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Abstract

As the most species-rich vertebrate group, fish provide an array of opportunities to
investigate the link between ecological interactions and the evolution of behavior
and cognition, yet, as an animal model, they are relatively underutilized in studies of
comparative cognition. To address this gap, we developed a fully automated platform
for behavioral experiments in aquatic species, GoFish. GoFish includes closed-loop
control of task contingencies using real-time video tracking, presentation of visual
stimuli, automatic food reward dispensers, and built-in data acquisition. The hard-
ware is relatively inexpensive and accessible, and all software components of the
platform are open-source. GoFish facilitates experimental automation, allowing for
customization of high-throughput protocols and the efficient acquisition of rich
behavioral data. We hope this platform proves to be a useful tool for the research
community, facilitating refined, reproducible behavioral experiments on aquatic

species in comparative cognition, behavioral ecology, and neuroscience.

KEYWORDS
automatic feeder, behavioral automation, bonsai, fish behavior, fish cognition, GoFish, operant
conditioning

are often then presented with alternatives to choose from, and the

dynamics of the subsequent decision-making process becomes a

We are not fish biologists, yet we recognize the importance of study-
ing fish behavior, the most species-rich vertebrate group (Ravi &
Venkatesh, 2018), when tapping into the inner worlds of animal minds
(Birch et al., 2020).

Fish provide a plethora of opportunities to investigate fundamen-
tal questions regarding how ecological pressures shape the evolution
of behavior and cognition, and offer an array of less conventional
model species for use in animal cognition research (Stahlman &
Hoeschele, 2024).

Studying cognitive processes in animals relies on subjects learning
task contingencies by experience, commonly requiring repetitive

experiences or trials. To probe these cognitive processes, individuals

window into underlying hypothesized cognitive abilities. By offering
subjects alternatives differing in associated features and valence, it is
possible to examine how the animals attribute value to outcomes that
motivate learning (e.g., Ajuwon et al., 2023; Cruz et al., 2022;
Monteiro et al., 2020, 2023), how learned values are translated into
action during decision-making, and whether animals possess abstract
cognitive abilities such as concept formation, including numerical
(Newport et al., 2021) or temporal discriminations (Monteiro
et al.,, 2021), for example.

For traditional model species used in comparative cognition
research, including rodents, pigeons, and monkeys, there exists a

range of well-established tools to facilitate and automate behavioral
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testing and data acquisition, the Skinner box being one notable
example. These operant systems enable the controlled presentation
of sensory stimuli of different modalities (e.g., odors, colors, and
sounds), real-time detection of behavior (e.g., through video recording,
touchscreens, operable levers, or nose ports), and the delivery of
rewards to subjects (e.g., Cruz et al., 2022; Monteiro et al., 2023). The
automation of behavioral testing reduces human errors and biases
(Rosenthal & Fode, 1963), enhances scalable data acquisition, and
improves scientific reproducibility (Baker, 2016).

However, unlike with traditional mammalian and avian models,
the adoption of automated behavioral testing in cognitive research in
fish and other aquatic animals, including cephalopods, is not as wide-
spread. This could potentially limit the pace and breadth of studies
investigating learning and decision-making in a range of highly useful
animal models, while also making direct interspecies comparisons
difficult (but see Gatto et al. [2021] for the implementation of auto-
mated testing in guppies). Notably, while behavioral research on zeb-
rafish has undoubtedly benefited from automated computational
methods (Guilbeault et al., 2021; e.g., Manabe et al., 2013), reports of
cognitively sophisticated abilities in this species are lacking, bringing
into question its utility in research across multiple domains, particu-
larly research involving cognitively demanding tasks.

Inspired by the growing trend of open-source technology devel-
opment (Lopes & Monteiro, 2021), we recently developed GoFish, an
experimental platform for automated cognitive testing that is applica-
ble to a range of aquatic species and is freely available for other
researchers to use and expand on (Ajuwon, Cruz, et al., 2024). Here,
we briefly outline GoFish as an accessible research tool aimed at
implementing refined, automated behavioral testing in aquatic species,
and suggest future avenues for its use.

GoFish comprises pre-existing hardware components that are
widely available and a novel, custom-designed reward pellet dispenser
whose specifications we have made available online (https://www.cf-
hw.org/open-source-tools/tools/fish-feeder). As described in our
original article (Ajuwon, Cruz, et al., 2024), GoFish consists of a moni-
tor screen for stimulus presentation, a top-mounted camera for
behavioral monitoring and tracking, and two pellet dispensers
for automatic reward delivery. The camera records subjects in a rect-
angular experimental aquarium with a divider installed that delineates
two distinct choice zones (Figure 1). Subjects express preferences by
choosing to swim into either choice zone, allowing for the dynamics
of decision-making to be recorded and cognitive processes explored.
The hardware components and task implementation are controlled via
Bonsai, a user-friendly, open-source software that is widely adopted
for task control in behavioral neuroscience (Lopes et al., 2015, 2021;
Lopes & Monteiro, 2021) and that benefits from online resources
aimed at aiding researchers in task development (bonsai-rx.org).

