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Abstract

Accelerometers with low sampling rates (1 Hz) are commercially available as ear tags.
While an automated and therefore undisturbed sampling of animal behaviour can be useful
not only in behavioural studies but also in ecological or wildlife management studies, the
usefulness of such ‘a low data collection rate for the prediction of behaviours was the key
question addressed here. We classified the behaviour of female wild boar, kept under semi-
natural conditions in a large outdoor enclosure, using acceleration data. Predictions were
based on a machine learning algorithm, specifically a random forest model in the open soft-
ware h2o. Remarkably, prediction of many behaviours was possible using ear-tag accelera-
tion sensors that sampled data only at a low frequency. This measurement device was
mainly used to minimise the potentially harmful effects caused by the repeated capture of
wild animals to exchange batteries. Long battery life will also help to collect long-term accel-
erometer data and has the potential to explore seasonal and inter-annual trends. Foraging,
lateral resting, sternal resting and lactating were identified well, scrubbing, standing and
walking not reliably. Balanced accuracy depended on the behaviour type and ranged from
50% (walking) to 97% (lateral resting). Results show that static features of unfiltered accel-
eration data, as well as of gravitation and orientation filtered data, were used in the predic-
tion of behaviour. The waveform of certain behaviours in the sampled frequency range
played no important role. Certain positively identified behaviours, such as food intake and
lactation, could be of interest for wildlife managers attempting to control population growth in
this pest-species. We provide several R-scripts that allow the analysis of behavioural accel-
erometer data.

Introduction

Accelerometers have been deployed in many species over the last decades to quantify animal
behaviour. The purpose of acceleration measurements, in up to three axes, has been to identify
animals as active or resting, to compute proxies of their energy expenditure, or to classify ani-
mal behaviour as foraging, running, etc. [e.g., 1-4]. Identifying behaviour from body
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acceleration requires advanced analysis techniques such as principal principal component
analysis, discriminant analysis or, often used more lately, machine learning (ML) algorithms.
The advent of ML has very much facilitated the use of accelerometer data to classify behaviour
(5, 6].

Acceleration was frequently used among non-human mammals, mainly in domesticated
and captive animals with a roughly even split between domesticated/captive and wild ani-
mals [1]. There is great interest in classifying behaviour of wild, possibly free-living species
[e.g., 7-9]. Because the waveform of acceleration data is often characteristic for a behavioural
pattern, acceleration should be collected with a sampling rate high enough to allow the reso-
lution of even high frequencies. This is due to the so-called Nyquist frequency. The highest
frequency that can be detected in any signal without distortion is one half of the sampling
rate [10]. In other words, it is the frequency whose cycle-length is twice the interval between
samples. Thus, if acceleration is sampled for example at 10 Hz, Fourier analysis, which is
routinely used to quantify its waveform, is limited to frequencies slower than 5 cycles per
second. Although in the past sampling rates of accelerometers were sometimes as low as 0.5
Hz, in the majority of studies reported it ranged from 8 to 100 Hz [review in 1]. In a recent
review on the use of accelerometers in humans Farrahi indeed recommended to use a sam-
pling rate of 20-30 Hz to predict the type of activity. There are few studies that used low sam-
pling rates [11]. In fact, accelerometer measurements are typically collected at very high
resolution (>10 Hz).

The problem with high sampling rates is that they are obviously energy consuming, costly,
and limit the long-term use of acceleration sensors without recharging. Whereas human sub-
jects are typically cooperative in exchanging the battery of devices, wild animals are not.
Repeatedly recapturing wild species to exchange logger batteries can lead to severe stress [12].
In the worst case a condition called capture myopathy, a consequence of extreme stress, can
even lead to the death of animals [13]. On the other hand, important research questions, such
as seasonal investigations or even studies on the life history of animals often require long-term
studies.

