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ARTICLE INFO ABSTRACT

Keywords: Abstract concepts are a powerful tool for making wide-ranging predictions in new situations based on little

O"erhYP_Otheses experience. Whereas looking-time studies suggest an early emergence of this ability in human infancy, other

’ébsrraclt}on. paradigms like the relational match to sample task often fail to detect abstract concepts until late preschool years.
eneralization

Similarly, non-human animals show difficulties and often succeed only after long training regimes. Given the
considerable influence of slight task modifications, the conclusiveness of these findings for the development and
phylogenetic distribution of abstract reasoning is debated. Here, we tested the abilities of 3 to 5-year-old chil-
dren, chimpanzees, and capuchin monkeys in a unified and more ecologically valid task design based on the
concept of “overhypotheses” (Goodman, 1955). Participants sampled high- and low-valued items from containers
that either each offered items of uniform value or a mix of high- and low-valued items. In a test situation,
participants should switch away earlier from a container offering low-valued items when they learned that, in
general, items within a container are of the same type, but should stay longer if they formed the overhypothesis
that containers bear a mix of types. We compared each species’ performance to the predictions of a probabilistic
hierarchical Bayesian model forming overhypotheses at a first and second level of abstraction, adapted to each
species’ reward preferences. Children and, to a more limited extent, chimpanzees demonstrated their sensitivity
to abstract patterns in the evidence. In contrast, capuchin monkeys did not exhibit conclusive evidence for the
ability of abstract knowledge formation

Animal cognition
Computational modeling
Cognitive development

1. Introduction

Humans greatly benefit from their ability to detect commonalities
between two or more objects, relations, processes, or situations, allow-
ing them to extract general patterns that go beyond the immediate
sensory input. This ability for abstraction enables humans to adaptively
transfer knowledge and problem solutions from one situation to another
without the need to remember situation-specific details. For example,
imagine that upon acquiring a large collection of vinyl records, you
embark on a quest to curate ‘60s music for an upcoming event. After

examining the first five records in one box, all dated 1982, and
discovering only records from 1969 in another box and some from 1975
in a third, you recognize an abstract pattern - within each box, all re-
cords are from the same year. This realization about how the records are
sorted in boxes enables you to optimize your search strategy: a brief
inspection of the first record in each box offers a strong indication of
whether it contains records from the ‘60s, eliminating the need to look at
every individual item. This kind of abstract reasoning is central to
human intelligence, plays an essential role in the evolution of human
culture, and is crucial for a variety of human-unique accomplishments in
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social interaction, language, mathematics, arts, and teaching (Brand,
Mesoudi, & Smaldino, 2021; Gentner, 2003; Tomasello, 2020; Wasser-
man & Young, 2010). Some believe it is a relatively late-developing skill,
dependent on language or symbols and only present in humans (e.g.
Gentner, 1988, 2003; Holyoak & Lu, 2021; Penn, Holyoak, & Povinelli,
2008; Tomasello, 2020). Others argue that the ability for abstraction as a
powerful and efficient learning tool is relevant for fast knowledge
acquisition in infancy (e.g. Kemp, Perfors, & Tenenbaum, 2007; Xu &
Tenenbaum, 2007b; Yin & Csibra, 2015). Moreover, the ability to
extract recurring patterns in different contexts and transfer adaptive
behaviours across situations could be advantageous for many species in
light of evolutionary pressures to find food and reproduce, which unite
disparate perceptual features according to their function or utility.

1.1. The abstract concepts of sameness and difference in animals and
children

As outlined above, detecting similarities and differences between
entities is crucial for forming abstract concepts. Thus, the abstract
concepts of same and different itself play a central role in human
cognition. However, their developmental timeline and the extent to
which abstract reasoning is uniquely human continue to be debated.
Human infants and a variety of other animals, including insects (Giurfa,
Zhang, Jenett, Menzel, & Srinivasan, 2001), can learn to expect a spe-
cific event or engage in a particular action when stimuli are perceived to
be the same or can learn to choose matching stimuli (e.g. Ferry, Hespos,
& Gentner, 2015; Hochmann, Carey, & Mehler, 2018; Hochmann, Mody,
& Carey, 2016; Wasserman, Castro, & Fagot, 2017). However, success in
these tasks, including the transfer of the training performance to a test
phase with novel stimuli, may not require flexible, fully abstract rep-
resentations but could stem from simpler perceptual matching processes
(e.g. Kroupin & Carey, 2022a; Penn et al., 2008; Zentall, Andrews, &
Case, 2018).

In the more difficult relational matching-to-sample task (RMTS),
participants are required to match not individual stimuli but instead the
relations (same/different) between stimuli in pairs or arrays (XX
matches AA but not BC. XY matches BC but not AA; Premack, 1983),
which represents a second level of abstraction. Children under the age of
5 perform poorly on RMTS tasks (e.g. Hochmann et al., 2017). Their bias
for conflicting object matches (e.g., choosing XX matches XB over AA)
suggests that children only start attending to common relational struc-
tures in late preschool or early school age (Gentner, 1988; Rattermann &
Gentner, 1998).

However, slight task modifications like presenting multiple samples
(e.g. do XX and YY match XY or AA; Christie & Gentner, 2010), labels for
samples (e.g. “this is a truffet, which one is also a truffet?”, Christie &
Gentner, 2014), larger item arrays (Hochmann et al., 2017), causal
framing (Goddu, Lombrozo, & Gopnik, 2020), or design cues drawing
attention to relations between the stimuli (Walker, Rett, & Bonawitz,
2020) enable 3- and 4-year-olds to succeed in relational matching tasks.
After learning that either only “same” or only “different” object pairs
activate a blicket detector toy, English-speaking 18-month-olds out-
performed 3-year-olds when choosing between new objects to put on the
toy (Walker, Bridgers, & Gopnik, 2016). Mandarin-speaking children,
however, succeed in choosing relational matches at both ages (Car-
stensen et al., 2019). These findings suggest that abstract relational
reasoning may develop early but that learned, culture-dependent biases
may shift children’s focus to individual objects. Thus, learned biases,
rather than a lack of capacity for abstraction, may cause failures in
RMTS tasks in 3- to 5-year-olds (Hoyos, Shao, & Gentner, 2016; Kroupin
& Carey, 2022b; Walker et al., 2016). Supporting this argument, Krou-
pin and Carey (2022a, 2022b) found that a brief match-to-sample (MTS)
training based on less attended object dimensions (like number or size)
improved RMTS scores in 4-year-olds and adults, while an MTS training
based on the objects’ shape and/or color did not. The RMTS task also
represents a challenge for non-human animals (henceforth animals).
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Only a few monkey species have shown success on the task (e.g.,
capuchin monkeys (Truppa, Piano Mortari, Garofoli, Privitera, &
Visalberghi, 2011), baboons (e.g. Fagot & Thompson, 2011)) after
extensive training or the presentation of larger item arrays while still
showing a drop in performance when new stimulus sets are introduced
(Wasserman et al., 2017). Thus, animals seem to rely primarily on slow
perceptual learning processes based on the specific stimulus combina-
tions or on comparing their perceptual variability of the stimulus arrays
(Penn et al., 2008; Wasserman et al., 2017). In birds and great apes, prior
MTS experience and language or symbol training lead to faster success in
RMTS tasks (Obozova, Smirnova, Zorina, & Wasserman, 2015; Premack,
1983; Smirnova, Zorina, Obozova, & Wasserman, 2015; Thompson,
Oden, & Boysen, 1997) that is partly robust against conflicting percep-
tual matches (Vonk, 2003). This suggests that despite the apparent
species differences (e.g. between monkeys and apes), having acquired a
relevant symbol system (Gentner, Shao, Simms, & Hespos, 2021; Pre-
mack, 1983) or at least extensive prior exposure to the relation of
sameness (Smirnova et al., 2015) supports the representation of abstract
relations. However, even for those results, lower-level explanations have
not been entirely ruled out (e.g. Dymond & Stewart, 2016; Penn et al.,
2008; Vonk, 2015).

Similar to the argument for children, animals’ poor RMTS perfor-
mance may not indicate a lack of abstract reasoning capacity. Inductive
biases to pay attention to and assume meaning of other stimulus fea-
tures, such as salient or previously relevant object features like shape,
color or location, could influence animals’ relational responses.
Numerous repetitions or specific training might shape their behavior to
match the experimenter’s expectations (Carstensen & Frank, 2021;
Kroupin & Carey, 2021).

Despite its popularity, the RMTS task presents an arbitrary scenario,
especially for animals. The procedure often involves geometric shapes
with little meaning shown on computer screens. Christie (2021) argues
that some interest in the individual stimuli is necessary to detect re-
lations between them. Human RMTS performance improves when
meaningful stimuli (words vs. random letter strings) are presented,
supporting the importance of stimulus choice for abstraction (Flemming,
Beran, Thompson, Kleider, & Washburn, 2008). The RMTS as a binary
forced-choice task, where a decision for one option makes another
inaccessible, lacks ecological plausibility. Moreover, any learned
response strategy here has to overcome the non-human primates’ strong
focus on spatial solution strategies (e.g. Flemming & Kennedy, 2011;
Haun, Call, Janzen, & Levinson, 2006) as apparent in the occurrence of
side biases (e.g. Flemming, 2006). Given the RMTS task’s low-ecological
validity, its susceptibility to lower-level explanations, and the ambiguity
in its interpretation, we turned to another perspective on abstract
reasoning that has more prominently been examined in developmental
psychology. Further, we use computational modeling to achieve a more
informative cross-species comparison.

1.2. Overhypotheses and Hierarchical Bayesian Models

Strongly related to the traditional formalization of “same-different”
concepts is the notion of overhypotheses (Goodman, 1955) which offers
a different perspective on testing abstract concepts and is a well-
established term in computational, cognitive, and developmental psy-
chology. Similar to the vinyl record example from above, Goodman
(1955) illustrated this concept with a thought experiment on bags filled
with marbles. Out of the first bag, you blindly draw some marbles, which
turn out to be all red. From the second bag, you sample only blue, and
from the third, only black marbles. With each draw, you become more
confident in forming a first-order generalization about each bag’s
marble distribution, for example, “the third bag contains only black
marbles”. Further, you can extract the commonality of the events and
form a second-order generalization, the overhypothesis: “Within a bag,
all marbles have the same color”. This overhypothesis allows powerful
predictions about the color of all marbles in a new bag after sampling
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just one (Goodman, 1955). Similar to the bags example, one can imagine
the marble-filled bags as trees growing fruit. If, after visiting a few trees,
an animal can form the overhypothesis that trees generally carry a
uniform fruit type, only one bite of a fruit from a novel tree is sufficient
to determine whether to spend more time and energy foraging in this
tree. In contrast, after lifting stones on the ground, an animal may learn
the overhypothesis that a variety of insects can be hiding under any
given rock. In this case, the first insect you see under a new stone does
not make you sure about the type of the next insect you will find in this
location. Similarly, learning that bags are each filled with a mix of
colours means that the color of the next marble from a specific container
is less predictable.

