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Abstract

After the domestication of goats around 10,000years before the present (BP), hu-
mans transported goats far beyond the range of their wild ancestor, the bezoar goat.
This brought domestic goats into contact with many wild goat species such as ibex
and markhor, enabling introgression between domestic and wild goats. To investigate
this, while shedding light on the taxonomic status of wild and domestic goats, we ana-
lysed genome-wide SNP data of 613 specimens from 14 taxonomic units, including
Capra hircus, C.pyrenaica, C. ibex (from Switzerland, Austria, Germany and Slovenia),
C.aegagrus aegagrus, C.a.cretica, C.h.dorcas, C.caucasica caucasica, C.c.severtzovi,
C.c.cylindricornis, C.falconeri, C.sibirica sibirica, C.s.alaiana and C.nubiana, as well as
Oreamnos americanus (mountain goat) as an outgroup. To trace gene flow between
domestic and wild goats, we integrated genotype data of local goat breeds from the

Alps as well as from countries such as Spain, Greece, Turkiye, Egypt, Sudan, Iran,
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wild goats.
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1 | INTRODUCTION

The first sedentary societies began domesticating goats (Capra
hircus) in the Fertile Crescent around 10,500 years before present
(BP) (Zeder & Hesse, 2000). Like other livestock species, domestic
goats were transported far beyond the range of their wild ances-
tor, the bezoar goat, whose distribution is restricted to Southwest
Asia. In some of the new environments to which domestic goats
were introduced, they found other congeneric species, enabling
the possibility of gene flow between domestic and wild goats.
Gene flow between domestic and wild relatives has been reported
in several livestock species (Cao et al.,, 2021; Chen et al., 2018;
Cubric-Curik et al., 2021; Medugorac et al., 2017), and goats
are not an exception. Domestic goats have been shown to carry
signatures of interbreeding with both Alpine and Iberian ibexes
(Alasaad et al., 2012; Cardoso et al., 2021; Giacometti et al., 2004;
Grossen et al., 2014), and with markhor (Hammer et al., 2008;
Li et al., 2022). Interbreeding among ancestral caprine lineages
may also have occurred (Daly et al., 2022), but such reports are
isolated, and the taxonomic status of some species is still under
review. Therefore, it is essential to update the phylogenetic and
taxonomic state of knowledge of the genus Capra.

The genus Capra consists of at least eight recognized species,
which are spread in mountainous habitats of Africa, Asia and Europe.
They are divided into three clades: true goats, markhors and ibexes
(Groves & Grubb, 2011). True goats include domestic (C.hircus)
and bezoar goats (C.aegagrus). Bezoar goats are discontinuously
distributed in Southwest Asia in regions such as Pakistan, Iran,
Turkmenistan and the Caucasus. They are listed as vulnerable and
have gone extinct in several countries (Rahim, 2016). Bezoar goats
have two subspecies, C.a.aegagrus and C.a.blythi. The status of
other subspecies, such as those from the Greek islands of Crete and
Youra, is still contentious (Masseti, 2009). Markhors (C. falconeri) are
found in the mountainous regions of Afghanistan, India, Pakistan,
Tajikistan, Turkmenistan and Uzbekistan, including the Sulaiman
Mountains and the Himalayas. Markhor is listed as near threatened

Russia (Caucasus and Altai) and Pakistan. Our phylogenetic analyses displayed a clear
separation between bezoar-type and ibex-type clades with wild goats from the Greek
islands of Crete and Youra clustered within domestic goats, confirming their feral ori-
gin. Our analyses also revealed gene flow between the lineages of Caucasian tur and
domestic goats that most likely occurred before or during early domestication. Within
the clade of domestic goats, analyses inferred gene flow between African and Iberian
goats. The detected events of introgression were consistent with previous reports

and offered interesting insights into the historical relationships among domestic and

autosomal DNA, Capra hircus, Capra ibex, D-statistics, evolutionary genomics, phylogeny

