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Abstract
Background  Prognosis and quality of life in patients with advanced cutaneous T-cell lymphoma (CTCL), particularly in those with Sézary 
syndrome (SS) or advanced-stage mycosis fungoides (MF), are poor. Monoclonal antibodies or antibody–drug conjugates (ADCs) have been 
added into CTCL treatment algorithms, but the spectrum of antibody-targetable cell surface antigens in T-cell non-Hodgkin lymphomas 
(T-NHLs) is limited.
Objectives  To evaluate the expression of the major histocompatibility complex class II chaperone CD74 in common subtypes of CTCL by 
various methods, and to explore the efficacy of targeting CD74 in CTCL cells with an anti-CD74 ADC in vitro and in vivo.
Methods  We comprehensively investigated the expression of CD74 in well-defined CTCL cell lines by polymerase chain reaction, immunob-
lotting and flow cytometry. More than 140 primary CTCL samples of all common subtypes were analysed by immunohistochemistry, flow 
cytometry, immunofluorescence and ‘co-detection by indexing’ (CODEX) multiplexed tissue imaging, as well as by single-cell RNA sequenc-
ing (scRNAseq) analyses. DNA methylation of CTCL cell lines was interrogated by the generation of genome-wide methylation profiling. The 
effect of a maytansinoid-conjugated humanized ADC against CD74 was investigated in CTCL cell lines in vitro, alone or in combination with 
gemcitabine, and in vivo after xenotransplantation of CTCL cell lines in NOD-scid Il2rgnull mice.
Results  We demonstrated that CD74 is widely and robustly expressed in CTCL cells. In addition, CD74 expression in SS and MF was con-
firmed by scRNAseq data analysis and was correlated in CTCL cell lines with CD74 DNA hypomethylation. CD74 was rapidly internalized in 
CTCL cells and CD74 targeting by the ADC STRO-001 efficiently killed CTCL-derived cell lines. Finally, targeting of CD74 synergized with 
conventional chemotherapy in vitro and eradicated murine xenotransplants of CTCL cell lines in vivo.
Conclusions  CD74 is expressed in common CTCL subtypes. Targeting CD74 efficiently killed CTCL cells in vitro and in vivo. We therefore 
suggest the targeting of CD74 to be a highly promising treatment strategy for CTCL.

Linked Article: Gniadecki Br J Dermatol 2025; 192:792.
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Cutaneous T-cell lymphomas (CTCLs) are a heterogenous 
group of T-cell non-Hodgkin lymphomas (T-NHL) primarily 
located in the skin. Recent classifications of haematolym-
phoid tumours comprise the most common CTCL types; 
mycosis fungoides (MF); Sézary syndrome (SS) with tumour 
cells in lymph nodes and the peripheral blood; and primary 
cutaneous (pc) CD30+ T-cell lymphoproliferative disorders, 
including lymphomatoid papulosis (LyP) and primary cutane-
ous anaplastic large cell lymphoma (pcALCL).1,2

Patients with early-stage CTCL usually have an indolent 
clinical course; however, the treatment response is normally 
short-lived and – without curative treatment options – the 
prognosis and quality of life of patients with advanced-stage 
CTCL are poor.3–6 This creates an unmet medical need for 
innovative therapeutic strategies. CTCL can be targeted 
by monoclonal antibodies or antibody–drug conjugates 
(ADCs).7,8 However, the spectrum of antibody-attackable 
proteins in T-NHL is limited,9 making it critical to identify 

additional targets. We recently reported on CD74 in systemic 
T-NHL, particularly ALCL.10 CD74 attracted our attention 
during the exploration of mechanisms leading to the t(2;5)
(p23;q35)/NPM-ALK translocation in ALCL.11 In this context, 
we have already explored several ALCL-associated genes in 
CTCL,11 which we here extend to CD74. CD74 not only func-
tions as a chaperone for major histocompatibility complex 
(MHC) class II molecules, but also as a signalling molecule.12,13 
Initially considered to be a B-cell-restricted antigen within 
lymphoid cells,13 we and others have recently challenged 
that view.10,14,15 Primarily based on the high expression levels 
of CD74 in normal and malignant B lymphoid cells, targeting 
of CD74 has been explored in preclinical models of B-cell 
non-Hodgkin lymphomas (B-NHL), and anti-CD74 monoclo-
nal antibodies have been explored in clinical trials.16–22 Here, 
we present a comprehensive analysis of CD74 expression in 
CTCL and demonstrate in vitro and in vivo that targeting CD74 
may be a highly efficient treatment option in CTCL.