To illustrate the utility of GoFish in investigating behavior and
cognition, we conducted two studies of instrumental conditioning on
goldfish (Carassius auratus, a convenient experimental model). Individ-
uals were successfully trained to independently initiate trials by swim-
ming to a “start zone” within the tank, then swimming into either

choice zone to potentially elicit rewards. Following training, subjects

FIGURE 1  GoFish framework. Three-dimensional view of a
Y-maze configuration of GoFish, including a computer monitor for
stimulus presentation, two pellet dispensers placed either side of an
opaque acrylic divider, an overhanging camera, and aquarium light
(not shown). This configuration was used to test place, color, and
reversal learning in goldfish (Ajuwon, Cruz et al., 2024 as well as for
assessing these animals' preference in an information seeking
paradigm (Ajuwon, Monteiro, et al., 2024).

were required to spatially discriminate between each choice zone, one
of which was rewarded, while the other ceased to provide rewards.
After successfully learning the discrimination, the rewarded side was
reversed, and subjects displayed behavioral flexibility by acquiring
preference for the newly rewarded side. After the spatial discrimina-
tion and reversal, subjects were then presented with a visual discrimi-
nation task, requiring them to distinguish between colored circles to
elicit rewards. At the group level, goldfish were able to reliably swim
into the choice zone displaying the rewarded stimulus, avoiding the
unrewarded stimulus (Ajuwon, Cruz, et al., 2024).

GofFish facilitates efficient behavioral data acquisition, allowing
users to investigate decision-making processes at high spatial and
temporal resolution, without the need for manual video annotation.
Using real-time video tracking based on color thresholding, users
are provided with pre-processed data outputs, facilitating further
behavioral analysis. In the goldfish experiments described above, we
examined how long it took subjects to initiate trials, and how
quickly they expressed preferences, using annotated behavioral
data that is automatically generated at the end of each session. In
future studies, researchers could leverage the data acquisition capa-
bilities of GoFish to explore a range of questions, including individual
differences in learning rates and response times, speed-accuracy
trade-offs, and sex differences in decision-making. Furthermore,
researchers could also use the animal tracking capabilities of GoFish
to explore how subjects' movement during sessions changes
through learning and in response to reward-conditioned stimuli to
gain a comprehensive picture of behavioral changes that accompany

learning and problem solving.
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GoFish can be used to efficiently answer a variety of cognitive
questions. For example, since the original study, it has been used to
compare the performance and preferences of goldfish (Carassius aura-
tus) to published results on mammal and bird species in an information
seeking paradigm (Ajuwon, Monteiro, et al., 2024).

GofFish is fully open-source, and we encourage others, especially
fish biologists, to re-use, adapt, and build on top of it, tailoring it to
answer their own questions. We used a two-choice Y-maze configura-
tion, but other arrangements are possible, such as adapting the maze
layout (e.g., radial maze), changing the position and number of feeders,
or using stimuli from different sensory modalities (Bonsai can control a
range of hardware input and output devices, promoting flexibility). In
our goldfish experiments, data acquisition and behavioral task control
relied primarily on video tracking using a standard camera, but in the
future, researchers could obtain input data from other devices such as
hydrophones, pressure sensors, or infra-red beams that record the
presence/absence of subjects and their behavior. The ability of Bonsai
to interact with a variety of output devices means that researchers
would also be able to present stimuli across a range of sensory modal-
ities such as acoustic and vibration sensing, depending on what is
most suitable for their research questions and study species. Addition-
ally, changes can easily be made to modify the tracking software
(e.g., adding background subtraction) or to implement more sophisti-
cated routines (Dutta et al, 2023; Kane et al., 2020; Pereira
et al., 2022; Walter & Couzin, 2021).

A note of caution, as raised by others (Kravitz & Laubach, 2024),
is that flexible and DIY type of solutions require scientists, especially
those in earlier phases of training, to invest time in developing better
coding, version control, documentation practices, three-dimensional
design, and fabrication techniques, just to give a few examples.
Ultimately, we believe that the benefits of enhanced experimental
scalability and reproducibility will outweigh the initial time investment
cost, particularly when compared to manually implemented experiments.

Studying fish cognition promises to extend our understanding of
fundamental questions, including how sociality affects the evolution
of behavior, how climate change impacts behavior and cognition, and
the behavioral basis of colonization in invasive species. Ultimately, we
believe that GoFish will be a valuable resource for future tool and
experiment development by the fish research community, facilitating
reproducible behavioral experiments on aquatic species aimed at tack-
ling questions across comparative cognition, behavioral ecology, and

neuroscience.
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