globally (Michel et al., 2014) and endangered in Pakistan (Ahmad
& Nabi, 2022). The third clade of the genus Capra, the ibexes, has
six recognized species: (1) the Walia ibex (C.walie), which is found
only in the Simien Mountains of Ethiopia; (2) the Nubian ibex (C.nu-
biana), whose range stretches along both sides of the Red Sea; (3)
the Siberian ibex (C.sibirica), which has four subspecies (C.s.sibirica,
C.s.alaiana, C.s.hagenbecki and C.s.sakeen) that are found in moun-
tain ranges across Central, East and South Asia (Castello, 2016;
Groves & Grubb, 2011); (4) the Caucasian tur (C.caucasica), which
is endemic to the Greater Caucasus range and has several eco-
types (C.c.caucasica, C.c.cylindricornis and C.c.severtzovi) (Dotsev
etal., 2021); (5) the Iberian ibex (C. pyrenaica), which is endemic to the
Iberian Peninsula; and (6) the Alpine ibex (C.ibex), which is endemic
to the Alps and has undergone a severe population decline to about
100 individuals that were kept in a reserve and later reintroduced to
the Alps (Parrini et al., 2009). The Iberian ibex experienced similar
bottlenecks, up to the extinction of two of the four reported subspe-
cies (C.p.lusitanica and C.p.pyrenaica were extirpated, C.p. hispanica
and C.p. victoriae are still present) (Acevedo & Real, 2011).

The systematics and phylogeny of Capra were initially ap-
proached by morphological analyses and later by the analysis of
mitochondrial DNA (mtDNA) and Y-chromosome markers (Luikart
et al., 2001; Manceau et al., 1999; Pidancier et al., 2006; VarGoats
Consortium et al., 2022). Unsurprisingly, the maternal and paternal
phylogenetic reconstructions disagreed, presumably due to differ-
ent mutation rates and different pervasiveness of lineage sorting as-
sociated with different male and female effective population sizes,
different reproductive histories and sex-biased introgression. For
the same reasons, the evolutionary histories of the mtDNA and the
Y-chromosome are expected to show some differences from those
inferred from autosomal variation, but studies analysing whole-ge-
nome data across most species and subspecies of the genus Capra
are not available yet.

In this study, we compiled the most comprehensive SNP dataset
of wild and domestic goats to date (Figure 1). Subsequently, we stud-
ied their phylogenetic relationships and investigated the patterns of
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FIGURE 1 Sample origin. The triangles represent wild species (names shown) and the circles represent domestic goats.

gene flow among species, including wild and domestic goats that are
sympatric, as well as among domestic goat breeds. Finally, we dis-
cussed the causes and consequences of the inferred events of gene

flow and the time when they most likely occurred.

2 | MATERIALS AND METHODS

For this study, blood and tissue samples from 173 goat specimens
and 4 mountain goats (Oreamnos americanus) were collected. The
goat specimens included 79 Alpine ibexes, 5 Iberian ibexes, 4 Youra
wild goats, 6 Cretan wild goats, 1 Nubian ibex, 2 bezoar wild goats,
14 markhors, 4 Mid-Asian ibexes, 7 Siberian ibexes and 51 domestic
goats from different Greek populations (Table S1).

Genomic DNA was extracted using the Omega E.Z.N.A.®
Tissue DNA Kit or ReliaPrep™ Blood gDNA Miniprep System
(Promega) according to the manufacturer's instructions. Then,
we genotyped the collected samples, including mountain
goats, using the Illumina Goat SNP50 BeadChip (Tosser-Klopp
et al., 2014) and complemented those genotypes with published
data from animals that were genotyped with the same SNP chip
(Table 1). These published datasets included 15 Caucasian turs,
7 Nubian ibexes (Sudan), 4 Cretan wild goats and 389 domes-
tic goats of different breeds from Russia, Iran, Egypt, Turkiye,
Spain, Sudan, Pakistan, Switzerland, Austria and Slovenia (Burren

et al.,, 2016; Colli et al.,, 2018; Deniskova et al., 2021; Dotsev
etal., 2021; Hassan et al., 2018; Pogorevc et al., 2021; Rahmatalla
et al.,, 2017). Domestic populations were included according
to their overlapping or spatial proximity to the ranges of wild
goat species. For instance, we used Spanish breeds that were
broadly sympatric with Iberian ibex, and Alpine goat breeds that
overlapped with Alpine ibex. Furthermore, we downloaded the
whole genome sequences of five Iberian ibexes (NCBI accession
numbers SAMEA6675493, SAMN10736154, SAMN10736151,
SAMN10736152 and SAMN10736153), four Nubian ibexes
(NCBI  acc. SAMEA6675494, SAMN16674508,
SAMN10736155 and SAMN10736156), one markhor (NCBI acc.
number SAMEA6675502) and four Mid-Asian ibexes (NCBI acc.
numbers SAMNO06233877, SAMN10736159, SAMN10736158
and SAMEA6675501) (Chebii et al., 2020; Chen et al., 2019;
Denoyelle et al., 2021; Grossen et al., 2020) and extracted the