Conceptualizing abstract generalizations as overhypotheses repre-
sents them as theories (or hypotheses) that shape and constrain the
hypothesis space at more specific levels (Kemp et al., 2007). For
example, given that trees grow a uniform fruit type (overhypothesis), it
is likely that this specific tree bears only apples but unlikely that it grows
a mix of apples and cherries (lower-level hypothesis). While an RMTS
task tests the possession of abstract knowledge, assuming concepts
“same” and “different” are already in place and readily applied to dis-
played object pairs, the overhypothesis framework quantifies the genesis
of abstractions from evidence and their application to novel instances.
By so doing, it can explicitly investigate how features of the evidence at
the concrete level might impact or facilitate such inferences - such as the
contrasting impact of recently experiencing feature-based or relation-
based rules on performance in the RMTS task in children described
above (Kroupin & Carey, 2021). This is a desirable feature for a theo-
retical framework exploring how abstractions can be derived and used.

Probabilistic hierarchical Bayesian models (HBM; e.g., Kemp et al.,
2007; Tenenbaum & Griffiths, 2001; Tenenbaum, Griffiths, & Kemp,
2006) show how, in theory, this structured abstract knowledge could be
acquired after observing limited data, due to simultaneous Bayesian
inference at multiple levels of abstraction. These overhypotheses are
updated in light of new evidence across a broad range of situations (e.g.,
multiple trees and kinds of trees) and thus can be learned faster than
hypotheses concerning more specific situations (this particular tree;
Tenenbaum, Kemp, Griffiths, & Goodman, 2011). The HBM also in-
corporates how overhypotheses determine the probability distribution
for the hypothesis space at lower levels. For example, knowing that
items within bags are highly uniform, one assigns a high probability of
sampling another item of the previous type but a low probability of
sampling any other type. However, if one samples from a bag and en-
tertains the overhypothesis that bags usually have a mix of items, one
would assign similar (low to moderate) probabilities to multiple types of
items to be the next sample. Thus, as a computational formalism, they
capture the ability for rapid inferences and wide-ranging predictions
when encountering new but related situations.

At the extreme end of the continuum of uniformity, these over-
hypotheses map well onto the concepts of ‘same’ and ‘different’. How-
ever, it should be noted that they remain inherently probabilistic in
nature. While relations (e.g. larger than, same, middle of) can be rep-
resented as overhypotheses, there are other ways in which relations
could be conceptualised - for example, as all-or-nothing propositional
rules. Our study will examine how participants might form abstractions
concerning the uniformity of different populations from evidence but
leaves open whether the nature of the representations generated can be
termed relational as such.

This modeling approach has successfully characterized human
behavior in different inductive learning scenarios (Gopnik & Wellman,
2012) like language acquisition (Xu & Tenenbaum, 2007a, 2007b), in-
ferences about social groups (Kemp et al., 2007) or causal learning
(Lucas & Griffiths, 2010). For example, Lucas, Bridgers, Griffiths, and
Gopnik (2014) showed that consistent with hierarchical models with
different a priori overhypotheses, preschoolers flexibly learned that a
conjunction of two objects was causally necessary to activate a machine.
Meanwhile, older children and adults made inferences consistent with
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having previously formed an overhypothesis that individual objects hold
causal power. Similarly, an acquired object focus that harms RMTS
performance could be represented as a prior overhypothesis.

In studies by Sim and Xu (2015, 2017), 2- and 3-year-old children
and 17- to 20-month-old toddlers formed a second-order generalization
regarding the functionality of objects. They were presented with three
sets, each including two machines and one activator block that matched
the machines in either color or shape (depending on the condition). In
the subsequent test, both age groups chose a correct novel activator
block (color or shape match) for familiar (first-order) and novel ma-
chines (second-order generalization). Unlike the older children (Sim &
Xu, 2017), toddlers needed guidance from an experimenter or parent to
generate the required evidence for later generalizations but failed to do
so in independent free play (Sim & Xu, 2015).

Utilizing the idea of overhypotheses and testing even younger in-
fants, Dewar and Xu (2010) found positive evidence for abstract con-
cepts in 9-month-old infants. In an evidence phase, the experimenter
sampled four objects from each of three boxes. The items within a box
had the same unique shape but varied in color (e.g. 4 spheres, 4 cubes, 4
stars). Then, a new box was presented from which the experimenter
sampled two items of the same shape or two items of differing shapes.
Infants looked longer at the latter sample, suggesting that they noticed
the apparent violation of the previously learned overhypothesis: “ob-
jects within a box have the same shape”. This suggests that already
preverbal infants can form abstract concepts based on limited sampled
evidence. However, whether this ability can support decision-making in
a choice situation and translates to the later preschool age range is
unclear.

Inspired by this paradigm and the original overhypothesis thought
experiment (Goodman, 1955), Felsche, Stevens, Volter, Buchsbaum, and
Seed (2023) conducted a choice study with 4- and 5-year-old children
and capuchin monkeys. They compared the empirical performance of
each species to an HBM (adapted from Kemp et al., 2007), capturing the
choices participants should normatively make if they had learned the
relevant overhypotheses. Participants saw sampled evidence indicating
either that containers hold items of uniform type (e.g. A: banana, B:
carrot, C: apple) but varying size, or that items are sorted by size (e.g. A:
small items, B: large items, C: medium size), but that each container
offers a mix of item types. Subsequently, participants of both conditions
were presented with two new test boxes: from container D, the experi-
menter sampled a small, high-valued item, and from E, a large but low-
value item. Next, participants could choose between a new hidden
sample from each container. The HBM predicted that if participants
inferred the overhypothesis that items are sorted by type, they should
choose the sample from D to obtain another high-valued item (of a
random size). In contrast, they should select the item from E to secure
another large reward (of a random type) when they have seen that items
are sorted by size. Children showed the expected difference between
conditions, and their performance was well predicted by the HBM
capable of overhypothesis formation. However, the capuchin monkeys
showed no evidence of overhypothesis formation. While these findings
could indicate that capuchin monkeys lack a capacity for abstract
concept formation, the passive sampling procedure likely imposed
additional task demands regarding abilities for inhibition, object
permanence, and working memory that might have especially impacted
the capuchin monkeys’ performance (Tecwyn, Denison, Messer, &
Buchsbaum, 2017).

1.3. The current study

To accurately investigate the abilities of non-human primates and
young children to engage in abstract reasoning, we need to use a less
demanding test environment with a more naturalistic choice situation in
which the evidence-gathering process is self-determined by the subject.
In the current study, we apply the idea of overhypothesis and the HBM
approach to the comparative study of abstract relational reasoning. In
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contrast to the classic RMTS design, we implement a more ecologically
valid approach with reduced task demands based on a participant-led
and self-conducted sampling procedure. Rather than using a binary
forced-choice procedure, we introduced a natural foraging scenario in
which we measured the efficiency of a search through food patches with
actual reward items of differing values. Here, participants did not need
to explicitly detect the commonality of “sameness” or “difference” in
arbitrarily displayed item pairs but could instead acquire an overhypo-
thesis about the commonalities of the container contents (items within
containers are of the same type or different types) over time when sam-
pling their own evidence. To further reduce task demands, we varied
only the distribution of item types across containers instead of con-
trasting the variation in two item dimensions (as in Dewar & Xu, 2010;
Felsche et al., 2023). In statistical reasoning paradigms, infants (e.g.
Denison & Xu, 2014; Gweon, Tenenbaum, & Schulz, 2010; Téglas et al.,
2011), preschoolers (Denison, Bonawitz, Gopnik, & Griffiths, 2013;
Girotto, Fontanari, Gonzalez, Vallortigara, & Blaye, 2016) as well as
non-human primates (Eckert, Call, Hermes, Herrmann, & Rakoczy,
2018; Eckert, Rakoczy, & Call, 2017; Rakoczy et al., 2014; Tecwyn et al.,
2017) have shown sensitivity to the composition of item populations
within containers and the resulting probability for a sampled item to be
of a specific item type. However, none of these studies have investigated
the generalization of item distribution patterns across containers.

In the current study, we included 3-, 4- and 5-year-old English-
speaking children as this age range usually marks the transition of
failure in the classic RMTS task at age 3 to mostly successful perfor-
mance at five years of age (Christie & Gentner, 2010; Hochmann et al.,
2017; Walker et al., 2016). However, as outlined above, slight task
modifications have shown success in 3-year-olds and thus suggest that
abilities for abstraction are present at that age. The current study ex-
plores further the conditions under which preschool children show
spontaneous abstract concept formation. Additionally, we tested sym-
bol- and language-naive chimpanzees (Pan troglodytes) and capuchin
monkeys (Sapajus apella) in our study. Members of both species have not
only reached above-chance level performance in RMTS tasks (e.g.
Flemming et al., 2008; Premack, 1983; Thompson et al., 1997; Truppa
et al., 2011) but also showed some intuition for abstract patterns in
relational reasoning tasks based on spatial or size relations (Flemming &
Kennedy, 2011; Haun & Call, 2009; Kennedy & Fragaszy, 2008). In these
tasks, subjects had to choose the cup from a set of three with the same
relative but not necessarily absolute size or position as a visibly baited
cup in the experimenter’s set (e.g. largest cup). In all experiments on
abstract relational reasoning, chimpanzees typically succeeded at higher
rates and within fewer trials than capuchin monkeys. Thompson and
Oden (2000) even proposed that the line differentiating species capable
of abstract reasoning from those solely relying on first-level cues should
not be drawn between humans and other primates but between apes and
monkeys. However, the sample sizes in these studies usually involve less
than ten individuals per species, and unlike the capuchin monkeys, most
chimpanzees tested received prior language or symbol training.
Including non-enculturated chimpanzees and capuchin monkeys in the
current study will provide crucial evidence on non-human primates’
abilities for abstraction and give insights into whether their difficulties
in RMTS might reflect context and bias rather than ability (Kroupin &
Carey, 2021).

In the current study, we provided chimpanzees, capuchin monkeys,
and 3- to 5-year-old children with the opportunity to sample their own
evidence that either suggested that containers are filled with reward
items of a uniform type (all items in a container are of high or all of low-
value, like the fruit trees or uniformly coloured marble-bags) or that
each container offers a balanced 50:50 mixture of high- and low-valued
item types (like the insects under stones or the mixed-coloured marble
bags). In a subsequent test situation, all participants were simulta-
neously presented with two new containers, which, unbeknownst to the
participants, were both filled entirely with low-valued items, regardless
of the condition. Suppose participants in the uniform condition learned
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the overhypothesis that containers provide items of the same type. In
that case, receiving one low-valued item should, in theory, motivate the
learner to consider switching away from this container, which likely
contains only low-valued items, and explore the second container for
potential high-valued items. In contrast, participants that previously
experienced that each container offers the same mix of item types should
on average be more persistent with the first container and not get
discouraged to the same degree by the first few low-valued items. As in
Felsche and colleagues (2023), we compared the participants’ behavior
to the predictions of a probabilistic hierarchical Bayesian model fitted to
the species’ item preferences and equipped with a choice rule for when
to switch from one container to the other.

While abstract reasoning is often seen as a domain-general ability
(Gentner, 2003; Penn et al., 2008), task performance nonetheless shows
sensitivity to slight task modifications, as observed for variations of
RMTS tasks. Further, for a given task the required response behavior
may better match the behavioural repertoire of some species over others
(e.g., foraging for items on the ground vs. pressing a button on a ma-
chine), introducing varying task demands outside of the cognitive ability
in focus. To ensure the generalizability of the results and account for
varying peripheral task demands across species, we presented three
versions of the task: foraging for items hidden in material-filled buckets,
lifting cups to uncover items, and operating a button to dispense items
from a machine. We chose these presentations because each had prag-
matic advantages and disadvantages. The machine version builds on
previous findings of successful causal reasoning about puzzle boxes in
both children and primates (e.g. Schulz, Kushnir, & Gopnik, 2007;
Tennie et al., 2019) but is arguably the least ecologically valid for non-
human species. The cups procedure clearly displayed the overall number
of items available. The material-filled buckets were perhaps the most
ecologically valid for the primates; however, the most challenging to
determine which items had been sampled (see below).

