https://doi.org/10.1093/gbe/evae077 Advance Access publication 15 April 2024

Gz0zZ AINF 0E Uo Jasn UBsIA) 18BJISISAIUN SyosIuIZIpawWISBULIBISA AQ G1L09Y9//..09BAS /9 /ejonie/eqb/woo dno-olwapeoe)/:sdiy Wwolj papeojumMo(]


http://www.vbcf.ac.at
https://github.com/cloudweather34/simulation-evolution-of-phenotypic-variance
https://github.com/cloudweather34/simulation-evolution-of-phenotypic-variance
https://github.com/cloudweather34/simulation-evolution-of-phenotypic-variance
https://doi.org/10.1038/ng.332
https://doi.org/10.1371/journal.pbio.3000128
https://doi.org/10.1371/journal.pbio.3000128
https://doi.org/10.1016/J.TPB.2017.06.001
https://doi.org/10.1038/nrg700
https://doi.org/10.1038/nrg700
https://doi.org/10.1017/S0016672300026951
https://cran.r-project.org/web/packages/fabricatr/index.html
https://cran.r-project.org/web/packages/fabricatr/index.html
https://doi.org/10.1016/J.CELL.2017.05.038
https://doi.org/10.1016/J.CELL.2017.05.038
https://doi.org/10.1017/S0016672300014221
https://doi.org/10.1038/nature09352
https://doi.org/10.1038/nature09352
https://doi.org/10.1098/rspb.2015.1119
https://doi.org/10.1098/rspb.2015.1119
https://doi.org/10.1126/science.54.1393.223
https://doi.org/10.1126/science.54.1393.223
https://doi.org/10.1186/1297-9686-26-5-379
https://doi.org/10.1111/j.1558-5646.1996.tb03885.x
https://doi.org/10.1111/j.1558-5646.1996.tb03885.x
https://doi.org/10.1186/S13059-022-02680-4
https://doi.org/10.1073/pnas.96.17.9721
https://doi.org/10.1073/pnas.96.17.9721
https://doi.org/10.1038/hdy.2016.98
https://doi.org/10.1038/hdy.2016.98
https://doi.org/10.1109/34.19039
https://doi.org/10.1086/723601
https://doi.org/10.1086/723601
https://doi.org/10.7554/eLife.66697
https://doi.org/10.7554/eLife.66697
https://doi.org/10.1093/gbe/evz082
https://doi.org/10.1093/gbe/evz082

Insights into the Genetic Basis of Adaptation

GBE

Hsu S-K, Jaksi¢ AM, Nolte V, Barghi N, Mallard F, Otte KA, Schlotterer
C. A 24 h age difference causes twice as much gene expression di-
vergence as 100 generations of adaptation to a novel environ-
ment. Genes (Basel). 2019:10(2):89. https:/doi.org/10.3390/
genes10020089.

Hsu S-K, Jaksi¢ AM, Nolte V, Lirakis M, Kofler R, Barghi N, Versace E,
Schlgtterer C. Rapid sex-specific adaptation to high temperature in
Drosophila. eLife 2020:9:53237. https:/doi.org/10.7554/eLife.53237.

Huang Y, Agrawal AF. Experimental evolution of gene expression and
plasticity in alternative selective regimes. PLoS Genet. 2016:12(9):
e1006336. https:/doi.org/10.1371/journal.pgen.1006336.

Jain K, Stephan W. Response of polygenic traits under stabilizing
selection and mutation when loci have unequal effects. G3
(Bethesda). 2015:5(6):1065-1074. https:/doi.org/10.1534/g3.
115.017970.

Jaksi¢ AM, Karner J, Nolte V, Hsu SK, Barghi N, Mallard F, Otte KA,
Svetnjak L, Senti KA, Schittterer C. Neuronal function and dopa-
mine signaling evolve at high temperature in Drosophila. Mol
Biol Evol. 2020:37(9):2630-2640. https:/doi.org/10.1093/
molbev/msaal16.

Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC.
Experimental evolution. Trends Ecol Evol. 2012:27(10):547-560.
https:/doi.org/10.1016/).TREE.2012.06.001.

Keightley PD, Hill WG. Quantitative genetic variability maintained by
mutation-stabilizing selection balance: sampling variation and re-
sponse to subsequent directional selection. Genet Res. 1989:54(1):
45-58. https:/doi.org/10.1017/50016672300028366.

Kimura M, Crow JF. The number of alleles that can be maintained in a
finite population. Genetics. 1964:49(4):725-738. https:/doi.org/
10.1093/genetics/49.4.725.