exact set of SNP markers present on the lllumina Goat SNP50

numbers

BeadChip after aligning the samples against the latest goat ge-
nome assembly, ARS1 (Bickhart et al., 2017). In domestic pop-
ulations, closely related individuals and outliers that could
have been imports from other breeds were excluded (following
Pogorevc et al., 2021). Our full dataset contained whole genome
SNP data of 613 individuals from 10 species, 8 subspecies and
26 breeds according to the nomenclature of the “Bovids of the
world” (Table 1) (Castelld, 2016).
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Autosomal SNPs with a call rate greater than 95%, 90% non-miss-
ing genotypes per marker and 90% non-missing genotypes per indi-

vidual were kept. After filtering, 46,170 SNPs were used for further

We estimated the genomic diversity within individuals by
means of the individuals' multilocus heterozygosities (MLH) with
the R package InsreenR (Stoffel et al., 2016). For comparison pur-
poses, we calculated the mean MLH values and confidence inter-

vals for each taxa and plotted them with the R package ccrLoT2

After estimating genetic variation, we evaluated the genomic
similarity of our samples by means of the Reynolds's distances
(Reynolds et al.,, 1983) computed with the R package ADEGENET
(Jombart & Ahmed, 2011). The distances were used to con-

struct a neighbour-net in the program SeuitsTree v4.18.1 (Huson &

To obtain further insight into the genetic relationships of our
samples, we applied a principal component analysis (PCA) based
on IBS (identical by state) alleles in the program PLINK v1.9 (Purcell
et al., 2007) and plotted the resulting PCs in the R platform (R Core
Team, 2018). We also analysed coancestry relationships among our
samples using the program ADMIXTURE v1.3 (Alexander et al., 2009)
after finding the optimal number of required groups (K), for which
we applied a 20-fold cross-validation procedure (--cv=20). For this
analysis, we pruned the set of SNPs by excluding 38,017 redundant
SNPs that exhibited pairwise linkage disequilibrium scores (r?) above
0.1 in a window of 50 SNPs (--indep-pairwise 50 10 0.5). The pruning
was carried out in PLINK v1.9 (Purcell et al., 2007) and plots were
made in Pong (Behr et al., 2016).

To understand the evolutionary relationships among wild and
domestic goats, we first inferred a maximum likelihood tree with
the program TreeMix v1.13 (Pickrell & Pritchard, 2012). The out-
group was mountain goat (Oreamnos americanus), which is endemic
to North America and thus, most likely, has no chance of having
had introgression with Capra species. The support of the nodes
was estimated by means of 100 replicates of bootstrapping. We
used 35 taxonomic units, considering the genetic affinity of wild
populations observed with ADMIXTURE, to improve the statistical
robustness of this analysis and the following ones. The 35 taxo-
nomic units resulted from merging the two subspecies of Siberian
ibex (C.sibiricasibirica and C.s.alaiana) and the three subspecies

of Caucasian tur (C.caucasicacaucasica, C.c.cylindricornis and

To further refine our reconstruction of the evolutionary history
of wild and domestic goats, we inferred gene flow events among
the 35 taxonomic units used in the phylogenetic reconstruction. We
used the maximum likelihood method implemented in TreeMix v1.13
(Pickrell & Pritchard, 2012), which requires setting the number of
gene flow events a priori. To resolve this, we performed an initial
analysis with m=1 event and then performed replicates by adding
one event at a time, until the variance explained by relatedness be-

tween taxa reached ~99.8% (a threshold suggested by a simulation
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85U8017 SUOLILLOD BAITea1D 3[eddde au) Aq peuieob afe Soie YO ‘88N JO S8|nJ o} A%eiq1 8UIUO A8]1M UO (SUOTIPUOO-PUB-SWSI W0 A8 | 1M AIq 1 BUI|UO//:SANY) SUORIPUOD PUe SWLB | 841 88S *[6202/20/70] UO ARIqIT8UIIUO AB[IAN ‘UBIA TBHSIBAIUN YIS IUIZIPBLLIRULBIB A A 0BTLT 98W/TTTT 0T/I0pAW0D A8 1M AeIq1juljuo//Sdny Woiy papeojumod ‘T ‘¥20z ‘Xy62S9ET



POGOREVCET AL.

6 of 15
AYVAIB A4 MOLECULAR ECOLOGY

consistency, we replicated the analysis 10 times with different ran-
dom seeds. The optimal number of migration edges were obtained
and visualized with the R package OpTM (Fitak, 2021).