For example, we faced this problem studying energetics in female wild boar, Sus scrofa. As
this mammal is highly seasonal, with energy turnover being highest in winter, we recorded its
heart rate, body temperature and behaviour for two consecutive years or more [review in 4].
We restricted recapture of the wild animals, kept in a large outdoor enclosure, for the purpose
of logger and earmark exchange to once per year. This was only possible using a 1 Hz sampling
rate for 3D acceleration data as higher frequencies would have depleted the ear tag battery too
quick. Another advantage of a low sampling interval were lower transmission costs of the data
to our server, which had to be facilitated via the mobile network. Here, we attempted to see
whether certain behaviours, and if so which, of female wild boar can be identified using a sam-
pling rate of 1 Hz only. Theoretically, the type of acceleration recorded with these devices
should only allow the prediction of behaviours associated with relatively slow frequency
characteristics.

In short, it turns out that we were able to predict various behaviours, especially foraging
and resting in different body positions with an overall accuracy of 94.8%. However, the model
also predicted less frequent behaviours, such as lactation, with high reliability. This was
achieved by a ML model, employing a random forest (RF) algorithm. This model was built
using the “h20” open-source project called from within the free software R.

Here, we used and provide several R scripts (which can be employed for any accelerometer
frequency) to either build a new model from paired acceleration-behaviour data, or to predict
behaviour from an existing model, as provided in this case for wild boar. These scripts make it
particularly easy to change time-windows for the underlying learning algorithm.
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Methods

Ethics The present study was discussed and approved by the ethics and animals’ welfare com-
mittee of the University of Veterinary Medicine, Vienna, Austria, in accordance with good sci-
entific practice and national legislation (GZ: BMWFW-68.205/0151-WF/V/3b/2016 and GZ:
BMWFW-68.205/0224-WF/ V/3b/2016). All methods were carried out in accordance with rel-
evant guidelines and regulations. We confirm that the study was carried out in compliance
with the ARRIVE guidelines [14].

Animals and study area

The study animals were kept in an outdoor enclosure (~55 ha) in Austria. The enclosure was
part of a game reserve, which was enclosed by 2.5 m high, solid, non-transparent fencing and
was closed for the public. Thus, the study site provided an environment without disturbances
due to hikers, bikers or straying dogs. There were no battue hunts or other disturbances due to
hunting or forest management activities during the study period in the enclosure. The study
enclosure was covered with a deciduous forest, mainly Turkey oak (Quercus cerris) and pubes-
cent oak (Quercus pubescens) and included only few meadow patches. For the present study 13
adult females were used. We concentrated on females only because the live capture and han-
dling of males are hampered by the large size and ferocity of boars and would have been much
more time-consuming. Note that animals were not only captured but handled without anaes-
thesia, for example during weighing. Moreover, we are not aware for any sex-specific behav-
iours, if not sexual behaviour itself, of wild boar [e.g., 15].

During the study period (28/02/2017-22/05/2017), animals were supplemented with 1-1.5
kg corn per individual once a day at two feeding pens, each ~40x20 m, which could be entered
and exited through two different entrances by the animals, respectively, and which were also
used to capture the animals in autumn (e.g., for weighing or change of ear tags). This supple-
ment may affect the interpretation of foraging but not of other behavioural states. The feeding
pens were equipped with a telemetry system (Smartbow GmbH Austria, 2018) that also cov-
ered the surrounding of the pens consisting of a total of 10 receivers and telemetry ear tags (34
g 52 mm x 36 mm x 17 mm) collecting 3D- acceleration and temperature data at 1 Hz. The
transmission from ear-tags to receivers was achieved through a wireless local area network
(WIFI). 3D-acceleration data were transmitted via a solar powered network interface to a
server for storage.

Before applying telemetry ear tags, each wild boar was identified by a numbered and col-
oured ear tag (left ear), a RFID (radio-frequency identification) ear-tag (right ear), or, if both
have been lost, by scanning the RFID implant (all three applied in a previous project; see [16]).
After removing the old RFID-ear tag in the right ear, the telemetry ear tag with a unique ID
number and MAC-address (medium access control address; i.e., a unique hardware identifier)
was applied in the same place with special pliers. From the triaxial accelerometers in the ear
tags we calculated overall dynamic body acceleration (ODBA) according to Wilson [17] using
a time window for smoothing of 3 s. The average ODBA, i.e. the overall acceleration, was quite
typical for each behaviour, e.g., ~50 for resting in sternal position (RSP) but >500 for scrub-
bing (Table 1).