What is already known about this topic?

•	 The prognosis and quality of life of patients with advanced cutaneous T-cell lymphoma (CTCL) is poor.
•	 Curative treatment options are lacking.
•	 Although monoclonal antibodies or antibody–drug conjugates (ADCs) are successfully used to treat patients with CTCL, the spec-

trum of antibody-targetable cell surface antigens on CTCL needs to be extended to improve antibody-based treatment strategies.

What does this study add?

•	 There is an unmet medical need to identify targetable cell surface antigens on CTCL tumour cells.
•	 We present ample evidence that the major histocompatibility complex class II chaperone CD74 is widely and robustly expressed in 

common CTCL subtypes, including clinically challenging entities.
•	 Targeting of CD74 in CTCL is highly effective in vitro and in vivo, even against TP53-defective CTCL cells.

What is the translational message?

•	 We provide evidence that targeting CD74 is not only highly effective in vitro, but also results in complete tumour eradication in pre-
clinical CTCL in vivo models.

•	 Such cell line-derived xenotransplant eradication has rarely – if ever – been documented for CTCL models so far.
•	 Our data provide a robust basis to further advance CD74 targeting in CTCL toward clinical trials, including clinically challenging enti-

ties such as Sézary syndrome and advanced stage mycosis fungoides.

Lay summary

Cutaneous T-cell lymphoma (or ‘CTCL’) is a rare cancer that begins in certain types of blood cells. CTCL belongs to a group of cancers 
called ‘T-cell non-Hodgkin lymphomas’. It occurs most often in the skin. In Europe, CTCL affects about 0.5 people in 100,000 every 
year. It is more common in the USA. Even though CTCL is rare, better treatments are needed. Early-stage CTCL can be treated, but the 
effect of treatment does not last long. The quality of life and life expectancy of people with advanced CTCL is poor. The disease can be 
treated with molecules called ‘antibody drug conjugates’ (‘ADCs’ for short). ADCs are special proteins designed to recognize and attach 
to the surface of cancer cells.

In our study, carried out by researchers across Germany and Austria, we identified a protein called ‘CD74’ on the surface of CTCL 
cells. We found it to be a promising target for treatment. Our experiments demonstrated that ADCs that target CD74 could effectively 
kill CTCL cells.

Our findings suggest that targeting CD74 could be developed into a new treatment approach for CTCL, potentially leading to clinical 
trials.
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Materials and methods

Cell lines and culture conditions

The human SS-derived cell lines Se-Ax and HuT 78, the 
MF-derived cell lines My-La and HH, the CTCL-derived cell 
line Mac-1, the systemic ALCL cell lines Karpas-299 [ana-
plastic lymphoma kinase (ALK)+] and FE-PD (ALK–), and 
the T-cell leukaemia-derived cell lines Jurkat and KE-37 
were cultured as previously described.23,24 Cell lines were 
regularly tested negative for mycoplasma contamination, 
and their authenticity was verified by short tandem repeat 
(STR) fingerprinting. Where indicated, cells were treated 
for  the  indicated times with brefeldin A [BFA; 9 μg mL–1 
(00-4506-51; Invitrogen, Carlsbad, CA, USA)] or cyclohex-
imide [25 μg mL–1; C4859 (Merck, Darmstadt, Germany)], 
for the indicated concentrations and times with the CD74-
targeting ADC STRO-001 or – as a control – ADC GFP-SC236 
targeting green fluorescent protein (GFP; both from Sutro 
Biopharma, South San Francisco, CA, USA), or gemcitabine 
(LY-188011; Selleckchem, Houston, TX, USA) with or with-
out the ADCs. The LD50 was determined using nonlinear 
regression in Prism version 9 (GraphPad, La Jolla, CA, USA).