The overall procedure and reward distributions were identical across
versions. Only the presentation of the rewards and actions required to
sample the rewards differed. The use of varied materials further facili-
tated a within-subject design for non-human primates, minimizing po-
tential carry-over effects of learned overhypotheses from one session to
the next.

2. Experiment 1
2.1. Method

2.1.1. Participants

Children. A total of 212 children between the ages of 3 and 5 was
included in our final sample (106 female, Mage — 54.78 months +10.36
SD; see SM, Table S1). The data collection took place at two local mu-
seums in Toronto (the Royal Ontario Museum and the Ontario Science
Centre). An additional 16 children were excluded from the analysis due
to experimenter error (6), interference by parents (4), apparatus error
(3), their wish to stop early (1), emptying both test containers simulta-
neously (1) or switching without any evidence (1). For the separate
preference testing, we collected data from an additional 40 3- to 5-year-
old children (19 female, Mage — 54.83 months +10.08 SD) tested at the
same two museums. Three additional children were excluded from the
analysis due to interference by family members (2) or misunderstanding
of the task materials (1). The study was planned and conducted
following ethical guidelines. It was approved by the School of Psychol-
ogy and Neuroscience ethics committee at the University of St Andrews
and by the Institutional Research Ethics Board for Human Subjects at the
University of Toronto. The parents of all children who participated had
given prior consent for their participation. Further, we explained to the
children that they could stop participating at any point and asked them
multiple times throughout the procedure if they would like to proceed
with the experiment.

Capuchin Monkeys. Overall, 22 capuchin monkeys (Sapajus sp.)
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participated in this study (9 female, Mage = 9.27 years +4.08 SD; see SM,
Table S2). All but one are zoo-born and mother-raised. The capuchin
monkeys are housed in two groups at the Living Links to Human Evo-
lution Research Centre at Edinburgh Zoo. The animals have access to a
large outdoor and indoor enclosure and are cohoused with squirrel
monkeys (Saimiri sciureus) with whom they share their natural envi-
ronment. The monkeys were never food or water restricted.

Chimpanzees. We collected data from 30 chimpanzees (17 female
(57%), Mage = 21.2 years +7.97 SD; see SM, Table S3) at the Sweet-
waters Chimpanzee Sanctuary in the Ol Pejeta Conservancy in Laikipia
county, Kenya. The chimpanzees live in two separate social groups and
spend their day outside in large outdoor enclosures. They are provided
with water ad-lib and fed three times daily. The experimental protocol
and study design for the apes and monkeys was approved by the School
of Psychology and Neuroscience ethics committee at the University of St
Andrews, the local ethics committee at the chimpanzee sanctuary,
Kenya Wildlife Service, and the Kenyan National Council for Science and
Technology.

2.1.2. Materials

For all species, the experiment involved high- and low-value reward
items that could be sampled from containers. For the chimpanzees, we
used food items whose value was based on the caregiver’s judgment
(high: apple & banana, low: orange & carrot in evidence, raw sweet
potato in test). Capuchin monkeys’ rewards were based on a previous
preference testing conducted in the same group (high: date & peanut,
low: carrot & eggplant (evidence), zucchini (test); see Felsche et al.,
2023 for details). For children, high-valued rewards were yellow and
green balls that could subsequently be rolled down a marble run while
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producing an engaging sound. We used cubes that could not be inserted
in the marble run game as low-valued items. A preference testing
confirmed the relative value of the items (see SM for details).

We presented all participant groups with three versions of the task
(see Fig. 1). Whereas children engaged with the materials on tables or on
the floor, non-human primates sampled their rewards through a metal
mesh or plexiglass barrier.

Machine version. Uniquely coloured and shaped machines released a
reward upon pressing a button on the front of the machines.

Cup version. Participants could find rewards by knocking over cups
attached to a board. For children, all 10 cups were randomly distributed
on a rectangular board. For non-human primates, the 10 cups were ar-
ranged in a row to be accessible through the barrier.

Foraging Version. Participants could retrieve rewards from containers
filled with other materials (children: packing peanuts; non-human pri-
mates: saw dust). While the setup for chimpanzees and children led them
to sample rewards one by one, the capuchin monkeys often swept out
most containers’ contents with one arm movement. This impeded their
opportunity to notice the items individually. Thus, we presented the
monkeys with a second foraging version in which plastic barriers sub-
divided each container. We placed a reward covered by cut straw in each
of the ten emerging compartments.

2.1.3. Procedure

Each session consisted of 4 evidence trials followed by the test sit-
uation. In each evidence trial, participants sampled items from a new
container. Depending on the version, “container” represents a machine,
board with cups, or bucket (see Materials). Each container held ten
items. To prevent children from implicitly learning a game rule that they

Fig. 1. Photos of the test situation for each version (rows) and species (columns) as presented during the experiment. Left: children, Middle: capuchin monkeys,
Right: chimpanzees; from top to bottom: machine version, cup version, foraging version (for capuchin monkeys, the second foraging version is depicted).
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must empty a container before moving on, the experimenter changed
evidence containers after a counterbalanced item number or time cri-
terion (dependent on condition, see SM for details) that was not
communicated to children. The non-human primates were allowed to
empty all ten items in each evidence trial to avoid frustration caused by
taking away food. We adapted the computational model to these species-
specific amounts of evidence.

In a given session, participants were either presented with the uni-
form or the mixed condition (see Fig. 2). In the uniform condition, the
sampled rewards were uniform or all the “same” within an evidence
container but different across containers. In two evidence trials, the
containers were filled with only high-valued items, and in the other two
trials with only low-valued items. In the mixed condition, each evidence
container offered an equal mix of five high- and five low-valued items
(see Fig. 2). In both conditions, we counterbalanced the order of
container and reward types across participants so that they experienced
a low and a high-valued reward type in the first two evidence trials and
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another two reward types in the last two evidence trials. We also ensured
a random sampling from each container (see SM for details).

After four evidence trials, participants moved on to the test situation
in which two containers were presented simultaneously. The experi-
menter told the children that she had to do some other task but that
there are two more containers left and that they should try to find more
marbles to play the game. For the non-human primates, the experi-
menter set up both containers and ensured each participant had seen
both before moving them simultaneously in reach of the participant.
Each test container held ten low-valued items in all species, versions,
and conditions. This ensured that participants would only find low-
valued items, whichever container they started sampling from. After
the participants switched containers, indicated the wish to leave the
testing area or one minute without engagement with the test containers
had passed, the session ended, and participants got rewarded with some
high-valued items.

Abstraction
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Fig. 2. Hierarchical Bayesian model of overhypothesis formation adapted for the current study. The parameters o and p describe an overhypothesis at the second
level of abstraction: a represents the extent to which item types in containers, in general, tend to be uniform vs. mixed, and § captures the type variability across all
containers. Type distributions of a specific container (6%, Level 1 abstraction) are constrained by overhypotheses at Level 2 and, in turn, constrain the items y* sampled
from that container. Squares represent low-valued items and circles represent high-valued items. In their choice to switch, a learner puts the expected values of the

item distribution in each test container into relation.
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2.1.4. Design

We applied a 2 (condition: mixed or uniform) x 3 (version: machine,
cups, foraging) design in all species.

Children. We applied a between-subjects design where each child
received one session. This session was run in one of the six condition x
version combinations. Each of the six groups consisted of 33 to 37
participants (see Table S1).

Chimpanzees. Each chimpanzee received three sessions, one for
each version. The first two sessions were run in the cup and foraging
versions, and the third session was always run in the machine version.
Conditions were applied in an ABA design. We counterbalanced across
the sample, which pairing of condition and version was presented first.

Capuchin Monkeys. The capuchin monkeys received four sessions.
The first three sessions followed the design and counterbalancing
applied to the chimpanzees. Due to problems with the foraging version
in this group, we ran a second foraging version in a fourth session where
partitions in the foraging buckets prevented rush emptying of the entire
content. Continuing the alternating condition order (ABAB), half of the
capuchin monkeys received in the fourth session the same condition as
in the first foraging version, while the other half received a condition
opposite to the one in their first foraging session.

2.1.5. Computational model

To predict the behavior of an ideal learner capable of multiple levels
of abstraction, we adapted the Probabilistic Hierarchical Bayesian
model introduced by Kemp et al. (2007). While Hierarchical Bayesian
models have successfully characterized a variety of human adult and
child behavior, Felsche and colleagues (2023) were the first to directly
test this model of overhypothesis formation in children and non-human
primates. Here we apply their model to the current task design,
including the variation of only one item dimension (type) and the idea of
switching from a current container to another one instead of making a
binary choice between containers. Similar to previous work on optimal
foraging and utility-based optimal decision-making (Cain, Vul, Clark, &
Mitroff, 2012; Jara-Ettinger, Schulz, & Tenenbaum, 2020; Lucas,
Bridgers, et al., 2014; McNamara, 1982; Olsson, Brown, & J., 2006), we
assume that, while the learner updates their representations of the
containers with each new piece of data, the learner’s primary goal in
deciding whether or not to switch containers is to probabilistically
maximize their expected utility (versus other possible goals such as
maximizing information gain). As discussed in more detail below, par-
ticipants stay at the first container as long as its expected value is greater
than that of the second container. They then start to probabilistically
switch containers in proportion to the difference in the container’s ex-
pected value if the alternative container promises better rewards than
the one they are currently sampling from.

We adapted the a priori model predictions to species-specific factors
like the amount of received evidence and each species’ reward utilities
that were inferred based on the results of preference testing. To evaluate
each species’ ability for abstract knowledge formation, in addition to
comparing performance to the predictions of the full HBM, we also
compared their performance to simpler alternative models differing in
their capability for abstraction at various levels. The HBM model was
implemented in WebPPL (Goodman & Stuhlmiiller, 2014), while the
preference inference model was implemented in R (R Core Team, 2019).

Fig. 2 provides an overview of both our task and the generative
computational model of this task-how the model formalizes the way in
which evidence is sampled from the containers. The model assumes that
reward items y‘ are randomly sampled from evidence containers i, each
of which has a specific item distribution (¢") of item types (k = 2 types,
high- and low-value). These item distributions within containers
represent a first level of abstraction (Level 1), capturing e.g., “this
container has mostly high-value items”, and are described by a multi-
nomial function. The number of samples was adapted to each species’
amount of seen evidence (10 items per container for non-humans, 4 or 6
items per container for children (in total 10 high- and 10 low-valued
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items)).

The model assumes that the containers themselves were sampled
from a higher-level distribution. In other words, the per-container item
distributions are, in turn, constrained by an overhypothesis at the sec-
ond level of abstraction (Level 2), capturing e.g., “containers are mostly
uniform in type of item”, and “overall, there are roughly equal amounts
of high- and low-value items”. This second level is described by a
Dirichlet distribution parameterized by two hyperparameters: o and f.
describes the extent to which item types within each container tend to be
uniform (e.g., all are the same or an equal mixture of types). § describes
the overall composition of item types across all containers (e.g. many
high-valued and only a few low-value items or an equal amount of both
types). The o parameter is sampled from an exponential prior that as-
sumes a fairly uniform distribution across the probabilities for different
item compositions in containers. This corresponds to not having a strong
a priori belief that would favor one of the contrasted conditions (mixed
or uniform) or over the other, ahead of seeing the evidence. We sample f§
from a symmetric Dirichlet distribution which corresponds to a model
that does a priori to assume an equal distribution of item types.