To confirm or disregard the gene flow events inferred with
TreeMix, we calculated D-statistics (also termed ABBA-BABA statis-
tics). The D-statistics employ a scheme with four taxonomic units:
two sister taxa (P1 and P2) from which P2 is a candidate for having
had gene flow with an external group (P3), and an outgroup (O) that
is used to identify ancestral alleles. The D-statistics' values range
from 0.0 to 1.0, where 0.0 means no gene flow, and their signifi-
cance is obtained by a block jackknife procedure that yields Z-scores.
We used the mountain goat (Oreamnos americanus) as the outgroup
and tested different combinations of taxa in P1, P2 and P3. We also
computed f-branch statistics (based on the better-known f,-statis-
tics) which predict the excess of alleles that are shared between a
target taxon and a specific branch in a given species-tree topology.
To make better sense of the patterns obtained with D-statistics,
we classified the analyses according to their compliance with D-
statistics assumptions, specifically the assumption of lack of gene
flow between P1 and P2, the lack of gene flow between P1 and P3
and the symmetrical probability of incomplete lineage sorting in
P1 and P2. We plotted the results obtained with the D-statistics,
f,-statistics and f-branch statistics with the scripts provided in the
program Dsuite (Malinsky et al., 2021). To complement the analysis
of D- and f,-statistics, we tested the admixture status of domestic
populations with f;-statistics using the program ApmixTooLs v7.0.2
(Patterson et al., 2012).

Finally, we used two approaches to assess the effect of as-
certainment bias on the phylogenetic inference using TrReeMix and
the inference of gene flow with TreeMix and D-statistics. The first
approach compared results from two panels of SNPs extracted
from publicly available 58 whole-genome sequences of wild and
domestic goats: (i) SNPs from the Goat 50K array and (ii) the en-
tire set of SNPs. In the second approach, we used simulations to
compare the tree topology and the ability of the TrReeMix algorithm
to retrieve the correct migration edges in the SNP datasets that
were created under ascertainment and unascertainment condi-
tions. The simulations produced full sequencing data under a de-
mographic model that incorporated gene flow. They were carried
out in the software ARGON vO0.1 (Palamara, 2016) (refer to Data S1
for more details).

3 | RESULTS

The genetic diversity of domestic goats, measured by the MLH
(average=0.388, range=0.221-0.439), contrasted with the val-
ues of ibex and tur species (average=0.012, range=0.002-0.040)
(Figure S1). The remaining groups, namely markhor, bezoar, as well
as Youra and Cretan wild goats had intermediate values (aver-
age=0.168, range=0.14-0.33). This apparent separation between
true goats and ibexes was congruent with the neighbour-net con-
structed with Reynolds's distances. In it, ibexes and true goats

appeared in a single cluster each, without any taxa cross-clustered,
and markhor, Youra and Cretan wild goats appeared at intermediate
positions (Figure S2A).

The separation of ibex species and subspecies was also evident
in the PCA (Figure S2B). In the parametric space of PC1 and PC2
(58.09% and 9.83% of the variation, respectively), each species con-
stituted a compact cluster that was well separated from the others,
with the sole exception of the domestic goats (C.hircus), and the
Crete and Youra wild goats, whose clusters overlapped. However,
the plot of PC1 and PC3 (5.66% of the variation) partially separated
these groups (Figure S2C).

In the ADMIXTURE charts (Figure 2a), all tur subspecies (C.cauca-
sica cylindricornis, C. c.severtzovi and C.c. caucasica), the two Siberian
subspecies (C.sibiricasibirica and C.s.alaiana), the Iberian ibex
(C.pyrenaica) and most individuals of the Alpine ibex (C.ibex) showed
little to no traces of mixed ancestry. However, some Alpine ibexes
shared small amounts of origin with the Iberian ibex and Caucasian
tur. Outside the ibex clade, the bezoar showed a highly admixed
ancestry. A direct interpretation would be that the bezoar had in-
trogression with a number of wild and domestic goats, as has been
reported (Alberto et al., 2018), but a more parsimonious explanation
is that this is a byproduct of the bezoar being the ancestor of all do-
mestic goats, whose high intra-group homogeneity and inter-group
differentiation, driven by intensive artificial selection and breeding
practices, highly influenced the definition of ancestry groups by
ADMIXTURE. Upon close examination, the six noticeable ances-
try groups present in bezoar are prevalent in breeds from Greece,
Tarkiye, Pakistan, Russia, Egypt, Sudan and in the markhor. The
aforementioned populations are sympatric (or nearly sympatric) with
bezoar, suggesting a high retention of ancestral genetic variation
inherited from bezoar, with the obvious exception of the markhor.
This suggests a possible occurrence of introgression, or interbreed-
ing, between bezoar and these populations. Furthermore, our data-
set revealed that the three Spanish breeds (Blanca de Rasquera,
Bermeya and Malaguefa) exhibited genetic admixture between
themselves and with goats from Egypt. The Greek populations from
Skyros, Chios, Lesbos, Peloponnese and Crete presented a simi-
lar set of ancestry groups that can be as well found in the Turkish
breeds of Kil, Kilis and Ankara, the most genetically diverse breeds
among domestic goats.