RNA preparation and polymerase chain reaction 
analyses

Total RNA was prepared using an RNeasy Mini Kit (QIAGEN, 
Hilden, Germany). First strand cDNA synthesis was per-
formed using a 1st Strand cDNA Synthesis Kit for RT-PCR 
(AMV) (Roche Diagnostics, Rotkreuz, Switzerland) and add-
ing oligo-p(dT)15 primer according to the manufacturer’s 
recommendation. Semi-quantitative and quantitative poly
merase chain reaction (qPCR) analyses were performed 
as described previously.25 For primer sequences, refer to 
Appendix S1 (see Supporting Information).

Preparation of whole cell extracts and 
immunoblotting

Preparation of whole cell extracts was performed as previ-
ously described.25 For immunoblot analyses the following 
primary antibodies were used: mouse monoclonal antibody 
to CD74 (sc-166047; Santa Cruz Biotechnology, Santa Cruz, 
CA, USA) and rabbit polyclonal antibody to poly(ADP-ribose) 
polymerase 1 (PARP1) (#9542; Cell Signaling Technology, 
Danvers, MA, USA). Filters were incubated with horse-
radish peroxidase (HRP)-conjugated secondary antibodies. 
Bands were visualized with PierceTM ECL Western Blotting 
Substrate (Thermo Fisher Scientific, Waltham, MA, USA).

Immunofluorescence and flow cytometry

For the analysis of CD74 cell surface expression, cells were 
incubated with a monoclonal antibody to CD74 (sc-20062; 
Santa Cruz Biotechnology) or the respective isotype control 
(MAB002; R&D Systems, Minneapolis, MI, USA), followed by 
incubation with a phytoerythrin-conjugated F(abʹ)2 fragment 
(115-116-071; Dianova, Hamburg, Germany). The percentage 
of viable and apoptotic cells was determined by Annexin V–
fluorescein isothiocyanate (FITC)/propidium iodide (PI) double 
staining (Bender MedSystems, Wien, Austria/Thermo Fisher 

Scientific) according to the manufacturer’s recommenda-
tions. Cells double-negative for Annexin V–FITC and PI were 
considered to be viable. Cells were analysed with a FACSAria 
flow cytometer and FlowJo version 10 software (Becton 
Dickinson, Franklin Lakes, NJ, USA). For flow cytometry of 
primary SS cells, peripheral blood mononuclear cells (PBMCs) 
were isolated from whole blood samples using Lymphocyte 
Separation Medium (Capricorn Scientific, Ebsdorfergrund, 
Germany). Isolated cells were incubated with antibody to CD4 
(IM2636 U; Beckman Coulter, Indianapolis, IN, USA) and to 
CD74 (326808; BioLegend, Amsterdam, the Netherlands) or 
the respective isotype control (12-4714-42; Thermo Fisher 
Scientific). Cells were analysed with a NovoCyteTM 3005 flow 
cytometer (Agilent, Santa Clara, CA, USA) and FlowJo ver-
sion 10 software.

Immunohistochemistry and immunofluorescence 
staining of skin biopsies

The detection of CD74 protein in formalin-fixed paraffin-
embedded (FFPE) tissue sections was performed with the 
anti-CD74 antibody sc-166047 (Santa Cruz Biotechnology) at 
a dilution of 1 : 7500 after a 20-min treatment in citrate-based 
buffer (Bond Epitope Retrieval solution 1; citrate-based 
buffer pH 5.9–6.1 at 25°C for 20 min). Bound antibody was 
visualized using the polymeric HRP linker antibody conjugate 
system and 3,3ʹ-diaminobenzidine as the chromogen (Leica 
Biosystems, Deer Park, IL, USA). Immunostaining was car-
ried out according to the manufacturer’s protocol on a BOND-
MAX platform using a BOND Polymer Refine Detection kit 
(Leica Biosystems). CTCL cells were identified according 
to their cellular distribution and atypical cytology, which 
includes enlarged, pleomorphic and partially cerebriform 
nuclei, combined with standard immunohistochemical (IHC) 
analyses (e.g. CD3, CD4 and CD30). Specifically, CTCL cells 
were identified histologically based on distribution pattern 
[e.g. epidermotropism or intraepidermal localization (Pautrier 
microabscesses)] and alignment along the dermoepidermal 
junction as early-stage MF or SS, and by cell morphology 
(e.g. large/transformed cells in the tumour stage or CD30+ 
cells in pcCD30+ lymphoproliferations). For immunofluo-
rescence staining, primary antibodies to CD4 [ab133616, 
dilution 1 : 500 (Abcam, Cambridge, UK); or M7310, 1:50 
(Dako, Carpinteria, CA, USA)] and CD74 [ab9514, 1 : 200; or 
ab108393, 1 : 200 (both Abcam)] were used. For a detailed 
protocol description, refer to Appendix S1.