With these assumptions about how the observed evidence is gener-
ated, the model uses standard Bayesian updating to simultaneously infer
the parameters (overhypotheses) defining the item distributions at the
first level (within individual containers, #') and second level of
abstraction (across containers, o and ), given the sampled evidence
from the individual containers (see Appendix for further technical de-
tails). In the uniform condition, where the learner is presented with
items that are uniform in type from each container, o will be updated to
anticipate that any new containers will have distributions that are also
highly peaked around a single item type (uniform or near uniform) and
therefore will contain either uniformly (or nearly uniformly) high or
low-valued items. In the mixed condition, a would expect more equal
item distributions within containers, expecting novel containers to have
a similar probability of sampling high- and low-valued items (see
Table S20 and S21 in the SM for the expected container distributions in
each condition).

To predict the participant’s choice behavior in the test situation, the
model first needs to estimate the probability distribution over the items
in each test container (¢*',6""2), and over the type of the potential next
sample from each test container (y'*!,y*2), using the overhypotheses
inferred about containers in general. With every new low-value sample
from the first test container, the model updates the estimate of the item
distribution for this current container, #!, using both the observed
sample and what it has learned about containers in general from the
preceding evidence trials (through the updated hyperparameters, o and
B). In turn, the model also updates the hyperparameters from the
sampled evidence in the first test container. Further, the model also
estimates the item distribution in the second test container, from which
no items have been sampled yet, based on the current values of the
hyperparameters. Thus, after each low-value sample from the first test
container, the model has an updated probability distribution over what
it thinks the next item from the container will be and what it thinks the
first item from the second container would be. As in two of our three
conditions the number of items is hidden, for simplicity the model
samples with replacement from the test containers. Thus, removing a
low-valued sample from, e.g. a mixed container will not decrease the
probability of receiving low-valued samples in the future but rather the
opposite.

To predict the actual switching behavior, we added a rational
switching rule drawn from the psychological literature (Luce-Shepard
choice rule; Luce, 1959; Shepard, 1957) to the original model structure
by Kemp et al. (2007). We assume that the expected utility of a container
is calculated by summing the utilities of each item type u, weighted by
that item’s probability of being the next sampled type (Lucas et al.,
2014). Since sampling is assumed to be random, this is equivalent to
weighting by the inferred distribution of item types within that
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container. Naturally, disengaging from a current activity (sampling from
container 1) and switching to another (sampling from container 2) in-
volves some cost. However, we assume this cost to be small in our study
as containers were placed relatively close together and switching was
not particularly spatially or temporally effortful; thus, it might primarily
involve cognitive effort like attention shifting (see General Discussion).
Consequently, we assume that a learner’s probability of staying with the
current container is proportional to its expected utility and the expected
utility of the alternative following the Luce-Shepard choice rule (Luce,
1959; Shepard, 1957; Swait & Marley, 2013 also used in, e.g. Jara-
Ettinger et al., 2020; Lucas, Bridgers, et al., 2014). The resulting
switching probability is 1- the probability of staying (see Appendix).
Using this switching rule, we assume that a participant will not switch
when the next possibly sampled item from the first container is of
greater or equal value to the one sampled from the second container.
This is broadly consistent with models in the human and animal optimal
foraging literature, which suggest that foragers should consider leaving
when the predicted value of staying is less than the predicted value of
searching a new location (e.g., Cain et al., 2012; McNamara, 1982;
Olsson et al., 2006).

Switching probabilistically occurs when the alternative container
promises greater value, with a switch rate proportional to the difference
in the expected value of the next sample from each container. Thus, the
probability of switching increases with the growing utility advantage of
the second over the first container. However, the model never predicts a
100% switching rate, even if the second container promises a certain
high-value item and the first container a certain low-value item. This is
because the high-value items are not infinitely more preferred than the
low-value items, but only to a certain degree as inferred from the pref-
erence testing (see below) and participants are expected to choose
proportional to the value difference between the containers. This
reluctance to switch in the case of equally valued containers can also be
seen as capturing the small cost of switching containers in our experi-
ment. However, to further analyze the potential role of assumed switch
costs in the participants’ behavior, we conducted an exploratory anal-
ysis of an added switch cost parameter. The switch cost was established
as a constant subtracted within the switching rule (see SM for details).
We conducted a parameter sweep and determined the assumed switch
cost for each species that best described the data.

To obtain the utilities for each reward type (i.e. the relative value of
high and low-valued rewards to each species), we used the preference
inference model developed by Lucas, Bridgers, et al. (2014), see Ap-
pendix) for inferring overall relative item utilities from a two-alternative
forced-choice preference testing procedure. Preference testing was
conducted for children (see SM) and capuchin monkeys (Felsche et al.,
2023). Unfortunately, due to time constraints, we could not conduct
preference testing with the chimpanzees. Here, we used the monkeys’
preference values for high- vs low-value items as an approximation for
chimpanzees’ relative utilities, as initial high and low-valued categori-
zations for both species were based on the caregiver’s estimations.
During the data collection, we later observed that chimpanzees
consumed presumably low-valued items to a lesser extent than the high-
valued food types. However, the chimpanzees consumed relatively more
low-valued items than the capuchin monkeys, who almost always
refused them. Thus, the monkey’s preference values might slightly
overestimate the chimpanzees’ actual preferences.

2.1.6. Model predictions

Based on the preference testing with children and monkeys, we
inferred large utility differences between high- and low-valued items for
both species (children:A1.50; monkeys (and chimpanzees): A1.56). As
described above, we used these values to make a priori predictions about
the expected switching behavior. We calculated the probability that a
learner would switch away from the first test container for each possible
number of sampled items from the first container (1 to 10). This rep-
resents the normative probability of switching after each sampled item,
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given the modeling assumptions described above, and that species’
inferred item preferences, thus providing a baseline against which to
evaluate participant performance. Then, we determined the difference
between conditions by subtracting the predicted switching probability
at each sampling event in the mixed condition from that in the uniform
condition.

As expected, the full idealized model described above, based on Level
2 abstraction (abstraction across containers), predicted that in the test
situation, participants should switch earlier (after seeing fewer items) in
the uniform as compared to the mixed condition (see Figs. 3 and 4). For
example, after sampling the first test item in the uniform condition, the
model estimated a 91% probability for a subsequent low-value item
from this source and a corresponding 57% probability for a next low-
valued item from the second container’ (see Table S20 in the SM).
Based on the reward utilities and the proportional switching rule
described above, the Level 2 model thus predicts that around 40% of the
participants should switch immediately after the first sampled item in
the uniform condition, with a slightly increasing switching rate for the
remaining participants after each of the following samples (see Fig. S6 in
the SM). In the mixed condition, only around 15% of participants are
predicted to switch after the first test sample (the probability for the next
item to be of low value is 64% for the first container and 53% for the
second container). As the prognosis for the first container gets pro-
gressively worse, the more low-valued items are sampled from it, and
the estimate for the alternative container remains relatively constant
(see Table S20), the switching rate is predicted to increase after each
sample. For both conditions, the model predicts that after sampling the
9th item, almost all participants should have switched to the second
container (children: mixed = 95.6%, uniform = 99.5%; non-human
primates: mixed = 96.1%; uniform = 99.6%; see Fig. 4). Importantly,
this confirms that, in principle, an overhypothesis that licenses large
differences in switching rates is learnable from the amount of evidence
and a priori item-type utilities presented in this study. We also formal-
ized a lesioned model capable of only Level 1 abstraction (abstraction
from sampled items to the specific container they were sampled from).
This model was solely informed by the low-valued samples from the first
test container and the fixed priors for the hyperparameters while
ignoring the preceding evidence from other containers. This results in
the same prediction for both conditions. With accumulating low-value
samples from the first test container, the model assumes an increasing
majority of low-value items in this container (e.g. after 1 sample, 60%
low-value items, after 5 samples, 78% and after 9 samples, 85%).
However, as the model does not update the hyperparameters, the pre-
dictions for the second test container stay at the level of the priors,
assuming an equal chance of a low and high-value item, independent of
the number of samples from the first container. As a result, after every
new sample from container 1, between 14 and 43% of the participants
that have not yet switched are expected to do so. To account for other
potential switching strategies that do not involve abstract reasoning, we
compared participants’ performance to two random or heuristic learners
that operate on different switching strategies. As in the Level 1 model,
the random models do not consider condition-specific evidence; thus,
they predict no difference in switching rates between conditions. In the
first random model, the learner’s decision to switch at each point is at
chance level, disregarding all samples. Thus, 50% of the remaining
participants switch after each new sample from the first test container
(Chance 1). This leads to an immediate switching rate after the first item
of 50% and a prediction that over 90% of participants should have

2 The predictions for the unsampled second container are not at 50%, because
the low-value samples from the first test container also update the overhypo-
thesis hyperparameter B, suggesting that there may be slightly more low-
compared to high-valued items in the environment. In the uniform condition
this would translate to predicting more uniformly low-value than uniformly
high-value containers.



E. Felsche et al.

Cognition 245 (2024) 105721

A Model Predictions Children B With Switch Cost Children
10 -8 101
*
§ 9' § g. ‘
Z s 2 s : 4
£ £
S 7- 3 74
("] w
3 ;
S 61 = 51
Q Q
3 3
35 $ 51
2 E]
3 41 & ‘ 3 41
S S
23 2 3 :
E £ 5
=] -
= 24 . = 21 15
O Mixed 25
1 ! ! : : H Uniform 11 ' : 35
Level 2 Level 1 Chance 1 Chance 2 Level 2 Level 1 Mix Uni
Models Models Data
C Model Predictions NHP D With Switch Cost Chimpanzees E With Switch Cost Monkeys
101 10 =) = 10 _I_ 101 10 ]
£ 91 £ 91 @ == 9 * £ 91 9 —=—
£ g (e g
= = = *
:8' :8'0 ® s{e||* 28' | 8lelle
- -~ -
 —  —  —
~ & 3 7. = 7 BE 3 71 7 o
" " 0 ("]
S S S -
£ 6- £ 61 = il ° £ 61 6
Q Q Q
3 3 3
35 2 5 5 . 2 51 51
= = —— =
o o o
- 441 @ ‘ -1 41 41 -1 41 41
e e e
o o o
@ @ @
o 3" o 3" 3' o 3" 3'
£ £ 1 £ 1
- - | -}
-2 Z 21 21 3 <21 27 3
OMix 6 6
11 BUni 11 11 ) 11 11 9
Level2 Level1 Level2 Level1 Mix  Uni Level2 Level1 Mix  Uni
Models Models Data Models Data

Fig. 3. Model predictions and empirical data for the mean number of low-valued

items sampled from the first container before participants switch. Means are

indicated by diamond symbols, medians are indicated by horizontal lines. A: Predictions from the full model capable of Level 2 abstraction (across containers), a
lesioned model only capable of Level 1 abstraction (from samples to container population and vice versa), a Chance (1) model predicting that after every sample half
of the participants switch and a Chance 2 model assuming random contents in containers, all adapted for children’s preferences. The predictions in the form of
probabilities were multiplied by the factor 100 to simulate a study with 100 participants in each condition. B: Model predictions for the Level 2 and Level 1 model

with the switching costs (left) that best matched the empirical child data (right) for

children. C: The same predictions as in A adapted to the monkeys’ preferences

(the chance predictions are identical to A and thus not depicted). D) Same as in B for the chimpanzee data E) Same as in B for the capuchin monkey data.

switched after four samples (see Fig. 4). The second random model
(Chance 2), formalizes a learner who randomly predicts the value of the
next sample from each container or assumes that, in general, containers
have an equal 50/50 mix of high and low-valued items. Based on our

switching rule, equal container utilities cause the learner to always stay
with the current container. Thus, we introduced a small error term so
that 1% of the participants would switch despite assuming equal item
distributions in containers (Chance 2). This leads to a very low switching
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Fig. 4. Model predictions and empirical data for each species, showing the cumulative switch rates after each low-valued sample from the first test container. A
difference in switching rate between conditions is seen in children and, to a lesser extent, chimpanzees, but not capuchins. Only the level 2 model predicts a dif-
ference in switching rate between conditions. In contrast, the level 1 model and both chance models did not consider condition-specific evidence and thus made
identical predictions for both conditions. The chance 1 prediction reflect that 50% of the remaining participants switch after every sample. The chance 2 prediction
assumes a minimal error switching rate of 1% when participants predict item types in each container randomly.

rate so that after the 9th item, <9% of the sample has switched.

