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ARTICLE INFO ABSTRACT

Keywords: Mycoplasma (M.) hyosynoviae is a commensal of the upper respiratory tract in swine, which has the potential to
CgMLST spread systemically, usually resulting in arthritis in fattening pigs and gilts. To date, very little is known about
MITST . the epidemiology of M. hyosynoviae, mainly due to a lack of suitable typing methods. Therefore, this study aimed
ISES\;icrlleemlology to develop both a conventional multi locus sequence typing (MLST) and a core genome (cg) MLST scheme. The

development of the cgMLST was based on whole genome sequences of 64 strains isolated from pigs and wild
boars during routine diagnostics as well as nine publicly available genomes. A cgMLST scheme containing 390
target genes was established using the Ridom®© SeqSphere+ software. Using this scheme as a foundation, seven
housekeeping genes were selected for conventional MLST based on their capability to reflect genome wide
relatedness and subsequently, all 73 strains were typed by applying both methods. Core genome MLST results
revealed a high diversity of the studied strain population and less than 100 allele differences between epide-
miologically unrelated strains were only detected for four isolates from the US. On the other hand, seven clonal
clusters (< 12 allele differences) comprising 20 isolates were identified. Comparison of the two typing methods
resulted in highly congruent phylogenetic trees and an Adjusted Rand Coefficient of 0.893, while cgMLST
showed marginally higher resolution when comparing closely related isolates, indicated by a slightly higher
Simpson’s ID (0.992) than conventional MLST (Simpson’s ID = 0.990). Overall, both methods seem well suited
for epidemiological analyses for scientific as well as diagnostic purposes. While MLST is faster and cheaper,
cgMLST can be used to further differentiate closely related isolates.

Mycoplasma hyosynoviae

2019; Palzer et al., 2020).
Even though the prevalence of M. hyosynoviae infections in pigs

1. Introduction

Mycoplasma (M.) hyosynoviae (homotypic synonym Metamycoplasma
hyosynoviae) is a porcine Mycoplasma species with worldwide distribu-
tion (Palzer et al., 2020). It was firstly described by Ross and Karmon
(1970) and is primarily found as harmless commensal in the nasal cavity
and the tonsils of pigs (Gomes Neto, 2012). After systemic spread, M.
hyosynoviae exhibits an affinity to joint tissue (Kobisch and Friis, 1996;
Hagedorn-Olsen et al., 1999) and causes acute non-purulent arthritis in
growing and finishing pigs (Lauritsen et al., 2017; Pieters and Maes,

seems to be on the rise in recent years, little is known about the epide-
miology of this porcine pathogen (Schwartz et al., 2014; Palzer et al.,
2020). While early colonization of suckling piglets has been confirmed,
transmission during the suckling period is less frequent than with other
porcine mycoplasmas (Hagedorn-Olsen et al., 1999; Schwartz et al.,
2014; Roos et al.,, 2019). Instead, most piglets are colonized after
weaning with a prevalence peaking between 10 and 16 weeks of age
(Schwartz et al., 2014; Roos et al., 2019). Similar to M. hyorhinis,
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systemic spread only occurs in a subpopulation of animals colonized by
M. hyosynoviae, usually resulting in synovial lesions and the develop-
ment of clinical signs such as increased production of joint fluid and
lameness (Pieters and Maes, 2019).

Very little information is available about the epidemiology of
M. hyosynoviae, and epidemiological investigations are limited as no
suitable typing methods have been described for this pathogen so far.
For several Mycoplasma species, including the porcine species
M. hyopneumoniae, M. hyorhinis, and M. flocculare multi locus sequence
typing (MLST) schemes have been developed and published at pubMLST
(Mayor et al., 2008; Tocqueville et al., 2014; Fourour et al., 2019).
Recently, core genome (cg) MLST schemes have been established for
M. bovis in cattle (Kinnear et al.,, 2021; Menghwar et al., 2022),
M. gallisepticum, M. synoviae, and M. anserisalpingitidis in poultry (Gha-
nem and El-Gazzar, 2018; Kovacs et al., 2020) and for the porcine spe-
cies M. hyorhinis (Biinger et al., 2021). While cgMLST usually results in
higher resolution than conventional MLST, it is more time-consuming
and expensive limiting its suitability for routine diagnostics. For
epidemiologic investigations, however, the increased discriminatory
power has shown to be useful for differentiation of closely related strains
(Ghanem and El-Gazzar, 2018; Biinger et al., 2021; Kinnear et al., 2021;
Menghwar et al., 2022).