Co-detection by indexing

Human samples and cutaneous T-cell lymphoma 
tissue microarray construction
FFPE tissue blocks were retrieved from the tissue archive 
at the Department of Dermatology, University Hospital 
Tübingen, Tübingen, Germany. All patients had clinicopatho-
logically confirmed diagnoses, as assessed by experienced 
clinicians and dermatopathologists.

Co-detection by indexing experiments
Buffers and solutions used for the co-detection by index-
ing (CODEX) are provided in Table S1 (see Supporting 
Information). All pipetting steps were performed with filter 
tips.

D
ow

nloaded from
 https://academ

ic.oup.com
/bjd/article/192/5/883/8045421 by Veterinaerm

edizinische U
niversitaet W

ien user on 29 April 2025

http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data


886 Targeting CD74 as a treatment strategy in CTCL, M. Costanza et al.

Antibody conjugation, CODEX FFPE tissue staining and 
imaging, as well as CODEX image data processing, are 
described in detail in Appendix S1. For a full description of 
CODEX reagents and methods, see Appendix S1.

Single-cell RNA and single-cell T-cell receptor 
sequencing

Data collection
Single-cell RNA sequencing (scRNAseq) of samples from 
patients with MF was performed as described in Srinivas 
et al.26 For detailed information refer to Appendix S1. The data 
are available from the European Genome–Phenome Archive 
(EGA; https://ega-archive.org) under accession number 
EGAS50000000226. scRNAseq and single-cell T-cell recep-
tor sequencing data from CD45+ PBMCs from five patients 
with SS were obtained from Gene Expression Omnibus.27

Murine xenograft model

Male and female NOD.Cg-PrkcdscidIL2rgtm1Wjl/SzJ (NSG) 
mice (The Jackson Laboratory, Bar Harbor, ME, USA) were 
bred and kept under pathogen-free conditions at the Medical 
University of Vienna (Austria). CTCL cell lines [1 × 106 cells 
in 100 μL phosphate buffered saline (PBS); Mac-1 or HuT 
78] were subcutaneously implanted into the hind flanks of 
9–10-week-old mice. When tumours were palpable, mice 
were randomly allocated into three groups to receive vehi-
cle (PBS), control ADC GFP-SC236 or CD74-targeting ADC 
STRO-001 (three doses of both the latter at 10 mg kg–1 intra-
venously every 3–4 days). Tumours were measured with cal-
lipers every 2–3 days. Tumour size was estimated with the 
following formula: volume (mm3) = (length × width2)/2. Mice 
in each group were euthanased when one of the tumours 
reached the limit tumour size of 200 (Mac-1) or 500 (HuT 
78) mm3. STRO-001 treated mice were observed for a total 
of 140 days.

Statistical analysis

All in vitro experiments were repeated at least three times 
and performed in triplicate. Data are presented as mean +/- 
SEM. The statistical significance of differences was deter-
mined using a Student’s t-test, unless otherwise specified. 
Prism version 9 (GraphPad) was used for statistical analy-
ses. For a description of the analysis of DNA methylation, 
see Appendix S1.

Results

CD74 is consistently expressed in cutaneous T-cell 
lymphoma cell lines

Firstly, we explored the expression of CD74 in various CTCL 
cell lines (Figure 1a), including Se-Ax and HuT 78 (derived 
from SS), and My-La and HH (both derived from MF).28 
Karpas-299 and FE-PD systemic ALCL cell lines, and Mac-
1, the latter derived from CTCL later progressing to ALCL,29 
served as positive controls.10 At the mRNA level, CD74 was 
promptly detectable in all CTCL cell lines, irrespective of 
their origin (i.e. SS or MF) (Figure 1a, top). qPCR analyses 

revealed that CD74 mRNA expression was lower in the 
SS cell lines vs. the MF or systemic ALCL cell lines, but 
CD74 was clearly differentially expressed compared with 
the Jurkat and KE-37 negative controls. In line with this, 
CD74 protein expression, as analysed by immunoblotting, 
was highest in Mac-1, My-La and HH cells, and lowest in 
HuT 78 cells (Figure 1a, bottom). CD74 protein presented 
with multiple bands, most likely reflecting different splice 
variants and glycosylation levels.12 Cell surface expression of 
CD74, analysed by flow cytometry, mirrored the expression 
levels in whole cell extracts (Figure 1b).