Animals were accustomed to the presence of observers for approximately one month prior
to video recordings to ensure they could be observed not only while in the pen, but also in the
surrounding area. This was done by two observers being present in and around the feeding
pen on six days a week for about five hours per day on average around the time of feeding
(early afternoon). As the wild boars were used to the presence of human observers already
from previous years this was sufficient to re-accustom the animals and assure high quality
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Table 1. Description of the behaviours that were used to label the video records of wild boar. Recoding of 5.34%
of the data (4:42:19 hours of individual wild boar behaviour) showed a high interobserver reliability (unweighted
Cohens Kappa = 0.83). The rightmost column shows mean ODBA + standard error of the mean (SEM).

Behaviour Description ODBA + SEM
RLP (Resting in lateral | Wild boar is resting on its side. All four legs are spread out to one side. 77.13 £3.37
position) No breastfeeding is taking place.

RSP (Resting in sternal | Wild boar is resting on its chest and abdomen. Legs are either underneath | 52.52 +2.02
position) the body or spread out to the front and/or back.

Foraging Wild boar is standing or walking slowly while the snout is touching the 391.88 £ 0.77

ground or submerged into the ground. The snout is used to dig into the
ground. Terminated if the snout does not touch the ground for up to 3

seconds.

Lactating Like resting in lateral position but the wild boar is breastfeeding its 137.35 +5.38
juveniles. Lasts as long as one or more juveniles are sucking at the teats of
the wild boar.

Scrubbing Scrubbing of head, torso or ear while the wild boar is standing. A tree 553.26 + 28.60

stump or something similar is used to scrub against.

Standing All four legs stand on the ground, the pair of front legs and the pair of 168.64 +3.59
hind legs is parallel. The weight is spread evenly on all four legs.

Walking Four cycles, legs are being moved in parallel, three feet always touch the 447.67 + 3.69
ground. Rather slow. At least 3 steps have to be made to be counted.

https://doi.org/10.1371/journal.pone.0318928.t001

video recording of a large range of behaviours including behaviours that animals would not
show when stressed like resting in lateral position or even lactation. For videos recording a
handheld camera was used. Behaviour of several wild boars could be recorded at the same
time. Video recordings of the behaviours were taken from outside of the feeding pen and the
direction of filming was always chosen to ensure that the highest number of wild boar tags
could be filmed at once. During the recording animals were named and the position of each
wild boar in the frame was regularly described verbally. Whenever a wild boar entered or left
the frame it was announced with direction the animal was coming from or going to and the
colour-number identification code. Naming was done as often as possible but at least every
time a wild boar entered, left or re-entered the frame. The exact time and date of each video
was needed to be able to pair them with the acceleration data. To make sure time was correct a
radio-controlled clock with a digital display of date, hour, minutes, and seconds was held into
the camera frame every half hour for at least five seconds. With this time the behaviours could
be merged with acceleration data, for which timestamps were retrieved from network time
which was synced once a day from the internet.

Behaviour types recorded in Sus scrofa

Foraging, walking, standing, resting in sternal position, resting in lateral position, scrubbing,
and lactating behaviours were coded from video tapes at 1 Hz according to their definition
(Table 1) to match the sampling frequency of accelerometers (i.e., in the video coding program
the exact start time of each behaviour was noted, automatically ending the previous behaviour,
and the data subsequently exported from the video coding program listing the behaviours in 1
Hz timestamps; behaviours lasting less than a second were ignored). To analyse these video-
records we used the labelling software Solomon (Solomon Coder beta 17.03.22). Videos were
usually watched in real time during analysis, except when the wild boar was showing a static
behaviour. Each video was watched individually for each animal. If there was any uncertainty
of which wild boar could be seen data were not coded.
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Data frames derived from the program Solomon were imported into the program R and
merged with respective 3D-acceleration data. Additionally, acceleration data were transformed
using the so-called jerk filter [18]. This transformation provided data that showed the change
of acceleration instead of the total acceleration. These resulting data were independent from
orientation and from gravitational pull that could not be used as earmarks were freely mov-
able. Change of the angle of acceleration was used to calculate directional changes.