In order to facilitate epidemiological research on M. hyosynoviae and
to gain insights into the pathogen’s population structure, we developed
two novel sequence-typing schemes based on analyzing 73
M. hyosynoviae strains. First, a cgMLST scheme utilizing 390 target genes
was developed and subsequently, a conventional MLST scheme target-
ing seven housekeeping genes was established, and a web-accessible
database set up for the M. hyosynoviae MLST scheme at https://pub
mlst.org/ (Jolley et al., 2018).

2. Materials & methods
2.1. M. hyosynoviae strains and whole genome sequencing

In total, 73 M. hyosynoviae strains were fully analyzed in the study
including 38 strains isolated from pigs (n = 30) and wild boars (n = 8) in
Austria, 22 and one strain recovered from pigs and a wild boar in Ger-
many, respectively, and three strains from pigs in Norway. Further, eight
M. hyosynoviae strains from North America (including type strain ATCC
255917T) (Bumgardner et al., 2014) and one from Denmark with publicly
available whole genome sequences (Table S1) were included. Seven
additional strains isolated from pigs in Germany, which appeared to be
non-viable after shipment to Austria, were only tested by conventional
MLST (Table S1). All cultured strains (n = 64) were obtained from
diagnostic samples taken from different body sites (eye, nasal cavity,
trachea, lung, lymph node, serosa, joint) submitted for microbiological
investigation between 2002 and 2023. All pigs showed some form of
clinical disease and/ or pathologic lesions primarily (arthritis) or
secondarily (pneumonia, serositis, conjunctivitis) associated with
M. hyosynoviae whereas in wild boar the pathogen was almost exclu-
sively isolated from pneumonic lungs and pulmonary lymph nodes
(Table S1). The 22 cultured strains from domestic pigs in Germany
originated from eight different farms, while the 30 Austrian
M. hyosynoviae pig isolates came from 29 farms, and the three Norwe-
gian isolates from one premise. Multiple M. hyosynoviae strains were
derived from six farms (n = 23 strains; 18 strains from four German
farms, three and two strains from one Norwegian and one Austrian farm,
respectively) and in one German farm three isolates were derived from
one individual pig (B3J20G, B4J20G, B5J20G; Table S1). All cultured
M. hyosynoviae strains were identified at the species level using
MALDI-TOF mass spectrometry (MS) as described previously (Spergser
et al., 2019), and stored at —80 °C until further investigation.

For whole genome sequencing (WGS), M. hyosynoviae stock cultures
were thawed, diluted 1:100, and plated onto SP4 agar (Ramirez et al.,
1997) before incubation at 37 °C under 5 % CO» atmosphere for up to 7
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days (Biinger et al., 2021). Subsequently, an isolated colony was picked
and cultured in 15 mL SP4 medium until a color change of the medium
from orange to pink occurred (based on alkalinization resulting from
arginine hydrolysis). Cultures were pelleted by centrifugation at 20,000
x g for 10 min and DNA was extracted using MagAttract® HMW DNA Kit
according to the manufacturer’s instruction (Qiagen, Hilden, Germany).
Quantity and quality of extracted DNA were determined by Qubit™ 4
fluorometer and NanoDrop™ 2000 (both Thermo Scientific, Vienna,
Austria). Whole genome sequencing was performed on libraries pre-
pared by the Nextera XT DNA Library Preparation Kit (Illumina, San
Diego, USA), and an Illumina MiSeq or MiniSeq platform (Illumina, San
Diego, USA) was applied for paired-end sequencing. Raw reads were
quality checked, trimmed, and de novo assembled using SPAdes 3.10.
(Bankevich et al., 2012). Three M. hyosynoviae strains (B1J20G, B4J20G,
B7E20G) were additionally sequenced on a Nanopore MinION device
(Oxford Nanopore Technologies, Oxford, UK) and Illumina short reads
along with Nanopore long reads were hybrid assembled utilizing the
Unicycler pipeline 0.4.8 with default settings (Wick et al., 2017).
Completed and draft genomes of all 64 cultured M. hyosynoviae strains
were deposited at Genbank and are available under the accession
numbers provided in Table S1.