Lai W, Schlotterer C. Evolution of phenotypic variance in response to a
novel hot environment. Mol Ecol. 2022:31(3):934-945. https:/doi.
org/10.1111/mec.16274.

Lande R. Natural selection and random genetic drift in phenotypic evo-
lution. Evolution 1976:30(2):314-334. https:/doi.org/10.1111/].
1558-5646.1976.tb00911 x.

Lenski RE, Travisano M, Larison B, Moritz C. Dynamics of adaptation
and diversification: a 10,000-generation experiment with bacterial
populations. Proc Natl Acad Sci U S A. 1994:91(15):6808-6814.
https:/doi.org/10.1073/pnas.91.15.6808.

Liu X, Li Y1, Pritchard JK. Trans effects on gene expression can drive om-
nigenic inheritance. Cell 2019:177(4):1022-1034.e6. https:/doi.
org/10.1016/J.CELL.2019.04.014.

Mackay TFC, Stone EA, Ayroles JF. The genetics of quantitative traits:
challenges and prospects. Nat Rev Genet. 2009:10(8):565-577.
https:/doi.org/10.1038/nrg2612.

Mallard F, Nolte V, Tobler R, Kapun M, Schiétterer C. A simple genetic
basis of adaptation to a novel thermal environment results in com-
plex metabolic rewiring in Drosophila. Genome Biol. 2018:19(1):
119. https:/doi.org/10.1186/513059-018-1503-4.

Nielsen R. Molecular signatures of natural selection. Annu Rev Genet.
2005:39(1):197-218. https:/doi.org/10.1146/annurev.genet.39.
073003.112420.

Nouhaud P, Tobler R, Nolte V, Schlétterer C. Ancestral population re-
constitution from isofemale lines as a tool for experimental evolu-
tion. Ecol Evol. 2016:6(20):7169-7175. https:/doi.org/10.1002/
ece3.2402.

Otte KA, Nolte V, Mallard F, Schlotterer C. The genetic architecture of
temperature adaptation is shaped by population ancestry and not
by selection regime. Genome Biol. 2021:22(1):1-25. https:/doi.
0rg/10.1186/513059-021-02425-9.

Pélabon C, Hansen TF, Carter AJR, Houle D. Evolution of variation and
variability under fluctuating, stabilizing, and disruptive selection.
Evolution  2010:64(7):1912-1925.  https:/doi.org/10.1111/j.
1558-5646.2010.00979.x.

Penna A, Melo D, Bernardi S, Oyarzabal MI, Marroig G. The evolution
of phenotypic integration: how directional selection reshapes co-
variation in mice. Evolution 2017:71(10):2370-2380. https:/doi.
0rg/10.1111/evo.13304.

Pritchard JK, Pickrell JK, Coop G. The genetics of human adaptation:
hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol.
2010:20(4):R208-R215. https:/doi.org/10.1016/J.CUB.2009.11.
055.

Rifkin SA, Houle D, Kim J, White KP. A mutation accumulation
assay reveals a broad capacity for rapid evolution of gene expres-
sion. Nature 2005:438(7065):220-223. https:/doi.org/10.1038/
nature04114.

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor pack-
age for differential expression analysis of digital gene expression
data. Bioinformatics. 2010:26(1):139-140. https:/doi.org/10.
1093/bioinformatics/btp616.

Romero IG, Ruvinsky |, Gilad Y. Comparative studies of gene expres-
sion and the evolution of gene regulation. Nat Rev Genet.
2012:13(7):505-516. https:/doi.org/10.1038/nrg3229.

Signor SA, Nuzhdin SV. The evolution of gene expression in cis and
trans. Trends Genet. 2018:34(7):532-544. https:/doi.org/10.
1016/}.tig.2018.03.007.

Sork VL. Genomic studies of local adaptation in natural plant popula-
tions. J Hered. 2017:109(1):3-15. https:/doi.org/10.1093/jhered/
esx091.

Turelli M. Heritable genetic variation via mutation-selection balance:
Lerch’s zeta meets the abdominal bristle. Theor Popul
Biol. 1984:25(2):138-193. https:/doi.org/10.1016/0040-5809
(84)90017-0.

Vlachos C, Kofler R. MimicrEE2: genome-wide forward simulations of
evolve and resequencing studies. PLoS Comput Biol. 2018:14(8):
e1006413. https:/doi.org/10.1371/journal.pcbi.1006413.

Walsh B, Lynch M. Evolution and selection of quantitative traits.
Sunderland (MA): Sinauer; 2018; 1. https:/doi.org/10.1093/0S0O/
9780198830870.001.0001.