2.2. Scoring and analysis

2.2.1. Dependent variables

Number of Items Until Switch. To determine the amount of evi-
dence a learner has received during the test phase before they switch, we
measured the number of items sampled from the first test container
before switching. This variable precisely captures the received infor-
mation and thus is compared to the model predictions. However, as this
measure is not suitable for the foraging version in chimpanzees and
children (as here it is unclear how many items participants felt inside the
filling material), we did not include it in the statistical analyses for all
versions (but see analysis in the SM with this variable for the cup and
machine versions and the second foraging version for capuchin
monkeys).

Time Until Switch. As an approximation to the number of items
participants have received in each version, we determined the time in
seconds until the participants switched from the first test container to
the alternative. The time started as soon as the participants touched the
filling material/the machine/a cup (depending on the version) of
container A and ended as soon as they touched the filling material/the
machine/a cup of container B. If a participant indicated the wish to leave
or stopped interacting with the test materials for one minute, the time
ended after the last interaction with the materials. We analyzed this
variable because the time until the switch could be measured in all
versions and species. Individual variations in sampling speed were ex-
pected to be random and to not vary with the experienced condition.

2.2.2. Statistical analysis

All sessions were video recorded. A second observer naive to the
experiment’s hypothesis coded 20% of all sessions. As the number and
the time variable are measured on an interval scale, we used the Pearson
correlation for comparisons between observers. Interrater-reliability
was very good for the number variable in the cup and machine
version (children: r(23) = 0.99, p < 0.001; chimpanzees: r(7) = 0.83, p
= 0.005; capuchin monkeys: r(7) = 0.99, p < 0.001); and for the time
variable in all versions (children: r(41) = 0.94, p < 0.001; chimpanzees:
r(15) = 0.99, p < 0.001; capuchin monkeys: r(14) = 0.85, p < 0.001).
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All statistical analyses were conducted in R (R Core Team, 2012) using
the packages lme4 (Bates, Machler, Bolker, & Walker, 2015) and
emmeans (Lenth, Singmann, Love, Buerkner, & Herve, 2018). All pre-
sented analyses with chimpanzees and capuchin monkeys were pre-
registered (https://osf.io/r29nw/?view_only=72d0a6be37fd4f4ca674d
a847def3181, https://osf.io/prhgq/?view_only=60c206040a5f4
132ada70a5d07f6bf35). To answer for each species whether the par-
ticipants formed abstractions based on the sampled evidence, we
examined whether there was a difference between the mixed and the
uniform condition in the time until participants switched away from the
first test container. As pre-registered, we were interested in whether the
condition effect varied depending on the presented version (foraging,
cups, machine). Instead of running multiple independent t-tests for each
presentation version we ran equivalent paired contrasts on our regres-
sion model, requiring fewer independent statistical tests (for results of
the registered independent t-tests analysis are consistent, and are pre-
sented in the SM). In addition, some secondary pre-registered analyses
were not run due to insufficient data (see SM for further explanation).

Children. We used a linear model to analyze possible interactions
between the versions and conditions and main effects for these factors
across the whole sample. For the children, we were further interested in
a possible developmental effect and thus included a three-way interac-
tion of version, condition, and age (continuous and centered) in the
model. We used the box-cox method by applying the function power-
Transform from the R package car to all linear model analyses to account
for failed assumptions of normality. The model outputs were analyzed
using a type 3 ANOVA based on F tests. In case of a significant three-way
interaction, we used the emtrends function of the emmeans package to
see how the condition contrast changes with age depending on the
version. To analyze the difference between conditions separately for
each version, we conducted pairwise comparisons using the emmeans
function.

Non-human Primates. Due to the within-subject design for chim-
panzees and capuchin monkeys, where some subjects did not complete
all versions, we used linear mixed-effects models (function lmer) for
these species. We conducted two linear mixed effects models, one for
each non-human species. In these models, we included a condition-by-
version interaction. Due to the high overlap between the factors of
session and condition (for each session-level, only one to two condition
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levels), we did not include the session factor in the analysis. However,
the random effect of participant was included in the model to account
for individual effects in the repeated testing. As in children, the model
outputs were analyzed using type 3 ANOVAS based on F tests. Again, we
conducted pairwise comparisons of the conditions within each version
using the emmeans function. For the capuchin monkeys, the data from
the first foraging version was unreliable since they removed most of the
evidence items in their first action on the container. As a result, their
switching behavior could not be adjusted to an accumulating amount of
witnessed evidence. Thus, we excluded the data from the first foraging
version from the analysis and instead only used the data from the second
foraging version (Foraging 2) for all analyses with the capuchin
monkeys.

2.2.3. Model comparison

Because the number of items sampled before the switch could not be
reliably determined in the foraging version of chimpanzees and children
(as participants may have sampled items tactilely and did often not
remove the low-values items from the containers), only data from the
cup and machine versions and the second foraging version in capuchin
monkeys was used for all model comparisons. Our main aim was to
analyze whether participants of each species showed a difference be-
tween conditions consistent with the predictions of an idealized learner
capable of Level 2 abstraction. Thus, we correlated the model’s pre-
dicted condition difference in switch rates after each sampled item with
the corresponding empirical difference in switch rates. To determine the
empirical switching rates, we calculated for each condition and test item
number, the percentage of remaining participants still sampling from
the first container, who switched after each item (e.g. 15 participants
sample the 6th item from the first test container, 3 of them switch, thus,
the switching rate after the 6th item is 3/15 or 20%). To compare the
model predictions, which assumed an unlimited number of possible
samples, to the observed data, where sampling ended with the tenth
item, only the switch rates for items 1-9 were considered because all
remaining participants by task design had to switch after sampling the
10th item. As the lesioned model only capable of Level 1 abstraction and
the two chance models do not take any condition-specific evidence into
account, their condition difference is zero. Thus, no correlation can be
computed for these alternative models.

Further, we compared the absolute switching rates of the model and
the empirical data. Here, we were able to compare both the Level 2
model predictions as well as those of the lesioned model (Level 1) and
both chance predictions (Chance 1: random decision to switch, Chance
2: random prediction of next sampled item) to the children’s, capuchin
monkeys’ and chimpanzees’ behavior. To evaluate how well the model
predictions describe the data, we compared them separately for each
species by minimizing the negative log-likelihood for the model’s pre-
diction of the observed data. In this process, empirical switch rates and
model predictions for each of the four models were compared separately
for every trial and condition before calculating a sum score for each
model and species. Model comparisons were then conducted using the
difference in AIC scores. AIC scores determine model fit while favoring
simpler models with fewer free parameters. AAIC > 2 is generally
considered strong support for the higher-scoring model. In an explor-
atory analysis we conducted a parameter sweep for potential switching
costs from O to 0.5 in steps of 0.01 for the Level 2 and Level 1 model
(across both conditions) and compared them to the data using the dif-
ferences in AIC scores. In a final step, we compared the Level 2 and Level
1 model with their respective switch cost value that best described the
data.’

3 The exploratory analysis of switch costs was recommended by a reviewer.
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2.3. Results

2.3.1. Statistical results

Children. The linear model revealed a highly significant effect of
condition (F(1) = 20.13, p < 0.001), showing that overall, children
switched sooner in the uniform (M = 32.73 s) than in the mixed con-
dition (M = 46.92 s; see Fig. 3). The main effects of version (p = 0.055)
and age (p = 0.065) were trending towards significance (see Table S4).
Children tended to take the longest time to switch in the cup version (M
= 45.16 s), followed by the foraging (40.89 s) and machine version
(33.80s).

The condition by age interaction trended towards significance (F(1)
= 3.74, p = 0.054), showing that overall younger children tended to
differentiate more between conditions than older children (Fig. 5, right).
Looking at the plot for age in years (Fig. 5, left), 3-year-olds show a
strong difference between conditions in the cup and foraging version but
do not seem to consider the evidence in the machine version. Four-year-
olds show a more consistent difference between conditions across ver-
sions. In contrast, 5-year-olds differentiated most clearly between con-
ditions in the machine version but showed only small differences in the
other two versions. All other two-way interactions were not significant
(p > 0.16).

There was also a trend towards significance in the three-way inter-
action of version by condition by age (F(2) = 2.88, p = 0.058). The
emtrends analysis showed that the condition difference was significantly
reduced with increasing age in the cup version (estimate = —0.005, SE
= 0.002, t(200) = — 2.46, p = 0.01) but not in the other two versions
(foraging: estimate = —0.003, SE = 0.002, t(200) = — 1.55, p = 0.12;
machine: estimate = 0.001, SE = 0.002, t(200) = 0.77, p = 0.44). The
two-way interaction between version and condition was not significant,
however pairwise comparisons of the conditions within each version
revealed a strong significant difference in the cup version and foraging
version but not in the machine version (see Table S5 and Fig. 5).

Chimpanzees. The linear mixed model (Table S6) revealed a sig-
nificant condition by version interaction (F(2) = 3.42, p = 0.04) as well
as a significant main effect of condition (Mypiform = 30.14, Mpjixed =
37.74, F(1) = 4.61, p = 0.04). The main effect of version trended to-
wards significance (F(2) = 48.72, p = 0.06). Pairwise comparisons
showed that the chimpanzees in the machine version switched signifi-
cantly quicker in the uniform condition than in the mixed condition
(estimate = 26.12, SE = 8.66, t(60.1) = 3.02, p = 0.004). We found no
significant differences between conditions in the other two versions (see
Table S7 and Fig. 6).