CD74 expression in primary cutaneous T-cell 
lymphoma cells

To obtain a comprehensive overview of CD74 protein expres-
sion in primary CTCL, we performed CD74 IHC in a cohort 
of 124 patients with various CTCL subtypes, flow cytometry 
and immunofluorescence of eight primary SS blood and tis-
sue samples, and CODEX multiplexed tissue imaging of 16 
CTCLs covering the most frequent subtypes. IHC analyses 
[Figure 1c, Table 1; Figure S1a (see Supporting Information)] 
demonstrated broad CD74 expression across all CTCL sub-
types, including clinically challenging ones such as advanced 
MF and SS. CTCL cells were identified as early-stage MF 
or SS according to their distribution pattern (e.g. epider-
motropic/intraepidermal) and atypical cytology, including 
enlarged, pleomorphic and partially cerebriform nuclei, and/
or by cell morphology (e.g. large/transformed cells as seen 
in the tumour stage) combined with standard IHC analyses 
(e.g. CD3, CD4 and CD30; see also the ‘Materials and meth-
ods’ section). The majority of CTCL cells were positive for 
CD74 and displayed intense staining (Table 1). Next, analy-
ses of circulating SS tumour cells by flow cytometry (n = 8; 
Figure 1d, Figure S1b) and SS tissue samples by CD74–CD4 
double immunofluorescence staining (n = 8; Figure S1c) 
demonstrated that CD74 was robustly expressed in five of 
eight and six of eight cases, respectively.

Furthermore, CODEX multiplexed imaging [Figure 2; 
Figures S2, S3, Tables S1, S2 (see Supporting Information)] 
confirmed CD74 expression on CTCL tumour cells. For 
CODEX, we generated a tissue microarray encompassing 
well-defined samples of the most frequent CTCL entities 
(Figure S2a). Examples of CODEX images of skin biopsy 
sample 10 in greyscale for each antibody are shown in 
Figure S3a and examples of the tumour cell gating strategy 
following CODEX for quantification of CD74+ tumour cells 
are provided in Figure S3(b). In line with the single IHC anal-
yses, CODEX confirmed not only that CTCL tumour cells 
from the CD30+ lymphoproliferative disease LyP (Figure 2a) 
and pcALCL (Figures S2b) showed the most frequent CD74 
expression, but also its robust expression by SS (Figure 2b) 
and MF tumour cells (Figure S2c; with quantitative analyses 
depicted in Figure 2c).

Finally, we explored scRNAseq data from skin biopsies 
from five patients with MF (own data)26 and from CD45+ 
PBMCs from five patients with SS (publicly available data; 
Figure 3a).27 CD74 mRNA expression within the MF or SS 
tumour cell population varied between patient samples and 
different lymphoma cells of an individual patient but was 
detected in CTCL cells in all patients analysed (Figure 3a). 
These analyses also demonstrated the high-level expression 

D
ow

nloaded from
 https://academ

ic.oup.com
/bjd/article/192/5/883/8045421 by Veterinaerm

edizinische U
niversitaet W

ien user on 29 April 2025

http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
https://ega-archive.org
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljaf001#supplementary-data


887Targeting CD74 as a treatment strategy in CTCL, M. Costanza et al.

(a)

(c)

(d)

(b)