Our maximum likelihood phylogenetic tree provided deeper
insight into the dichotomous pattern suggested by other analyses
(Figure 2b). The topology showed a monophyletic clade containing
the ibex and tur species, well separated from the lineage leading to
the monophyletic group of domestic goats, in which markhor and
bezoar appeared as stem groups. In the ibex-tur clade, the Nubian
ibex (C.nubiana), the Siberian ibex (C.sibirica) and the Caucasian tur
(C.caucasica) appeared paraphyletic to the Alpine and Iberian ibex
(C.ibex and C.pyrenaica). In the clade of domestic goats, a geograph-
ical East-West split pattern emerged: breeds from Pakistan, Iran,
Russia, Tilirkiye, Egypt and Sudan appeared in one clade, and breeds
from Greece, Spain, Slovenia, Austria and Switzerland appeared
in the sister clade. Interestingly, the Youra and Cretan wild goats
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FIGURE 2 Pattern of genome-wide ancestral variation among wild and domestic goats. (a) Colour chart of shared ancestral genomic

variation inferred by the ADMIXTURE software with an optimum number

of inferred groups set to 20 (K= 20); and (b) maximum-likelihood

phylogenetic tree of species and domestic breeds inferred with TreeMix. Nodes indicated with red circles were supported by bootstrap values
of at least 93%. In the lower left corner, we also plotted the matrix of residuals from the fit of the model with no migrations. The colour bar

next to it represents the degree of relatedness between populations and

appeared next to Greek domestic goat populations and paraphyletic
to all other European domestic goats.

The optimal number of gene flow events to estimate with
TreeMix, according to the likelihood change in 10 analysis replicates
(Fitak, 2021), was four (Figure S3). The first event, which was pres-
ent in 8 out of 10 replicates, involved gene flow between the ances-
tor of the Pakistani breeds and bezoar. The second and third events,
present in all 10 replicates, involved gene flow between African and
Spanish breeds in both directions. The fourth event, present in seven
replicates, was an inter-generic cross between mountain goats and
the ancestral node of most domestic goats in the Western European
clade, along with wild goats from Youra and Creta.

residuals above zero suggests candidates for admixture events.

The analysis by D-statistics (Figure 3; Figures S4 and S5,
Tables S2 and S3) and f,-ratios (Figure 4) detected three sets of
comparisons that consistently yielded significant Z-scores (at
a=.01). One involved Caucasian tur and taxa of the bezoar-type
clade (domestic goats, bezoar and markhor). The second involved
taxa from the bezoar-type clade and Nubian ibexes. The third one
involved European ibexes (Alpine and Iberian ibex) and taxa of the
bezoar-type clade.

In the comparisons testing introgression between Caucasian
tur and taxa from the bezoar-type clade (which does not include
markhor), the values of D-statistic were similar regardless of the
choice of taxa from the bezoar-type group. In contrast, the values of
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FIGURE 3 D-statistic values for gene flow between Caucasian tur and taxa of the bezoar-type clade (domestic, bezoar and markhor).
D-statistic design groups (P1, P2 and P3) are shown for testing gene flow between P2 and P3 (Z-scores are shown in the chart). The
background colour indicates the perceived degree of non-compliance with the assumptions: green represents a low probability of non-
compliance, yellow a medium degree and red a maximum probability of non-compliance.