Yoo BH, Nicholas FW, Rathie KA. Long-term selection for a quantita-
tive character in large replicate populations of Drosophila melano-
gaster. Theoret Appl Genet. 1980:57(3):113-117. https:/doi.org/
10.1007/BF00253881.

Associate editor: Michael Lynch

Genome Biol. Evol. 16(4) https://doi.org/10.1093/gbe/evae077 Advance Access publication 15 April 2024 15

Gz0zZ AINF 0E Uo Jasn UBsIA) 18BJISISAIUN SyosIuIZIpawWISBULIBISA AQ G1L09Y9//..09BAS /9 /ejonie/eqb/woo dno-olwapeoe)/:sdiy Wwolj papeojumMo(]


https://doi.org/10.3390/genes10020089
https://doi.org/10.3390/genes10020089
https://doi.org/10.7554/eLife.53237
https://doi.org/10.1371/journal.pgen.1006336
https://doi.org/10.1534/g3.115.017970
https://doi.org/10.1534/g3.115.017970
https://doi.org/10.1093/molbev/msaa116
https://doi.org/10.1093/molbev/msaa116
https://doi.org/10.1016/J.TREE.2012.06.001
https://doi.org/10.1017/S0016672300028366
https://doi.org/10.1093/genetics/49.4.725
https://doi.org/10.1093/genetics/49.4.725
https://doi.org/10.1111/mec.16274
https://doi.org/10.1111/mec.16274
https://doi.org/10.1111/j.1558-5646.1976.tb00911.x
https://doi.org/10.1111/j.1558-5646.1976.tb00911.x
https://doi.org/10.1073/pnas.91.15.6808
https://doi.org/10.1016/J.CELL.2019.04.014
https://doi.org/10.1016/J.CELL.2019.04.014
https://doi.org/10.1038/nrg2612
https://doi.org/10.1186/s13059-018-1503-4
https://doi.org/10.1146/annurev.genet.39.073003.112420
https://doi.org/10.1146/annurev.genet.39.073003.112420
https://doi.org/10.1002/ece3.2402
https://doi.org/10.1002/ece3.2402
https://doi.org/10.1186/S13059-021-02425-9
https://doi.org/10.1186/S13059-021-02425-9
https://doi.org/10.1111/j.1558-5646.2010.00979.x
https://doi.org/10.1111/j.1558-5646.2010.00979.x
https://doi.org/10.1111/evo.13304
https://doi.org/10.1111/evo.13304
https://doi.org/10.1016/J.CUB.2009.11.055
https://doi.org/10.1016/J.CUB.2009.11.055
https://doi.org/10.1038/nature04114
https://doi.org/10.1038/nature04114
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1038/nrg3229
https://doi.org/10.1016/j.tig.2018.03.007
https://doi.org/10.1016/j.tig.2018.03.007
https://doi.org/10.1093/jhered/esx091
https://doi.org/10.1093/jhered/esx091
https://doi.org/10.1016/0040-5809(84)90017-0
https://doi.org/10.1016/0040-5809(84)90017-0
https://doi.org/10.1371/journal.pcbi.1006413
https://doi.org/10.1093/OSO/9780198830870.001.0001
https://doi.org/10.1093/OSO/9780198830870.001.0001
https://doi.org/10.1007/BF00253881
https://doi.org/10.1007/BF00253881

	Evolution of Phenotypic Variance Provides Insights into the Genetic Basis of Adaptation
	Introduction
	Results
	Simulating Variance Evolution of Expression Traits with Distinct Genetic Architectures
	The Power to Infer the Adaptive Architecture from Trait Variance Dynamics
	Empirical Data on Evolution of Gene Expression Variance Suggests the Polygenic Basis

	Discussion
	Materials and Methods
	Computer Simulations
	Software and Fixed Parameters
	Parameterization of Different Genetic Architectures
	Selection Regimes
	Replication and Simulated Data Analysis
	Additional Parameter Changes for Different Experimental Evolution Setup
	Simulation Considering Modularity

	Evaluating the Ability to Distinguish Adaptive Architectures Based on Trait Variance Evolution
	Power Estimates for the Analysis of a Single Trait
	Power Estimates for the Analysis on a Group of Traits

	Experimental Evolution
	CGE
	RNA-Seq Data Analysis for Mean and Variance Evolution

	Supplementary Material
	Acknowledgments
	Author Contributions
	Funding
	Conflict of Interest
	Data Availability
	Literature Cited