All models to predict behaviour from acceleration data were built using the R interface to
h2o.ai, both are free, open-source software packages. The models were always computed using
a randomly assigned 50% of the data for training, 25% for validation, and 25% for testing. We
verified that all behaviour classes were present in all of the three data-subsets. All metrics of
model performance, such as sensitivities, were computed using the R-package ‘caret’ [19].
Please note that in caret the predicted and actual classes are reversed in the confusion matrix.

The variables used for ML were calculated for time windows of different lengths (i.e., 6, 10,
20, 30, 40, 50, 60; see Fig 1). Inevitably occurring terminal time periods at the end of a beha-
vioural sequence of a given animal that were shorter than the time window length were dis-
carded. The moving time windows had a 50% overlap to prevent an overestimation of the
classifier performance [20]. For each time window, we calculated the 11 major moments (such
as mean, kurtosis etc.; R package moments [21] as well as the power of the main frequencies
(i.e., estimated spectral densities obtained from Fourier analysis of the time series) in the accel-
eration variables (both filtered and unfiltered) used for ML. The behaviour that occurred the
most within a time window was set as the behaviour of the respective time window. This pro-
cedure was followed to resemble the applied situation when behaviours are not known a
priori.

The variables computed from acceleration data were fed into ML algorithms, either an arti-
ficial neural network (ANN) or a random forest (RF) algorithm. The only value changed from
the default was the maximum number of trees which was increased from 50 to 100 in RF mod-
els. The relative importance of variables was computed in h20 according to Gedeon [22].

Results

The length of recorded behaviour per wild boar data ranged from 0.04 h to 9.5 h (mean: 3.1 h).
The total length of behavioural data for which acceleration data were evaluated was 40.8 h. Not
unexpectedly, the behaviours in the vicinity of the feeding station were 80.9% foraging, 5.9%
walking, 4.1% RSP, 4.1% standing, 1.5% resting in lateral position (RLP), 1.2% lactating and
1.3% other. Behaviours were not evenly distributed with lactating, RSP, and RLP occurring
only in 7 out of 13 animals.

Each behaviour was associated with a typical mean ODBA (Table 1), i.e., ODBA values
tended to be within a consistent and distinct value range for each behaviour. Thus, it provided
the opportunity to measure the intensity of activity. However, adding ODBA to the predictors
in the model did not improve behaviour classification, which is why it was left out.

Using ANN was quite successful, with 2 layers of 225 neurons each we reached an overall
accuracy of 92.3% (see ANN.R in S1 File). The RF algorithm was even more appropriate reach-
ing an oval accuracy of 94.8% (95% CI: 93.3-95.9%). This was mainly because the proportion
foraging was the most dominant behaviour and was identified well. Therefore, it seemed
appropriate to use the mean balanced accuracy, which is unbiased by class frequency, as a mea-
sure of model performance. The balanced accuracy increased with sequence duration and
reached an optimum of ~77% at a 30 s window, when compared for identical test data (Fig 1).
Model performance did not change much as the time window was further increased to 60 s.
Simultaneously, the data base with uninterrupted behavioural observations (i.e., time
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Fig 1. Time window size. The effect of window size on balanced accuracy of the RF model (black; mean + SD) and the underlying file size (red; lines of data).
Overlapping data windows were increased from 6 to 60 s.

https://doi.org/10.1371/journal.pone.0318928.9001

windows) declined rapidly (Fig 1). Therefore, a model based on 30 s data (with 15 s incre-
ments) seemed best.