D-statistics for this type of comparison (Caucasian tur and a taxon of
true goats) changed significantly, when different taxa were used as
P1 (recall that the candidates for introgression are P2 and P3, and P1
is the sister of P2). Arranging the comparisons according to the choice
of P1 revealed a stepwise pattern with three levels (Figure 3). The dif-
ferent levels obviously correspond to the degree of conformity with
the previously mentioned assumptions of the ABBA/BABA design,
namely: (A.1) the lack of gene flow between P1 and P2, (A.2) the lack
of gene flow between P1 and P3, and (A.3) a symmetric probability
of incomplete lineage sorting in P1 and P2. The highest D-statistic
values were obtained when P1=Siberian ibex, a choice that provides
a high level of adherence to (A.1), because this taxon is not sympatric

with Caucasian tur and most taxa of the bezoar-type clade (Figure 3;
Figure S5, Tables S2 and S3). In contrast, the comparisons where both
P1 and P2 were from the bezoar-type clade had the lowest values of
the D-statistic, several non-significantly different from zero. These
comparisons may have a low conformity to (A.1) because in many
cases the taxa belong to the same species. In addition, the consistent
with (A.3) may be low if the comparison involves a species such as
markhor, which is threatened and thus has a high rate of lineage loss,
with a domestic breed that has a much higher population size and ex-
perience a post-domestication expansion. This pattern suggests that
introgression between the Caucasian tur and the bezoar occurred
before or during early domestication, and that a detectable amount
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FIGURE 4 Heatmap of f-branch statistic (f,) values. The colour scale at right indicates values of alleles sharing between the tree branch
on the vertical axis and the population on the horizontal axis. Cells in grey indicate comparisons that cannot be made.

of shared derived variation was segregated from the bezoar into all
domestic populations, as reported by Daly et al. (2022). The alterna-
tive explanation would be that all domestics had remarkably similar
levels of gene flow with the Caucasian tur, which is endemic to the
Caucasus region, but this seems highly unlikely.

Other significant values of the D-statistics (ranging 0.22 to 0.28)
were found in comparisons between both European ibexes (Alpine

and Iberian) and taxa of the bezoar-type clade (Figure S5). As above,
the values were dependent on the taxa used as P1, and once again,
they showed a pattern better explained by ancestral introgression
into bezoar rather than into all domestics in parallel. Similarly, the
gene flow may also have involved the ancestor of the European ibexes
rather than each species. The last group that had consistent and signif-
icant D-statistic values (0.23 to 0.26) included comparisons between
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Nubian ibex and any taxon of the bezoar-type clade (Figure S5). Once
again, the pattern may indicate ancient introgression between Nubian
ibexes and bezoar rather than with all domestic goats in parallel.

When we examined the possible effects of ascertainment bias in
TreeMix-based inference, we found consistent estimation of topology
in both the Goat 50K array and the full set of SNPs extracted from the
whole genome sequences (for the subsample for which we had the
sequencing data) (see Data S1). The D-statistics also displayed similar
values in the comparisons to which they were applied, with the major
difference being in the significance level. In the analysis based on
simulations, the ascertained and unascertained SNP datasets had low
statistical power for detecting the migration event 1 (the oldest one).
The two datasets also showed remarkably similar power for detecting
intermediate-aged events 2 and 3. In both datasets, the very recent
event 4 (of the simulated scenario) could not be detected. Altogether,
these results suggest a little effect of ascertainment bias in both phy-
logenetic and gene flow inference of TreeMix and D-statistics.

In the analysis of f-branch statistics (Figure 4), we found similarly
small amounts of shared alleles between an ancestral node of ibexes
and all true goats with the markhor. This modest amount of shared
variation also appeared between bezoar and markhor and all ibex
species. Among domestic breeds, we also detected shared variation
involving breeds from Greece, Southwest Asia (from Anatolia to
Pakistan), Russia and Africa. This group (Southwest Asia, Russia and
Africa) along the Spanish breeds, and their ancestors, also shared
significant amounts of variation. A signature of gene flow in this type
of comparison, specifically between African and Spanish breeds,
was also recognized by TreeMix (Figure S3). Such patterns may be the
result not only of recent gene flow, possibly associated with human
migrations or trade, but also of an unusually high amount of ances-
tral segregated variation, or even of an admixed origin.

The three-population statistic (f;) for detecting admixed pop-
ulations (which was applied only to domestic goat breeds) yielded
significant results for populations that already showed high amounts
of shared variation or traces of gene flow with populations that, in
this analysis, appear as parental of the admixed candidate (Table S4).
Notably, the Malaguefia breed from Spain appears to be a hy-
brid of an African and other Spanish breeds, while the Chios and
Peloponnese populations (from Greece) appear as admixtures of
Pakistani and Western European breeds. Other significant results
may not be the exact result of direct admixture, but of complex an-
cestry. In this category, we find the Kil and Kilis breeds from Tiirkiye,
the Iranian breed, the Barki from Egypt, the Nubian from Sudan and

the Dagestan Aboriginal from Russia.