Capuchin Monkeys. The linear model revealed no significant con-
dition by version interaction (F(2) = 0.44, p = 0.65). The main effect of
condition on the time to switch shows a slight trend towards significance
(F(1) = 2.88, p = 0.098, Muniform = 22.85 S, Mpixed = 33.69 s). In
contrast to the chimpanzees and children, where the “number of samples
before the switch” variable confirms their sensitivity to the condition-
specific evidence (see Table S10 and S12), the capuchin monkeys
show no difference between conditions in the number of items they
sample before the switch (Mypiform = 7.77 samples, Mpixed = 7.81
samples, p = 0.97, Table S14). For the capuchin monkeys, the time and
number analyses are based on the same data, as in both, all 3 versions
were included (as here the foraging 2 version provided clearly countable
results). Thus, the marginal condition difference in the time variable is
only based on capuchins sampling the test evidence slightly slower in the
mixed as compared to the uniform condition but not on an actual dif-
ference in the number of samples seen before the switch. Pairwise
comparisons (of the time and number variable) showed no significant
differences between the uniform and the mixed condition within any
version (see Table S9 and S15; Fig. 6). In addition, the model revealed
that the effect of version was trending towards significance (F(2) = 2.99,
p = 0.06), as monkeys switched slightly earlier in the cup (M = 18.15s)
compared to the foraging 2 (M = 33.25 s) and machine (M = 35.94 s)
version.
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Fig. 5. Results for children by condition and version showing the time in seconds until the switch. Left: Results separated by age group. Means are indicated by
diamond symbols, medians are indicated by horizontal lines. Note that we included age as a continuous measure in the analysis and only used age in years here for
presentation purposes. Right: Results for the time until the switch dependent on age for both conditions collapsed across all versions. Displayed are the individual

data and the regression lines for each condition.
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Fig. 6. Results for the time until the switch measured in all species, versions, and conditions. Means are indicated by diamond symbols, medians are indicated by
horizontal lines. For the capuchin monkeys, only data from Foraging 2 was used for all analyses due to the unreliability of their first foraging version).

2.3.2. Model comparison

The change in the condition difference in children’s switching rate
across test samples correlates highly with the level 2 model prediction (r
(7) = 0.84, p < 0.01; see Fig. S6). Both, children and the Level 2 model
predictions show the largest difference in switching rates between the
uniform and mixed conditions after the first item, which decreases
progressively with subsequent samples. Here, the Level 2 model pre-
dicted that, for all species, about 40-43% of participants should switch
after the first low-value sample in the uniform condition but that only
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around 13-15% should switch after one test sample in the mixed con-
dition. The corresponding empirical values are 31% and 14% for chil-
dren and 15% and 4% for chimpanzees.

The correlation between chimpanzees’ predicted and empirical
condition difference after each sample is of medium strength but not
significant (r(7) = 0.40, p = 0.28). This is likely because, while the
model and the chimpanzees exhibit a parallel decrease in the switching
rate difference from the first to the 5th test sample, thereafter the
empirical switch rate difference does not decrease as predicted (see
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Fig. S6). The capuchin monkeys’ empirical condition difference is small
and shows no clear direction. Thus, it is not correlated with the level 2
model predictions (r(7) = —0.07, p = 0.86). Notably, in the non-human
species, the number of switching individuals per condition after each
new sample is very small (n < 5). Consequently, the behavior of a single
individual can greatly impact the switching rate difference. Thus, the
correlation results for these species should be interpreted with caution.

Regarding the absolute rate of switching across the sampled items
during the test, the model without any switching costs predicted much
quicker switching in both conditions than we saw in all three species.
Thus, the empirical data were in absolute terms best predicted by the
Chance 2 (children and capuchin monkeys) or Level 1 model (chim-
panzee) which predict no condition difference but overall lower
switching rates (see Fig. S6, S8 and the SM for more details). While the
Level 2 predictions indicate that <3% in both conditions would fully
empty the first container before switching, more than a third of each
species sampled all ten items from the first container before exploring
the alternative (see Fig. 4). This kind of comparative “stickiness” or
reluctance to switch relative to an idealized model has been found in
previous foraging and patch-switching tasks (Cain et al., 2012; Hutch-
inson, Wilke, & Todd, 2008). Thus, we considered the possibility that
the participants incorporated switching costs into their foraging decision
during the test situation. Indeed, the parameter sweep showed that all
three species match Level 2 and Level 1 model predictions best when
including a switch cost of around 0.35 (see SM for detailed results).
When comparing the models with their respective optimal switch cost
value, the Level 2 model predicts the children’s data best; while the
Level 1 model still outperforms the Level 2 model for the non-human
species (see Table S26). Likewise, when focussing on the relative
switching rates after the first sample only, even without considering
switching costs, the Level 2 model matches children’s performance best,
while chimpanzees and capuchin monkeys are best described by the
Level 1 predictions (see SM for AIC values).

2.4. Discussion

The results of Experiment 1 show strong evidence for abstract
reasoning abilities in 3- to 5-year-old children who switched away from
the first test container earlier in the uniform compared to in the mixed
condition. While this effect seemed stronger in younger age groups and
showed some variability across versions (see General Discussion), those
factors did not reach significance. The children’s condition difference in
switching behavior was well predicted by a hierarchical Bayesian model
capable of Level 2 overhypothesis formation. Similarly, albeit to a lesser
extent, the chimpanzees’ switching behavior also showed a significant
difference between conditions that correlated to a medium extent with
the Level 2 model predictions, even if this was mainly driven by only one
version of the experiment. In general, all species were much more hes-
itant to switch than the overhypothesis model predicted (see General
discussion), and thus, the original model failed to predict their behavior
in absolute terms. However, when including a switch cost parameter in
the model, the children’s behavior is best described by the Level 2 model
while the non-human primates absolute switching numbers better match
the Level 1 prediction. In contrast to children and chimpanzees, the
capuchin monkeys have failed to show any sensitivity to the condition-
specific evidence. This suggests that their abstract reasoning abilities are
somewhat reduced, less robust or slower than that of apes and humans.
However, slight variations in the experimental procedure or species
differences in other cognitive abilities could also contribute to this
pattern in results. In experiment 2, we further explore the reasons for the
capuchin monkeys’ failure in experiment 1 by varying the reward
structure to be more similar to that of children.

3. Experiment 2

In the first experiment, one crucial difference between the study
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design for non-human primates and children lies in the reward items’
nature. Whereas children received balls that could be used for a game
(high value) and entirely non-functional blocks (low value), the non-
human primates received food items of different values. Thus, for chil-
dren, the two categories of high- and low-valued items were clearly
distinguishable based on form and function. While the food rewards for
the monkeys and chimpanzees had relatively higher and lower values,
there is not necessarily a clear categorical distinction. Further, even food
items of low value could be eaten and thus were never non-functional or
of zero value. To align the reward structure for children and non-human
primates, we conducted a follow-up study with the capuchin monkeys
(we could not conduct this study with the chimpanzees due to testing
constraints). Here, we presented them with only two types of rewards
that differed in function and appearance, as was the case for children.
Using this simpler design, we predicted that the monkeys might find it
easier to learn the overhypotheses about the reward distribution within
and across containers and thus show a difference in their switching
behavior between the two conditions.

3.1. Method

3.1.1. Participants

We tested 16 capuchin monkeys at the Living Links research centre,
all of which had participated in at least one session of the previous study
(6 female, age: M = 8.81 + 3.51 SD, range 5-18 years). Five additional
monkeys were excluded from the analysis due to experimenter error (3)
or because they asked to leave the testing area before the final test phase,
and their session could not be repeated in the given time for the study

(2).

3.1.2. Materials and procedure

The procedure was identical to the previous study except that only
two different object types were involved: pieces of grape as high-value
items and blue stones as low-value items. The non-edible stones were
familiar to the monkeys, as they have been used in previous studies, but
they were never associated with positive or negative reinforcement. Due
to this modification, the monkeys already saw the same low-value item
type used in the test phase during the evidence trials. We only imple-
mented this experiment in the machine version, as it provides the most
precise measure for the number of items before the switch. It was also
the version in which chimpanzees were most successful in Study 1. The
appearance of the machines was altered so that carry-over effects from
Experiment 1 were minimized (see SM).

The monkeys were assigned to either the uniform or the mixed
condition in a between-subjects design. As this version resembled the
previous machine version of the main experiment, we counterbalanced
whether monkeys received the same condition as in their previous ma-
chine session or if they now experienced a different condition in this
version. Of the 8 monkeys in the uniform condition, 4 had received the
uniform condition in the previous machine version, whereas 4 had
previously experienced that machines contained a mix of items. Of the 8
monkeys in the mixed condition, 3 had received the mixed condition
previously in their machine version, whereas 5 had previously experi-
enced the uniform condition with the machines. The first machine
condition in Experiment 1 was session 3 for all subjects, and the current
study was conducted as session 5 (after the second foraging version).

3.2. Results and discussion

As shown in Fig. 7, the capuchin monkeys switched earlier (after less
samples from the first container) compared to experiment 1, and they
descriptively showed more sensitivity to the condition-specific evidence.
However, a two-sided t-test revealed no significant difference (t (13.99)
= 1.32, p = 0.21) between the mixed and uniform conditions regarding
the number of sampled items before the switch. The correlation of the
predicted (Level 2) and empirical condition difference in the switch rate
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Fig. 7. Results and model predictions for Experiment 2. Left: Mean number of samples before the switch for each condition, including individual monkeys’ absolute
values. Means are indicated by diamond symbols, medians are indicated by horizontal lines. Right: Empirical cumulative switching rates for capuchin monkeys and

the predicted cumulative switching rates for all four modelled learners.

after every test sample is of medium strength but not significant (r(7) =
0.50; p = 0.17; see Fig. S6 and Model Comparison for details of this
analysis). Given the small sample size and the overall low switching
rates (per condition and sample number n < 2 switch), this result must
be interpreted with caution. Nevertheless, after the first five samples, 6/
8 monkeys in the uniform condition have switched, while only 3/8 did
so in the mixed condition, a result that is consistent with the direction of
the predicted effect.

Comparing the absolute values for the data and the model pre-
dictions regarding the percentage of remaining participants that switch
after each sample (without considering switching costs), the Level 1
model (AIC = —83.17) most accurately predicts the capuchin monkeys’
choices (comparisons to Level 2 (AIC = —88.35) AAIC = 5.18; Chance 1
(AIC = —119.99) AAIC = 36.83; Chance 2 (AIC = —110.86) AAIC =
17.69). This pattern resembles the results of the children and chim-
panzees in Experiment 1, whose results were best described by
condition-independent models (Level 1 and Chance 2) with lower pre-
dicted switching rates, despite showing a clear empirical condition dif-
ference. However, when including the best fitting switch cost parameter
to the model, the capuchin’s behavior was best predicted by the Level 2
model (AIC = —69.11, see Fig. 3 and SM). Thus, it is possible that the
capuchins were able to generalize the condition-specific knowledge to
the test situation but also considered the costs of switching containers.

Overall, these findings suggest that reducing cognitive demands by
emphasizing category membership and implementing a larger value
contrast between categories is a promising route of future study design,
but was in this limited sample of capuchin monkeys not sufficient to
detect the ability for overhypothesis formation.

4. General discussion

Over the course of two experiments, we examined whether children,
chimpanzees, and capuchin monkeys can form overhypotheses about
item distributions, given limited evidence, to optimize their search for
high-valued rewards in different situations. A probabilistic hierarchical
Bayesian model showed that a learner capable of abstract concept for-
mation should switch away early from a container providing low-valued
rewards when previously self-sampled evidence suggested that all re-
wards in a container tend to be the same. However, when previously
sampled containers provided a mix of high and low-value items, the
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model predicted that a learner capable of forming overhypotheses would
persist at sampling from such a container for longer before switching to
an alternative.