Confusion matrix of an ML model to predict behaviour from acceleration data, as validated
by video recordings of wild boar. The correct predictions are in bold face. The degree of wrong
predictions is shown in the columns Error and Rate. The overall accuracy of the model was
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Table 2. Confusion matrix of the best RF model.

Actual Behaviour

RLP
RLP 33
RSP 1
Foraging 0
Lactating 1
Scrubbing 0
Standing 1
Walking 0
Totals 36

https://doi.org/10.1371/journal.pone.0318928.t002

1-0.052 = 1-total error = 0.948. Rare behaviours (in the dataset), like scrubbing were never
predicted by the model.

Sensitivity is a measure of how well the model can identify true positives and specificity is a
measure of how well it can identify true negatives. Their mean, balanced accuracy, is a measure
of performance in the imbalanced class setting.

Certain behaviours could be identified well by acceleration data, others not reliably at all. A
confusion matrix for the best machine-model is given in Table 2. The best predicted behaviour
was foraging, followed by RLP, RSP and lactation. Some behaviours, like scrubbing, were
extremely rare and could not be predicted reliably. For example, “walking” occurred 25 times
but was mistaken for “foraging” every time (Table 2). Those rare behaviours may be entirely
omitted. The sensitivity, specificity and balanced accuracy for the behaviours is given in
Table 3.

Both raw acceleration data and the additional jerking-filtered acceleration data were impor-
tant in predicting a behaviour. This conclusion was based on the finding that 6 of the 10 most
important variables were computed from acceleration data as such, while 4 were computed
from jerking-filtered measurements. The three most important variables (scaled importance
0.60-1.00) were all interquartile ranges (Fig 2), and the first variable that was the power of a
frequency was ranked 52, i.e., completely unimportant (scaled importance 0.07).

Discussion

Here, we successfully employed a RF algorithm to predict behaviour, a model that outclassed
artificial neural networks. Both algorithms have been used in the past to classify behaviour
[23]. The rate of correct predictions in the present study was improved by the size of the video
basis. The positive identification of a certain behaviour (its sensitivity) was correlated with its
commonness (r = 0.76; Spearman’s coefficient).

The type of behaviour observed was clearly biased towards foraging, which was expected in
a feeding enclosure. Both the directly observed amount of foraging (80.9%) and the predicted

Predicted Behaviour

RSP Foraging | Lactating Scrubbing Standing Walking Error Rate
0 1 0 0 1 0 0.057 2/35
62 5 1 0 3 0 0.139 10/72
0 1013 0 0 4 0 0.004 4/1017
2 1 13 0 0 0 0.235 4/17
0 2 0 0 0 1.000 2/2
2 12 0 17 0 0.468 15/32
0 25 0 0 0 1.000 25/25
66 1059 14 0 25 0 0.052 62/1200

Table 3. Sensitivity and specificity (% accuracy) computed from the best model.

Sensitivity
Specificity

Balanced Accuracy

RLP
94.28
99.74
97.01

https://doi.org/10.1371/journal.pone.0318928.t003

RSP Foraging Lactating Scrubbing Standing Walking
86.11 99.61 76.47 0.00 53.12 0.00
99.64 74.86 99.91 100 99.31 100
92.87 87.24 88.19 50 76.20 50
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Fig 2. Variable importance. Relative importance for the 10 most important variables (top to bottom) in the best model predicting behaviour from acceleration.
The three most important variables were all interquartile ranges. The labels in parenthesis indicate which of the accelerometer axes (x,y,z) was important, and
whether it was jerk-corrected (j).

https://doi.org/10.1371/journal.pone.0318928.9002

foraging (88.2%) were much higher than expected from other models, also using wild boar
[24]. This is not surprising, because behavioural observations were made in a large feeding
pen. However, the main purpose of this study was not to establish a representative behaviour
pattern for wild boar but methodological namely to see if a ML model would predict behaviour
with sufficient accuracy if acceleration measurements are slow (1 Hz). This was clearly the
case. Our model identified behaviour with an accuracy of ~95% and mean balanced accuracy
of all behaviours was ~77%.
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Whereas boar in an enclosure may show shifts in the frequency of behaviours shown, there
is nothing to suggest the occurrence of unnatural behaviours in captive wild boar. Unfortu-
nately, there are no behavioural records from free-living animals for comparison.