2.2. Core genome MLST

A cgMLST scheme for M. hyosynoviae was developed using Ridom©
SeqSphere + version 7.0 (Ridom© GmbH, Miinster, Germany; https
://www.ridom.de/seqsphere/) as described previously for M. hyorhinis
(Biinger et al., 2021). In brief, the genome of strain B1J20G finished in
this study (NZ_CP101127), and 12 query genomes were utilized for the
development of an ad hoc cgMLST scheme. Query genomes were
selected based on their origin including strains from different
geographic locations, years of isolation, body sites, and hosts (Table S2).
As first step in cgMLST development, a target gene set appropriate for
cgMLST was defined using the cgMLST Target Definer tool that filtered
the reference genome (NZ_CP101127) to exclude unfit gene targets
(Biinger et al., 2021). Next, the 12 query genomes were blasted pairwise
against the reference genome’s target gene set to select shared targets
with sequence identities of > 90 % and an overall overlap constituting
the final targets of the cgMLST scheme. For evaluation purposes, the
remaining 60 genomes (Table S1, S2) were used to determine the per-
centage of cgMLST targets present in the M. hyosynoviae strain cohort.
Eventually, all 73 M. hyosynoviae strains were typed by the newly
developed cgMLST scheme to define individual allelic profiles that were
utilized to construct a minimal spanning tree (MST). In addition, allelic
distances between closely related M. hyosynoviae strains were deter-
mined by comparing 23 isolates from six farms (> 1 isolate per farm) and
the threshold for clonal cluster definition was assessed based on results
of the cgMLST MST. Furthermore, a phylogenetic tree was calculated
using the neighbor joining algorithm implemented in the SeqSphere +
software and visualized by iTOL (Letunic and Bork, 2019).

2.3. Conventional MLST

For the development of a conventional MLST, housekeeping genes
used in previously described Mycoplasma MLST schemes (Jolley et al.,
2018) were screened for even distribution in the M. hyosynoviae B1J20G
genome, their diversity among the strains analyzed, and their capability
to reflect genome-wide relatedness as shown by cgMLST. Using this
approach, the seven housekeeping genes dnaA (chromosomal replica-
tion initiator protein), ftsY (signal recognition particle receptor), gyrB
(DNA gyrase subunit B), recA (recombinase A), rpoB (DNA-directed RNA
polymerase subunit beta), uvrA (excinuclease ABC subunit A), and fusA
(elongation factor G) appeared to be most suitable for the establishment
of a conventional MLST scheme. Primers flanking the variable regions of
the selected housekeeping genes were then designed using Primer 3
(version 2.3.7) plugin in Geneious Prime® 2022.1 (Biomatters Ltd., New
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Zealand), and the specificity of the primers was verified by BLASTN
(https://blast.ncbi.nlm.nih.gov/Blast.cgi). Primer sequences, fragment
positions in the genome of B1J20G and amplicon sizes are listed in
Table 1. For PCR evaluation, each housekeeping gene fragment was
amplified from 20 selected M. hyosynoviae strains (Table S3), and
amplicons were Sanger sequenced at LGC Genomics Berlin, Germany.
DNA extracts from M. hyopneumoniae JT, M. flocculare Ms42T,
M. hyorhinis BTS-77, and M. hyopharyngis H3-6B F' were applied as
negative controls. The PCR mixtures contained 12.5 pL OneTagq®
Quick-Load® 2x Master Mix with Standard Buffer (1x containing 25
units/ mL OneTag® DNA Polymerase, 1.8 mM MgCl,, and 0.2 mM
dNTPs) (New England Biolabs® GmbH), 0.5 pL of each primer (10
pmol/pL), 9 uL. ddH,0, and 2.5 pL. DNA template yielding a total volume
of 25 pL. The PCR was performed on a Mastercycler® nexus PCR ther-
mocycler (Eppendorf Austria GmbH) with the following cycling condi-
tions: 95 °C for 2 min followed by 40 cycles of 95 °C for 30 s, 56 °C for 30
s and 72 °C for 1 min, and a final elongation step at 72 °C for 5 min. For
the remaining M. hyosynoviae strains, housekeeping gene sequences
were extracted from WGS using Geneious Prime® 2022.1. Sequences
were then aligned by ClustalW in the MegaX software (Kumar et al.,
2018) and consecutive numbers (starting with M. hyosynoviae type strain
ATCC255917) assigned to each new allelic type or allele combination
(ST) with identical sequences or combinations being assigned the same
allele or ST number. In addition, sequences of the housekeeping gene
fragments were concatenated, and a phylogenetic tree constructed using
the Maximum Likelihood method and Hasegawa-Kishino-Yano substi-
tution model with bootstrapping (1000 replications) in MegaX (Fig. 3;
Kumar et al., 2018).