Preschoolers’ switching behavior matched the predicted difference
between conditions, showing that they can form overhypotheses and
generalize abstract patterns across situations already at age 3. There was
also tentative evidence for chimpanzees’ ability to form abstractions, as
they showed the expected difference between conditions in one of three
experimental contexts. However, in contrast to the capuchin monkeys,
chimpanzees ate many low-valued items during the test. This suggests
that chimpanzees may have less extreme food preferences than assumed
by the model (which was based on the monkeys’ preferences). Thus, the
results may represent a conservative estimate of their actual abilities for
abstraction. Finally, in contrast to the other species, the capuchin
monkeys’ behavior in Experiment 1 showed no sensitivity to the
condition-specific evidence and was best explained by a model based on
random expectations about the item distributions, and thus provided no
evidence for abstract concept formation in this species. With more
distinct reward categories (Experiment 2) the capuchin monkeys’ per-
formance resembled both the model capable of abstractions and chil-
dren’s performance in Experiment 1 more closely. However, the
difference in the monkeys’ performance across conditions was not sta-
tistically significant.

Our results contrast with the usually poor performance of young
preschoolers and non-language-trained chimpanzees in abstract rela-
tional reasoning tasks (e.g. Christie & Gentner, 2010; Hochmann et al.,
2017; Premack, 1983; Walker et al., 2016). Thus, our findings contradict
the assumption that flexible abstract reasoning is a human-unique
ability that relies on relational language (Gentner, 2003; Penn et al.,
2008). As evidence from infants and toddlers suggests, detecting over-
hypotheses might be present already from an early age — before the
emergence of relational language- and possibly supports the efficient
knowledge expansion in early childhood (Dewar & Xu, 2010; Sim & Xu,
2015; Walker & Gopnik, 2014). Our results are further supported by
another study showing that task designs beyond the RMTS task can
reveal abstract reasoning abilities in human preschoolers. In Felsche and
colleagues (2023) 4 and 5-year-old children in a passive sampling
paradigm were sensitive to the general sorting patterns of reward items
based on their type or size and adapted their choices accordingly.

The common critique of studies with non-human participants
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claiming that success in RMTS tasks is based on lower-level perceptual
processes like comparing the perceptual variability (or entropy) within
stimulus pairs (Penn et al., 2008; Wasserman et al., 2017) cannot be
applied in our study. Across conditions, we also vary the perceptual
similarity of the successively sampled items from each container (e.g. all
same vs. different) during the evidence phase. However, we do not
believe that a representation in terms of a minimalist version of expected
entropy (that does not incorporate some aspect of abstraction) could, on
its own, account for success in this task. In the final test phase of our
study, participants made choices based on yet unseen, predicted future
samples from the test containers instead of being confronted with a
forced choice between visible item pairs or arrays. In addition, the test
situation in all conditions only presented uniformly low-valued items
and children and chimpanzees already showed a condition difference in
their switching behavior after only a single sample from the test box.
Together with the fact that they never had the opportunity to switch
containers in the evidence phase, this eliminates the possibility that the
participants learned a simple perceptual rule like: “low perceptual
variability of items, switch away from a container; high perceptual
variability of items continue sampling, “ which would also not be
adaptive in the case of high-valued uniform items. In contrast to pre-
vious studies showing successful abstract reasoning performance in
primates after hundreds or thousands of trials, our paradigm only
included a minimal amount of evidence, which further excludes the
possibility of a slow, associative learning process contributing to the
results.

A concern might be that chimpanzees succeed due to a training ef-
fect, as they only showed a significant difference between conditions in
the machine version that was always presented last. We believe that this
is unlikely as, despite a possibly heightened understanding to pay
attention to the reward distribution in the evidence phase, nothing from
the previous versions could have been learned that would support a
larger condition difference in the third session, as the types of food,
presentation and foraging method, and condition changed between
versions. In particular, all chimpanzees gained equal experience with
mixed and uniform evidence in the first two sessions and thus could not
have learned that, in general, across all versions, food items in con-
tainers are all mixed or all uniform. Following, they could not expect the
distributions found in the final machine version (and indeed, if they had
learned something along these lines that would itself be a high-level
abstraction). Even if they had learned the association that whenever
sweet potato is presented, both test containers will only provide sweet
potato (a pattern that is the same in the mixed and uniform version), this
would not increase the difference in switching behavior between con-
ditions but rather cause a general motivation decline to engage in the
task, which was not the case.

In contrast to those lower-level explanations, our study provides
further evidence for more recent arguments explaining population dif-
ferences in relational reasoning tasks based on context-sensitive induc-
tive biases rather than capacity differences (Carstensen & Frank, 2021;
Kroupin & Carey, 2021; Walker et al., 2016). Our task design presented
participants with stimuli and overhypotheses that are intrinsically
meaningful, an intuitive self-directed foraging mechanism of evidence
acquisition, and an ecologically valid pat-switching test situation. Those
attributes contrast with the arbitrary stimuli, abstract patterns, and
forced-choice situations used in traditional tasks. Thus, our procedure
may have provided an improved context to measure our participants’
abilities for abstraction.

The difference between the capuchin monkeys, whose performance
did not differ significantly between conditions, and chimpanzees that
showed some sensitivity to the abstract patterns, is in line with earlier
studies demonstrating differences between apes and monkeys in abstract
reasoning abilities (e.g. Flemming & Kennedy, 2011; Kennedy & Fra-
gaszy, 2008; Thompson & Oden, 2000). In addition to this capacity
difference between the species, variation in related abilities or other
skills involved in the task performance are conceivable. For example,
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monkeys’ inability to analyze the overall structure of the evidence could
be rooted in a narrowed focus on individual food items. Research on
hierarchical stimulus perception supports this assumption. Here, mon-
keys seem to process the local components with more ease than the
global pattern (e.g. De Lillo, Spinozzi, Truppa, & Naylor, 2005; Spinozzi,
De Lillo, & Truppa, 2003), whereas chimpanzees show more mixed re-
sults (Fagot & Tomonaga, 1999; Hopkins & Washburn, 2002). Another
factor contributing to the species difference could be chimpanzees’ su-
periority compared to capuchin monkeys when judging sequentially
presented item quantities (Beran, 2001, 2004; Evans, Beran, Harris, &
Rice, 2009). In the current study, monkeys and chimpanzees usually
consumed at least high-value items as soon as they found them. Thus,
they were required to keep track of and summarize the (previously
consumed) evidence to detect the pattern underlying the samples. It can
be excluded that capuchin monkeys were not motivated to engage in
efficient search in an experimental context (De Lillo, Visalberghi, &
Aversano, 1997). Further, it is unlikely that capuchins were insuffi-
ciently motivated to look for more high-value food in the test situation
after eating the evidence items. The overall food amount was equal to
amounts used in previous studies conducted with these same monkeys,
in which no motivational decline was observed, and the monkeys’
relative preference for the high- vs. low-value items was high (e.g.
Tecwyn et al., 2017). As mentioned earlier, the less extreme food pref-
erences of the chimpanzees as compared to the capuchin monkeys
potentially led to an underestimation of the actual species difference in
abstraction abilities, as it may have reduced the chimpanzees’ motiva-
tion to look for high-value food after encountering the low-value sam-
ples. Supporting the importance of relative food preferences for the
chimpanzees’ test behavior, their switch behavior is associated with the
number of consumed low-valued reward items during the test situation.
In all sessions where chimpanzees switched after sampling 5 or less
items (and the amount of the low-valued samples during the test could
be reliably counted, 13 sessions), they also refused to eat any of the
items (only in one session a single food item was eaten (3% of uncovered
items)). However, when switching late from the first container, after
sampling 6 or more items, the chimpanzees had consumed 39% of the
uncovered items (in 21 of 40 sessions). Thus, when chimpanzees
consumed more low-valued items, they also sampled more before
switching to the next container in search of potentially higher-valued
items. In contrast, capuchin monkeys never consumed any of the low-
valued test items but still switched relatively late.

In humans, the literature usually shows an improvement in abstract
reasoning abilities across the preschool ages from 3 to 5 (e.g. Christie &
Gentner, 2010; Christie & Gentner, 2014; Hochmann et al., 2017).
However, our study did not confirm this pattern and instead pointed
towards a negative developmental trend. This age effect was dependent
on the version and primarily based on older children switching later in
the uniform condition than younger children, making the condition
difference less pronounced in older preschoolers. A study by Ruggeri,
Swaboda, Sim, and Gopnik (2019) showed an age effect similar to that in
our study. In contrast to 3- and 4-year-olds, 5-year-olds in that study did
not connect the knowledge they gained in an evidence phase to a sub-
sequent search situation unless it was made explicit by reminding the
children of the events seen in the evidence right before the test phase.
One possible explanation for both sets of findings is that older children
and adults have stronger prior assumptions about general rules (e.g. that
individual items or properties have causal power) and thus might be less
flexible in learning or generating new and unusual task-specific patterns
based on limited evidence (e.g. that relational features are causally
effective; Bramley & Xu, 2023; Gopnik, Griffiths, & Lucas, 2015; Lucas,
Bridgers, et al., 2014;). For instance, older children may have a strong
prior belief that items tend to be sorted by type rather than mixed
together (or vice versa), which the evidence in our study is insufficient to
overcome. A more practical explanation could be that older children
were less motivated than younger children to repeatedly obtain balls for
the marble run, a tendency reflected in the preference testing results (see
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Felsche et al., 2023). Thus, they might have been more invested in
exploring the containers rather than obtaining high-value rewards as
efficiently as possible. Older children might have also formed a stronger
normative motivation to adhere to an unintended “game rule” first to
empty a container or explore it for a while before being “allowed” to
move on to the next container. We tried not to induce such a normative
motivation by allowing variation in the number of sampled items per
evidence container while avoiding complete emptying. The experi-
menter also left the immediate test situation to reduce possible social
normative pressure. However, these measures cannot entirely exclude
the possibility that especially older children have formed a normative
motivation in this game-like experimental setting.

Our study showed that the a priori predictions of a hierarchical
Bayesian model provide a useful normative model of processes at play
early in human ontogeny when extracting abstract patterns and making
predictions in new situations). Children, and to a lesser extent chim-
panzees, showed a significant difference between conditions in switch-
ing rates, a pattern predicted only by the Level 2 model, and not by any
of the lesioned alternative models, and the relative difference in switch
rate across trials showed a high correlation between the model pre-
dictions and children’s performance and moderate (but non-significant)
correlation to chimpanzee performance.

However, when comparing the absolute model predictions of how
many participants should switch after each item to the data, the best
overall prediction for children’s and chimpanzees’ performance was
achieved by Chance and Level 1 models that ignore the condition-
specific evidence, despite these models predicting no condition differ-
ence in switch rates. A likely explanation for this counterintuitive
finding is that all species were much more reluctant to switch than
predicted by the model. The phenomenon of more conservative
switching rates in the empirical data as compared to ideal learner model
predictions has previously appeared in computerized search tasks with
humans (Cain et al., 2012; Hutchinson et al., 2008) and optimal foraging
theory assessments in multiple other animal species (Nonacs, 2001).
Hutchinson et al. (2008) argued that optimal models do not consider
other factors that influence individuals’ behavior like additional in-
tentions (e.g. mate search), risks, and uncertainties (e.g., predator
behavior, nutritional state; Nonacs, 2001), as well as a possible alter-
native motivation to learn more about the environment, which might
favor ‘stickiness’ at the first foraging location.