We have reason to believe (see below) that certain behaviours, like scrubbing, were simply
too rare to be learned reliably. These behaviours could be removed from the dataset, to facili-
tate the focus on certain important variables, such as lactation. Alternatively, rare behaviours
might be identifiable using more frequently sampled acceleration values or maybe observed
over a longer time-period or in a different setting, i.e., outside a feeding pen. This might for
instance be the case for walking, which by our algorithm could not be differentiated properly
from feeding. This was most likely because the two behaviours were too intermixed with each
other and many time windows identified as feeding contained partly also the behaviours walk-
ing and/or standing but were identified as feeding as this was the most frequent behaviour in
the given time window. This is reflected by the fact that walking made up 5.9% of the total
observation time but was categorised in only 2% of time windows (25/1197). Following a
slightly different procedure and training, the algorithm with time windows only containing
one behaviour, respectively, potentially could have resulted in a better prediction also for
behaviours that often occurred intermixed with other behaviours like walking and standing.
On the other hand, this would have reduced the number of time windows available for training
essentially and potentially resulted in an overall decreased performance.

Of course, a weakness of the supervised method used is that certain behaviours such as wal-
lowing or swimming were not represented in the training data. These behaviours may be par-
ticularly important for thermoregulation in wild boar, which could be an additional driver of
population growth under global climate change. This underlines the need for better data sig-
nals that contain nearly all representative behaviours [24]. Another possible limitation might
seem to be the location of the accelerometer which was mounted freely rotating to the ear of
the animals. Indeed, other more rigid positions like fixating it to the leg of the animals or on a
collar potentially could have resulted in accelerometer data even better suited to predict wild
boar behaviour. These positions however imply a high danger for the sensors to be damaged
either by the animal itself or by other sows [18]. The shape and large diameter of the neck does
further not allow a save fixation of a collar, especially for the long-term data recording. There-
fore, applying the sensor to the ear of the animal is the most desirable solution for the practica-
ble application of accelerometers to sows [25]. Also from ethical aspects (e.g., low risk of
infection) the ears seem the best position for an acceleration logger.

The sensitivities and specificities of resting in the lateral and sternal position were very high
(Table 3) which is in accordance to findings in domestic sows [2]. Surprisingly, we found that
lactating of females could be predicted in ~76% of all cases (Table 2), although it should be
very similar to resting in a lateral position. However, ODBA during lactation was about twice
as high as during resting (Table 1), indicating that suckling young generate substantial gravita-
tional forces.

Giving milk to young is a social interaction that indicates successful reproduction without
direct observation. This finding may be of interest to wildlife managers that are trying to con-
trol population growth in this species. Wild boar is a pest species with populations increasing
worldwide and substantial damage to crops or endemic plants [23, 26]. Thus, an early sign of
reproduction may help to control population expansion in this species. Lactation, Le., RLP
with a high simultaneous movement not only indicates the presence of young, but high invest-
ment in their growth [e.g., 27]. At a minimum lactation behaviour will provide managers with
an estimate of the proportion of females with successful reproduction. When entered, for
instance, into Leslie matrix models, they will inform wildlife managers if a population can be
expected to grow or decline. Accordingly adjusted management measures may result [28]. The
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same potentially holds true for foraging, provided it is correlated with actual food uptake.
Food availability is the most important driver of population increase in wild boar [23, 26] and
information on the time spend feeding may be highly valuable for wildlife management.

Further insights on the behaviour criteria used for classification can make use of the com-
puted variance importance. The three most important variables were all interquartile ranges
(IQRs), that is, a measure of both the central tendency and variation in acceleration. This vari-
able was most characteristic and was crucial for the RF algorithm. For example, the mean IQR
was only 36.2 in RSP but 553.3 in scrubbing data. The fact that the mean IQR was clearly
higher resulting from walking and scrubbing than any other behaviour (<460) reinforces our
assessment that these behaviours were only difficult to classify because they were rare. Note
that including ODBA did not improve the model.