For both cgMLST and conventional MLST schemes the discrimina-
tory power was determined and compared based on the Simpson’s index
of diversity (ID) (Hunter and Gaston, 1988) applying the online tool
Comparing Partitions (http://www.comparingpartitions.info/) using
default parameters. To assess the concordance between cgMLST and
conventional MLST Adjusted Rand coefficients (Hubert and Arabie,
1985) were also calculated by Comparing Partitions.

Table 1
Primer sequences, genome positions, and amplicon sizes of seven housekeeping
genes targeted by MLST.

Gene Primer sequences 5-3' Genome Amplicon
position size
(B1J20G)

dnaA  Forward: 228-727 499 bp
TTTCTTCAATAGAACGTGCAATTCA
Reverse:
TGAGCATATTGTTGAATGTCATCAA

ftsY Forward: 141,675- 585 bp
CGTTGAGGGTTTATCTAGATCAAACA 142,260
Reverse:
TTTTGCAATCTACCAGCAGTATCAA

grB Forward: 248,429- 394 bp
ACGTGGTAAGGTAATTAATGCTGAA 248,823
Reverse:
TGGATCCATTTCACCAAGACCTTTA

recA Forward 1: 295,484- 435 bp
TGTTGATTGTTTGTCGAAAACAGGA 295,919
Reverse:
TCAGCAAGTTTTGAAATTCCTTTTGA

rpoB Forward: 440,773- 592 bp
TAACTGCTATTGAAGAAATGGGTGC 441,365
Reverse 1:
TTTTTACCAAGTGCAAGTTCACCAT

uvrA Forward: 725,188- 400 bp
TGGGTAAATTCATTGTAGTTTCAGGA 725,588
Reverse:
ACATCAGGTAAAAAGTGCATTTCAA

fusA Forward: 749,839- 681 bp
TGCTGTTGTTGATTACTTACCTTCG 750,520

Reverse:
CCTGATTGTTTCTTGTGCATACCTT
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3. Results

All cultured M. hyosynoviae strains (n = 64) were successfully
sequenced using an Illumina MiSeq or MiniSeq platform. Resulting raw
reads were assembled de novo generating assemblies with a mean size of
858.666 Kb representing full genomes of M. hyosynoviae, a mean number
of 51 contigs (>500 bases), and an average calculated coverage of 82.
Genome assemblies were deposited at GenBank databases (number of
contigs and average coverage of each genome as well as accession
numbers are presented in Table S1). For three M. hyosynoviae strains
(B1J20G, B4J20G, B7E20G) completed genomes were generated by
hybrid assembly of Nanopore and Illumina reads resulting in circular
genomes (NZ_CP101127, NZ_CP101128, NZ_CP101129) with genome
sizes of 889.181 (320 x coverage), 880.327 (420 x coverage), and
906.150 Kb (450 x coverage) for B1J20G, B4J20G, and B7E20G,
respectively (Table S1).

3.1. Development of a M. hyosynoviae cgMLST scheme

From the completed genome of strain B1J20G (NZ_CP101127) con-
taining 695 coding gene sequences, a reference task template was
generated that retained a total of 641 genes after filtering. By using 12
query genomes, a cgMLST scheme with 390 target genes (435,206 bases)
was defined, covering 49 % of the reference genome sequence. The
number of accessory genes that can be used for top-down analyses was
251 (318,799 bases), representing 35.9 % of the reference genome. Core
target genes defined are listed in Table S2. For cgMLST evaluation, WGS
of the remaining 60 M. hyosynoviae strains were loaded into SeqSphere
+ and typed according to the 390 cgMLST target scheme. At least 95 %
(mean 98.1 % =+ 1.24 standard deviation for all genomes) cgMLST target
genes were found in WGS used for evaluation. The average number of
alleles for 390 targets was 22 alleles ranging from three to 55 alleles. To
specify clonal cluster distances, first a subset of 23 isolates from six
farms (four German farms, one Austrian, and one Norwegian farm) was
used. Five of these isolates (3432_.4J15G, A1608804_005J20G,
A16008804_07J20G, B1J20G, B7E20G), however, were excluded from
cluster threshold determination as they showed numbers of allele dif-
ferences (> 34 allele differences, > 8.7 % of core target genes) un-
common for clonal cluster formation (Fig. 1; Ghanem and El-Gazzar,
2018; Biinger et al., 2021). The maximum number of allele differences
observed among the remaining 18 strains was 12 alleles, which was set
as threshold for distinct clonal clusters. Based on this threshold, seven
different clonal clusters comprising 20 M. hyosynoviae strains were
identified (Figs. 1, 2).