4 | DISCUSSION
4.1 | Phylogeny of wild and domestic goats
Our complete dataset of 613 individuals from 14 species and sub-

species, sampled over different locations in Europe, Asia, North
Africa and North America provided a unique opportunity to assess

genetic relationships between wild and domestic goats. Based on
genome-wide SNP data, our phylogenetic reconstruction using
TreeMix matched morphologically identified species and subspecies
(Figure 2b) and had apparently little effects of ascertainment bias
(see Data S1). The phylogenetic tree is also in agreement with two
reported analyses of Y-chromosome variation that found the genus
well separated into bezoar-type and ibex-type clades (Pidancier
et al., 2006; VarGoats Consortium et al., 2022). However, the
Y-chromosome phylogenies placed the Caucasian turs at a distal
end of the Ibexes-type clade, while our phylogeny placed Caucasian
turs at the base. Nevertheless, the presence of horizontal gene flow
between Caucasian tur and the bezoar-type clade (which we de-
tected with the D-statistics) could potentially bring the Caucasian
tur to a more basal position of the tree if the correct topology was
the one reported with Y-chromosome markers. However, we think
that this is not the case, because the Y-chromosome technically
constitutes a single locus, while our phylogeny is based on whole-
genome SNP data. In support of that, the topology of the ibex-type
clade also showed some disagreement with both the Y-chromosome
and mtDNA phylogenies, although they agreed in the proximity
of the Alpine and Iberian ibexes (Manceau et al., 1999; Pidancier
et al., 2006). This close relationship is considered a consequence
of an allopatric origin from a single Capra ancestor that colonized
Europe in a single wave (Urefa et al., 2018).

In domestic goats, the phylogeny displayed a geographically
congruent pattern that was largely consistent with published phylo-
genetic reconstructions (Colli et al., 2018), but our inclusion of less
studied breeds provided novel insights. For instance, we found that
Crete and Youra wild goats belong within the clade of European do-
mestic goats (with 100% support), confirming them as feral goats
rather than independent subspecies of bezoar. They also exhibited
long branches that could be signs of demographic bottlenecks,
something common in populations isolated on islands. However, in
the case of the Cretan wild goats, a limited sampling could influence
this. Even though this population is dispersed among various Aegean
islands, we were able to sample five animals from a single place on
Crete, four from a Berlin Zoo population and one from the island of
Sapientza, whose population descended from the wild Cretan goats.
These circumstances, that is, isolation, bottlenecks and sampling
error, can also explain their lower values of MLH as compared to
domestic goats. However, it cannot be ruled out that such popula-
tions are constituted by an admixture of early domestic and modern
domestic goats that were introduced from Anatolia and the Levant.
The feral hypothesis was supported by the analysis of mtDNA of
Bar-Gal et al. (2002) who suggested that goats were introduced to
Crete by pre-pottery Neolithic settlers and after posterior abandon-
ment and isolation, they returned to the wild.

4.2 | Gene flow between wild and domestic goats

The dynamic history of domestic goats and the existence of ex-
tensive regions of sympatric coexistence with wild goats provided
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ample opportunity for introgression, with some cases previously
documented (Alasaad et al., 2012; Grossen et al., 2014; Hammer
et al., 2008). In this study, D-statistics showed signatures of gene
flow between domestic goats at large and Caucasian tur, European
ibexes and Nubian ibexes (Figure 3; Figure S5, Tables S2 and S3). In
all these cases, the similarity of values among domestic populations
and the lack of sympatry between most domestic goats and these
species suggest that introgression was ancient and occurred with
bezoar (or even a bezoar ancestor) from which much of the variation
was segregated into all domestics. This scenario is likely because the
short evolutionary time since domestication and the expansion of
the domestic goat population in Eurasia are factors that prevent the
purging of ancestral genetic variation. On the other hand, Caucasian
tur specimens have been found in archaeological settlements along
with the remains of exclusively domestic animals, including goats
(Sauer et al., 2015). Introgression between bezoar or early domestics
and a lineage related to the Caucasian tur (called ‘Taurasian tur’) was,
in fact, detected by Daly et al. (2022). Moreover, gene flow between
Caucasian turs and bezoars has been reported using whole-ge-
nome sequencing data from modern and ancient specimens (Zheng
et al., 2020).

Another set of relevant signatures of introgression involved
European ibexes (Alpine and Iberian) and taxa of the bezoar-type
clade. The pattern of D-statistics also suggests ancestral introgres-
sion between bezoar and the ancestor of European ibexes. Although
we cannot discount completely the presence of gene flow between
ibexes and sympatric domestic goats (e.g. Alpine goat with Alpine
ibex or Iberian goat with Iberian ibex), there was no clear signal of
it in our particular sample. A larger sample size and whole genome
sequencing data may likely detect such introgression signatures if
they exist.