Also, the fact that frequencies were unimportant variables explains how the low-speed
accelerometers used were able to lead to a high overall accuracy of prediction: The most
important information was contained in static characteristics, such as the IQR. Its waveform,
especially the power of frequencies above 0.5 Hz played no role in predicting behaviour. This
is not to say that lower periods may well be characteristic for behaviours obtained with acceler-
ometers that are able to sample at higher rates.

We already provided information on the cost of an ear tag system. However, a purely eco-
nomic comparison between using slow and fast accelerometers would not be sensible. First,
Smartbow ear tags, as used here, are commercially available only in the slow 1 Hz version,
higher sampling rates are restricted to scientific studies only [29]. Importantly, the monetary
cost of accelerometers is negligible compared with the necessary data transmission system or
personnel costs of a project. Much more significant are the costs of a high sampling rate system
in terms of battery life and animal welfare. Battery life almost linearly scales with sampling fre-
quency and is, for instance, more than halved when the logging sampling rate is decreased
from 100 Hz down to 25 Hz [30]. Lowering the sampling rate thus increases the total observa-
tion period decreases the need for frequent recapturing and immobilizing wild animals, which
may be even fatal. Of course, there is generally a trade-off between sampling rate and accuracy
of behavior detection [e.g., 2, 11, 31]. Only certain species display short bursts of special move-
ments that indeed require high sampling rates [e.g., 31-33]. Therefore, the choice of collection
speed should include considering a species behavioural characteristics.

Nowadays, software is available for the Input files of ML algorithms such as the R-package
rabc [31]. However, we used and provide four R-scripts designed to ease the process. Script A
(“make jerked”; S1 File) is a short R-script that adds the jerk-filtered data to a table with animal
name(s) plus acceleration data. If the purpose is the generation of a new behavioural model,
the user has to add a column “behaviour” with the corresponding behaviour observed. If the
goal is prediction of behaviour from acceleration and an existing model the user should also
generate a column “behaviour” but assign it the label “unknown”. Script B (“make input file”;
S1 File) will then be used to generate an input file with variables for ML, given a certain time
window size. The same script can be used to generate input files for a new model (script C) or
to predict behaviour (script D). Given the 50% overlap of moving time windows we chose
here, the time interval used for generating the variables for ML is computed in script B from
half the window size. Script B may be used as is for other sampling frequencies and may be
slightly modified to make the time interval and window size mutually independent (i.e., use
overlaps of moving time windows different from 50% overlap). It also includes a routine to
compute the Fourier spectrum from time series of acceleration data. Script C (“build model”;
S1 File) is used to build a model based on h2o.randomForest. Use h20.deeplearning for an
ANN algorithm, depending on the data (Script E’ANN?”, S1 File). Script D (“prediction”; sup-
plementary material) is used to predict behaviour from a model loaded from disk. The
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supplementary material also includes a binary file including several example data files, the data
file for the 30 s time window, as well as the original behavioral data (S1 Data).

Conclusions

Despite the low frequency acceleration sampling (1 Hz) even infrequent behaviour of wild
boar could be predicted with high sensitivity and specificity, for many behaviours. This was
possible because the underlying RF algorithm used mainly static variables, such as the IRQ of
acceleration data to classify behaviour. These data may be used by wildlife managers to develop
appropriate measures against this or other pest species.

Supporting information

S1 File. All R-Scripts used in the analysis including the scripts to A) create jerk.-filtered data
(make-jerked.R), B) create the input file for the analysis (make input file.R), C) build the ran-
dom forest model (build model RF.R), D) predict behaviors (prediction.R), and E) to run the
artificial neural network (ANN.R).

(DOCX)

S1 Data. Binary file to be loaded in R containing two example data files, the data file for
the 30 s time window, as well as the original behavioral data.
(RDATA)
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