3.2. Typing of M. hyosynoviae strains using cgMLST

The newly developed cgMLST scheme was tested on all 73 strains to
gain insights into the population structure of M. hyosynoviae, and to
evaluate the genome-wide relatedness of the strains included in the
study. Allelic profiles for all strains are listed in Table S2. Overall, results
of cgMLST showed a high degree of diversity among epidemiologically
unrelated M. hyosynoviae strains illustrated by a high number of allele
differences between these strains exhibiting allele differences in more
than half of the 390 analyzed target genes (Fig. 1, Fig. 2). Regarding the
origin of the studied strain population, the strains from the US and
Canada (excluding type strain ATCC 255917) were separated clearly
from the European isolates (Fig. 1). Within the European isolates, the
single Danish (M60) and three Norwegian strains (SN1J23N, SN2J23N,
SN3J23N, Cluster 4) were separated from the Austrian strain cohort,
while the German strains were mostly contained in three semi-separated
branches of the MST (Fig. 1). Wild boar isolates included in this study
were not forming their own sub-branch but were dispersed all over the
tree. In addition, high numbers of allele differences were evident be-
tween wild boar and closest related pig isolates indicating that intra-
specific pathogen transmission between wild and domesticated pig
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Fig. 1. Minimum spanning tree constructed from allelic profiles (390 core genome targets) of 73 M. hyosynoviae strains using the pairwise ignoring-missing values
option. The seven distinct clonal clusters with < 12 allele differences are color coded. The number on connecting lines illustrates the number of differing alleles in a
pair-wise comparison. The color of the circles indicates strain origin (grey = publicly available genome (USA, Canada, Denmark); orange = Norway; pink = Germany,
white = Austria).
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Fig. 2. Phylogenetic tree built from allelic profiles (390 core genome targets) of 73 M. hyosynoviae strains using the neighbor joining algorithm and the pairwise
ignoring-missing-values option. Clades of clonal clusters are highlighted in red. Conventional MLST sequence types are depicted opposed to the tree. Visualization
was realized using iTOL.
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populations is rather unlikely. Altogether, cgMLST typed the
73 M. hyosynoviae strains into 60 different sequence types (STs) based on
> 12 allele differences (threshold for clonal clusters) resulting in a
Simpson’s ID of 0.992.

3.3. Development and application of a conventional M. hyosynoviae
MLST scheme

Gene fragments of the selected housekeeping genes dnaA, ftsY, gyrB,
1poB, uvrA, recA and fusA were successfully amplified from 20 selected
M. hyosynoviae strains (Table S3) followed by Sanger sequencing. No
cross-reactions were observed when DNA from other swine myco-
plasmas (M. hyopneumoniae, M. flocculare, M. hyorhinis, M. hyopharyngis)
were used as negative controls. In addition, housekeeping gene frag-
ments were extracted from WGS of all 73 M. hyosynoviae strains and
Sanger sequences compared with genome extracted sequences of
13 M. hyosynoviae strains (from seven strains no WGS were available,
Table S1, S3) which were shown to be identical. Finally, the seven
housekeeping gene fragments were concatenated (3586 bp) and a
phylogenetic tree was constructed applying the Maximum Likelihood
algorithm and the Hasegawa-Kishino-Yano substitution model in MegaX
(Fig. 3). The analyzed 80 M. hyosynoviae strains were typed into 63
different STs (Simpson’s ID of 0.991). If only considering the 73 strains
which were also typed by cgMLST, the Simpson’s ID was 0.990. Allelic
profiles and STs are listed in Table S3. When STs obtained from MLST
were compared to cgMLST results and clonal cluster formation, a
slightly lower resolution capability of the conventional MLST scheme
was evident. However, the Adjusted Rand coefficient defining the pro-
portion of congruence between the typing methods used was excellent
(0.893) indicating high concordance between the utilized typing
methods.

An online database for the conventional MLST scheme, comprising
132 allele sequences (dnaA n =17, ftsY n =22, gyrB n =15, recA
n =20, rpoB n =19, uvrA n =22, and fusA n=17), 63 STs, and
80 M. hyosynoviae strains, was developed (Jolly et al., 2018) and is
publicly available at https://pubmlst.org/organisms/mycoplasma-hyos
ynoviae/.