Other introgression events detected by TreeMix (Figure S3)
involved Pakistani breeds and bezoar which were detected by
f-branch statistics as well (Figure 4). Although previous reports sup-
ported these events, due to the phylogenetic proximity of bezoar
and domestic goats, it is possible that incomplete lineage sorting
and alternative scenarios are involved in these results. For example,
the presence of genetic structure in bezoar during the early stages
of domestication, combined with demographic fluctuations, could
lead to a differential segregation of genetic variation in eastern and
western domestic goat breeds (Ahmad & Nabi, 2022). The ancestral
variation that was present in eastern but not western breeds or vice
versa could produce false positives with D-statistics and other tests.
This can also be confirmed or disregarded with a more extensive re-
gional sampling and genome-wide sequencing data.

A surprising event of gene flow between mountain goats and the
ancestor of the western domestic clade was detected with TrReeMix
(Figure S3). Since mountain goats inhabit the American continent
and the probability of contact with a member of the Capra genus
is virtually zero, we can safely assume that this is an artefact of
non-missing genotypes possibly caused in a similar way than the
spurious gene flow between the Schipperke and the Poodle dog
breed (Fitak, 2021). Another reason for this conclusion is that the
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statistical power to detect very old introgression events could be
very low for TReeMix and other methods, regardless of ascertainment
bias (see Data S1).

4.3 | Gene flow among domestic goat breeds

Domestic goat populations from geographic areas near the original
region of domestication are expected to have higher ancestral diver-
sity than populations from distant areas. This was true for Iranian
and Turkish breeds, which shared high amounts of genetic variation
with breeds from Russia, Greece and Spain. This is more likely due to
ancestral relationships rather than contemporary gene flow, in a sim-
ilar way than the shared variation between bezoar and all domestic
goats is due to bezoar being the ancestor of all domestics. However,
a genetic affinity between western Asian (including Pakistani pop-
ulations) and Greek populations has also been reported in cattle
(Papachristou et al., 2020). Another event of gene flow between
domestic breeds, from Soviet Mohair into Dagestan aboriginal, de-
tected by f-branch statistics (Figure 4), has been reported previously
(Deniskova et al., 2021). These breeds have also been reported to
present extensive zones of hybridization with other breeds in the
Caucasus (Selionova et al., 2020).

Our analyses also provided evidence of gene flow between
Egyptian and Spanish goat breeds (Figure 4; Figure S3, Table S4).
Considering that other studies using various markers (including a goat
SNP array) have also reported gene flow between North African and
Iberian populations (Colli et al., 2018; Manunza et al., 2016; Pereira
et al., 2009), it is likely that gene flow between those populations
has been long-lasting, intense or recent as reported by El Moutchou
et al. (2018). Such an intercontinental gene flow could be the result
of domestic goats' expansion outside their centre of domestication.
In Europe, Neolithic farmers expanded along two main routes: the
Danube River and the Mediterranean coast (Skoglund et al., 2012).
The phylogenetic closeness of Spanish and Alpine breeds suggests
that their ancestors were introduced by Neolithic farmers that
followed the Mediterranean route (see Figure 2b; Figure S2A). In
Africa, Neolithic farmers entered the continent from the northeast
via the Levant and spread along the Mediterranean coast, but in
this case from the southern edge (Pinhasi et al., 2012). Since both
shores of the Mediterranean (North African and European) end at
the Strait of Gibraltar, which is also the point of minimum distance
between Europe and Africa, it is reasonable to conclude that gene
flow between African and Spanish breeds was enabled by human
migrants crossing the Gibraltar Strait. However, the presence of
multiple contact points at different times is a more likely possibility
if we consider the complexity of human migrations in historical and
prehistoric times.

Our study, based on whole genome SNP information, offered
new insights into the phylogeny of the genus Capra. We further re-
fined the model of the evolutionary history of the genus by infer-
ring patterns of gene flow between wild and domestic goats. The
results observed here confirm some patterns reported in previous
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studies that were solely based on mtDNA or Y-chromosome mark-
ers. Interestingly, we did not find clear signatures of recent intro-
gression between domestic goats and wild ibexes despite previous
reports. However, sporadic or ancient introgression was captured
and probed to be a relevant source of variation shaping the genomic
makeup of both wild and domestic goats.
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