Consistent with this interpretation, we conducted an exploratory
analysis to investigate potential switching costs that may have impacted
participants’ decision to switch. Here, we found that when including a
moderate switching cost in the model, children’s absolute rate of
switching (and that of capuchin monkeys in experiment 2) was best
explained by a Level 2 learner. While the chimpanzees’ behavior was
still best explained by the Level 1 model, both models matched the apes’
and the capuchin monkey’s behavior better when including the switch
cost parameter. This parameter could represent the loss in time or en-
ergy to physically move to the second container. Although the spatial
distance between the test containers in our study was minimal, previous
studies have also shown that primates engage in spatial and temporal
discounting, which might reduce the relative value of the second
container (Hopper, Kurtycz, Ross, & Bonnie, 2015; Kralik & Sampson,
2012). Further, anecdotally, we observed that, given that sampling from
a container was fast and took little effort, the time needed to switch
containers could instead be sufficient to sample at least one more item
from the first container. Further switching costs could include the
cognitive effort needed to inhibit sampling from the current reward
source and shift attentional focus to the next container.

In addition to the switch cost analysis, we also explored other likely
factors that the normative model missed but which might still influenced
the participants’ switching behavior, like the motivation to adhere to an
implicit game rule of wanting to empty a container before switching (see
SM). It is also possible that the participants acted based on a different
prior, for instance, initially assuming that items within containers are
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more likely to be somewhat mixed. Other possible causes of the
comparatively slower switching rate relative to the optimal model across
all species include a possible motivation to increase the quantity rather
than the quality of acquired items, combined with a learned pattern that
once they abandon a container, it becomes unavailable. Thus, searching
exhaustively before switching maximizes the overall reward quantity.
Further, studies on the endowment effect show that both humans and
non-human primates value items more highly once they are in their
possession and thus do not always follow the predictions of rational
choice models (e.g. Brosnan et al., 2007; Lakshminaryanan, Keith Chen,
& Santos, 2008).

Another possibility is that sampling behavior was influenced not only
by the expected reward value but also by the informational value of the
next sample from each container. Especially given the absence of time
pressure and direct observation during the test phase, participants might
have sampled longer from the first container to gather more information
about its contents and the general item distribution pattern. However, at
least for children, it was emphasized that these were the last two con-
tainers, eliminating the utility of such information for future searches.
While mere curiosity about the first container’s contents is a possibility
that could have led to later switching, the first item from the second
container with completely unknown content holds even higher infor-
mational value, which should have motivated overall faster switching
rates.

Importantly, once an overhypothesis is established, the information
value of the sampled items differs by condition: the first item out of the
uniform containers provides all of the information about its contents,
diminishing the informative value of subsequent items; in mixed con-
tainers items are generally less informative. Although participants may
have considered informational value, its impact on sampling behavior
can be expected to be low, given the overall low empirical switch rates
and the non-human primates’ strong motivation to obtain high-value
items with comparatively lower curiosity rates (Sanchez-Amaro &
Rossano, 2023; Forss & Willems, 2022; but see Wang & Hayden, 2019).
Future research could include more of these factors (e.g. varying priors,
switch costs, normative expectations, informational value) a priori in
the model and then generate predictions to manipulate them experi-
mentally to see which role they play in the participants’ decision-making
alongside overhypothesis formation.

We used multiple versions of our experimental paradigm to examine
how generalizable the participants’ performance was across different
contexts and to maximize each species’ opportunities to show evidence
of abstract learning if versions were not equally accessible to each spe-
cies. Our aim was for the different modes of presentation to vary in their
optic and haptic properties but not in the presented amount or type of
evidence or other factors that could influence the switching rates (e.g.
cost of switching). However, one interesting difference between the
foraging and cup versions on one side and the machine version on the
other is that in the first two conditions, participants could anticipate the
total amount of items inside the containers (either by seeing the total
number of cups or by successively removing filling material from the
foraging containers). When operating the machines, participants never
knew how many items were left in the apparatus due to the opacity of
the material.

When learners assume small, finite amounts of items in containers,
they may anticipate that removing low-valued items from mixed con-
tainers increases the chance of retrieving high-valued items later.
Consequently, they might remain longer with the first test container in
the mixed condition. For the uniform condition, it matters much less
whether some low-valued items are removed or replaced after sampling,
as the remaining items are highly likely to be low-value either way.
Thus, the relative prediction for switching in the conditions (switching
later in the mixed condition) stays the same. However, our participants
switched later than the model predicted in both conditions, which would
not be predicted by assuming finite rewards. Nevertheless, it would be
interesting to explore the effects of the assumed size of the item
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populations in containers and, thus, their level of depletion on the search
behavior and the speed of forming abstract concepts. Expanding the
model with such a variable would help to explain performance differ-
ences between versions. The multi-version design reveals the context-
dependency of participants’ spontaneous ability to form abstract con-
cepts, which is also evident in children’s variability in RMTS perfor-
mance (e.g. Christie & Gentner, 2014; Goddu et al., 2020; Walker et al.,
2020). Thus, our study shows that it is crucial for the interpretation of
results to implement designs in varying contexts, as only using one
version might have led to overly simplistic or even drastically different
conclusions. The importance of the testing context is also highlighted by
the capuchin monkeys’ performance in the second experiment, in which
the observed condition difference resembled the predictions of the
computational model more closely than their performance in Experi-
ment 1. The change in reward types from high- vs. low-value in exper-
iment 1 to edible vs. non-edible in experiment two has potentially
helped this species to differentiate between conditions. However, given
the missing statistical significance of the result in this relatively small
sample, it is still unclear whether capuchin monkeys can spontaneously
form abstract concepts. Nevertheless, these results should inspire future
research investigating abstract reasoning abilities in monkeys to move
away from highly arbitrary computerized tasks, like the RMTS proced-
ure in which capuchins have only showed success after lengthy training
(e.g. Truppa et al., 2011) as well as other procedures with high demands
on memory and inhibition (e.g. Felsche et al., 2023) towards more
ecologically valid and simplified situations like the patch switching
scenario in our study. Further, our study shows that the replication of
task paradigms in varying contexts and with multiple materials or
reward types seems to be crucial if we want to understand the robustness
and nature of different species’ abstract reasoning abilities.

In conclusion, our study strengthens the view that the ability for
abstract reasoning is present early on in human development and can be
characterized by probabilistic hierarchical Bayesian models. Variability
in children’s performance across tasks and age groups seems to be
caused by contextual factors that appeal to learned biases and additional
task demands rather than differences in their capacity for abstraction
(Hoyos et al., 2016; Kroupin & Carey, 2021). In contrast to previous
views arguing for a stark divide between humans and other animals
(Gentner, 2003; Penn et al., 2008), or apes and monkeys (Thompson &
Oden, 2000) in abstract reasoning, our study supports a perspective of
more gradual differences of this ability between species (Carstensen &
Frank, 2021; Gentner et al., 2021; Katz, Wright, & Bodily, 2007; Seed,
Hanus, & Call, 2011). The study highlights the importance of a multi-
version experimental design, especially in a comparative setting, as
different species might have different requirements to reveal optimal
performance. Further, it shows that applying probabilistic hierarchical
Bayesian models produces a more informative species comparison as it
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allows to incorporate group-specific factors like the received amount of
evidence or reward preferences. In addition, the models provide a more
comprehensive and testable formalization of the assumed underlying
cognitive structure assumed to play a role in different groups of par-
ticipants. Future studies could extend the approach of using computa-
tional models and more variable paradigms to study abstract relational
reasoning, perhaps using a wider variety of probabilities between fully
mixed and fully uniform. The method used here could be applied across
a wide range of species, age groups, and cultures and we suggest it is a
promising direction for future work on the origins of abstract thinking.
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Following the model of Kemp et al., 2007 we use a Dirichlet-multinomial model (Gelman, Carlin, Stern, & Rubin, 2014), which describes the
relationships between the data and parameters at different levels of abstraction.

Formally, the model is described as:

o ~ Exponential (4).
p ~ Dirichlet(1).
@' ~ Dirichlet(a, B).

y' ~ Multinomial (0‘)

With yj‘ representing the type (e.g., a high-value item) of the jth item sampled from the ith container, and #' representing the distribution of items

types within that container, with 6 indicating the probability of sampling item type k (e.g., a low-value item) from container i. Throughout the main
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analyses in this article 2 = 0.5, which corresponds to a fairly uniform distribution across the probabilities for different item compositions in con-
tainers. Before seeing any evidence, it slightly favours skewed and uniform distributions over equal mixes of high- and low-valued items but it is
sensitive to the evidence presented in both conditions. See the supplementary material for a more detailed analysis of the effect of different values of 4
on the model predictions.

The two parameters forming the overhypothesis at the second level of abstraction are o, describing the extent to which item types within each
container tend to be uniform and , which describes the overall composition of item types across all containers. To model overhypothesis formation,
we infer p(a,f | Y), the posterior distribution over (a, §), given the observed items Y, drawn from the N evidence containers,

plap 0 [ TL o010 0 pp(@p(pido &)

estimated using the Metropolis-Hastings Algorithm. Here we used 1 chain with 500,000 samples, a lag of 10 and a burn in of 1000.
To predict the participants’ behavior in the test situation, the model estimates the expected distribution over item types for the next sampled item j

from the first test container by marginalizing p (y}‘:“ | y‘fjl ,Q, ﬂ) the predicted probability of the next sample from the first test containeri + 1 being of a

specific type, given the already known samples from this container, yifjl (everything not j), and a specific overhypothesis, represented as the expected
value of a and f, estimated from the evidence containers,

p(y}*‘lyi*,-]) ://p<y}*'\yi*,ﬂa,ﬁ)p(a,ﬁlY)dmdﬂ 2

Which we approximate by averaging p(yj“|y"fjl,a, /}) across sampled values of p(a,p|Y). For a Dirichlet-Multinomial distribution,

P <yj‘f+l |y a, ﬁ) , the posterior predictive distribution for the type of the next item in the container, given a fixed set of hyperparameter values, has a

simple known closed form solution.

i i N +ap
PO =kl ap) =g
m=1"m m

The predictions for the type distribution in the second, yet untouched, test container and thus also the predictions for the next sample from this
container are inferred in this same manner. However, as there are no observed items from this container, N = 0, so the inference is based solely on the
updated overhypotheses.

Finally, the choice of whether to continue sampling from the first test container or to switch to the second one is determined based on the expected
utility of this container. The expected utility of a container is calculated by summing the utilities of each item type (see below), weighted by its
probability of being the next sampled type. Assuming that learners prefer a container proportional to its relative utility (the bigger the difference
between containers, the more the expected higher value container is preferred; Luce-Shepard choice rule, Luce, 1959; Shepard, 1957; Swait & Marley,
2013), the probability to switch is calculated:

Ple = ilu) = 1 —Min(l,i%) 3)

The relative utilities u of the high and low-valued rewards are inferred from the preference testing choices ¢ using the preference inference model
described in Lucas, Bridgers, et al. (2014). Again, it is assumed that a learner becomes increasingly likely to choose an option as its expected utility
increases. However, this choice is treated as a simultaneous choice between multiple items (rather than a choice to switch from the current item to
another):

el
EjeM’

Following Lucas, Bridgers, et al. (2014), we infer item type utilities u from learner’s choices ¢, by computing the posterior probability
p(clu)op(ulc)p(u), estimated using the Metropolis-Hastings algorithm. We assume a priori that the type preferences (utilities) are normally distributed,

with 4 = 0, and variance 6> = 2. Here we used one chain with 10,000 samples and a burn in of 500. We separately inferred type preferences for
children and capuchin monkeys, and used the capuchin’s preferences as a stand in for those of the chimpanzees, as discussed in the paper.

P(c=iu) = 4

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cognition.2024.105721.
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