4. Discussion

This study describes the development of two novel allele-based
sequence typing methods for M. hyosynoviae which were subsequently
utilized to type European and North American field strains. Similar to
previous studies, we found cgMLST to have slightly better discrimina-
tory power than conventional MLST when comparing closely related
targets (Ghanem et al., 2018; Biinger et al., 2021; Kinnear et al., 2021).
However, the selection of seven target genes from whole genome se-
quences of 73 strains led to the development of a MLST scheme which
possessed sufficient resolution for many applications. Further, compar-
ison of MLST and cgMLST results (Fig. 2) proved that the novel MLST
scheme is properly reflecting genomic relationship between the isolates
in this study, affirmed by the high congruence between the two methods.
For the novel cgMLST scheme, the threshold for clonal cluster was set at
< 12 allele differences, very close to the cluster thresholds set for other
Mycoplasma cgMLST schemes (Ghanem et al., 2018; Biinger et al., 2021;
Menghwar et al., 2022). Based on the strains analyzed within this study
and taking the nucleotide variability after multiple passages into ac-
count (Ghanem and El-Gazzar, 2018), < 12 allele differences should be a
solid value to ensure that only clonally related isolates are typed into a
clonal cluster.

Interestingly, most epidemiologically unrelated isolates differed in
>50 % of the 390 target genes, indicating a highly diverse
M. hyosynoviae population expressing limited clonality. When compared
to cgMLST results of M. hyorhinis (Biinger et al., 2021), another ubiq-
uitous porcine pathogen, the differences between M. hyosynoviae isolates
are much greater on average even when only comparing isolates from
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Austria. While four isolates from the US (NPL3, NPL5, NPL6, NPL7)
showed very few allele differences and two of them even formed a clonal
cluster (NPL3, NPL5, Cluster 7), these four strains were the only pre-
sumably epidemiologically unrelated strains with < 100 allele differ-
ences (Fig. 1). On the other hand, two isolates from farm C (1927L20A,
3297J21A) formed a clonal cluster with only 12 allele differences even
though they were isolated 15 months apart in the years 2020 and 2021.
This indicates that M. hyosynoviae subpopulations on individual farms
might be stable over time. In contrast, multiple subpopulations can
coexist within one farm, as two isolates from farm D
(A1609339.004J20G, A1608804_006J20G) formed a clonal cluster,
while only being very distantly related to two other strains from the
same farm which were isolated at the same time (A1608804_005J20G,
A1608804_007J20G). Both observations have previously also been
made for M. hyorhinis (Biinger et al., 2021), indicating a similar popu-
lation and subpopulation structure for these two porcine Mycoplasma
species.

While the American, German, and Austrian strain cohorts mostly
grouped in specific branches of the minimum spanning tree (Fig. 1), the
overall high number of allele differences regardless of the geographical
location, make it almost impossible to conclude on strain origin only
based on c¢gMLST results. Similar findings were made for
M. anserisalpingitidis (Kovdcs et al., 2020), while ¢gMLST analysis of
151 M. bovis strains resulted in fewer allele differences for isolates from
specific regions and provinces (Menghwar et al., 2022). The high dif-
ferences between presumably unrelated M. hyosynoviae strains might,
however, allow for easier detection of related strains, as < 100 allele
differences were not regularly observed.

As a final comment, this study mostly contains strains isolated during
routine diagnostics from wild boar or from domestic pigs showing some
form of clinical disease. Therefore, these strains are not representative of
the European or even the German/ Austrian M. hyosynoviae populations.
To further elucidate and confirm the high diversity found in the strain
cohort of this study, it is necessary to investigate a wider sample pool in
the future. Therefore, the MLST scheme we developed has been made
publicly available on pubMLST.org (Jolley et al., 2018) and sequences,
allelic profiles (STs) and information on the 80 strains have been
uploaded to the database.

5. Conclusion

In summary, the novel MLST and cgMLST schemes presented in this
study allow for accurate sequence typing of M. hyosynoviae isolates,
representing the first allele-based typing methods for this emerging
swine pathogen. The conventional MLST scheme is suitable for most
applications in routine diagnostics, while cgMLST might be used for
further differentiation in the case of closely related isolates sharing the
same sequence type.
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Fig. 3. Phylogenetic tree based on concatenated sequences of the seven housekeeping gene fragments (dnaA, ftsY, gyrB, recA, rpoB, uvrA, fusA). The tree was
constructed using the Maximum Likelihood method and Hasegawa-Kishino-Yano substitution model with 1000 bootstraps (only bootstrap values > 70 % are pre-
sented) in MegaX. Branches of strains belonging to the same ST are highlighted in red. Strains only typed by conventional MLST are in gray.
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