Figure 1  CD74 expression in cutaneous T-cell lymphoma (CTCL). (a) Analysis of CD74 mRNA expression in various cell lines by quantitative 
polymerase chain reaction (qPCR; top) or reverse transcriptase PCR (RT-PCR; centre), and of CD74 protein expression by immunoblotting (Western 
blot) in whole cell extracts (bottom). Note that various CD74 protein bands of different sizes are detectable, and that Jurkat and KE-37 cells lack 
CD74 expression. Analyses of GAPDH and poly(ADP-ribose) polymerase 1 (PARP1) are shown as controls. (b) Cell surface expression analysis of 
CD74 by flow cytometry in various cell lines. Filled histograms, CD74 staining; open histograms, isotype control (IC) staining. (c) Representative 
immunohistochemistry staining of skin biopsies from various CTCL subtypes. Each triplet from top to bottom represents staining from serial 
sections of the same skin biopsy of the respective patient. Top row, haematoxylin and eosin (H&E) staining; central row, CD3, CD4 or CD30 staining; 
bottom row, CD74 staining. Original magnifications: × 100; scale bars = 100 μm. (d) CD74 flow cytometry of circulating CD4+ Sézary syndrome (SS) 
cells from the peripheral blood of three patients (SS_pt1; SS_pt2; SS_pt3). Top, gating strategy for analysis of CD74 expression on SS cells from 
peripheral blood by flow cytometry. The lymphocyte population was identified via forward (FSC) and side scatter (SSC); doublets were excluded 
via single cell gating. CD4+ cells were analysed for CD74 expression (example shown from SS_pt1). The filled and the open histograms represent 
SS cells stained with IgG1 isotype control (IC) and CD74 antibody, respectively. Bottom, CD74 staining of three samples from patients with SS 
(SS_pt1; SS_pt2; SS_pt3) as described above (top). Based on the CD3 + CD4 + CD7– phenotype, tumour cell contents within the CD4 population were 
94% (SS_pt1), 49% (SS_pt2) and 93% (SS_pt3), respectively. LyP, lymphomatoid papulosis; MF, mycosis fungoides; pcALCL, primary cutaneous 
anaplastic large cell lymphoma.
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of CD74 in tumour-infiltrating macrophages and B cells. In 
addition, analyses of these data, as well as the cell lines, 
demonstrated expression of the CD74 ligand MIF,30 as well 
as the CD74 interaction partners CD44 and CXCR4 in CTCL 
cells (Figures S4, S5; see Supporting Information).31,32

DNA hypomethylation correlates with CD74 
expression in cutaneous T-cell lymphoma cell 
lines

To investigate whether altered DNA methylation explains 
differences in CD74 expression, we generated genome-
wide DNA methylation profiles of the CTCL cell lines and 
compared them with benign B and T cells and other T-cell 
leukaemia and lymphoma cell lines [Figure 3b; Table S3 (see 
Supporting Information)]. Examining the 15 CpGs located in 
the CD74 locus, we identified a profound promoter hyper-
methylation in the T-ALL control cell lines with no CD74 
expression (Jurkat and KE-37). As mature B cells (in con-
trast to pre-B and T cells) express CD74, we investigated 
CpGs affected during B-cell differentiation in detail. Four 
loci (cg18065728, cg25988603, cg22183016, cg22975568; 
located in different parts of the gene) were hypomethylated 
in mature vs. pre-B cells, which also showed decreased 
DNA methylation in the My-La and HH cells, which is in line 
with elevated gene expression.

CD74 is rapidly internalized and anti-CD74 ADC 
STRO-001 efficiently kills cutaneous T-cell 
lymphoma cell lines in vitro

Given the consistent expression of CD74 in CTCL, we rea-
soned that the targeting of CD74 by ADCs may be a ther-
apeutic approach in CTCL. Apart from the amount of the 
expressed antigen on the tumour cells, the internalization 
rate of the respective antigen – and thus internalization of 
the ADC and its respective cytotoxic agent – is crucial for 
ADC functionality.33 As demonstrated, for example, in B 
cells, CD74 is rapidly internalized.34 To address this question 
in our CTCL cell lines, we treated Mac-1, Se-Ax, My-La and 
HH cells with brefeldin A (BFA), which inhibits intracellular 
vesicle formation and protein trafficking, and thus inhibits 
the transport of newly synthesized membrane proteins to 
the cell surface (Figure 3c, top panels).35,36 Furthermore, we 
treated the cells with cycloheximide (CHX), which inhibits 

translational elongation and thus protein synthesis (Figure 
3c, bottom panels).37 In both cases (i.e. treatment with BFA 
or CHX), cell surface expression should rapidly drop in case 
of rapid internalization. Indeed, treatment with BFA and CHX 
resulted in a rapid and profound reduction of the cell sur-
face expression of CD74, indicating rapid internalization as 
a prerequisite for effective targeting (Figure 3c). Next, we 
examined the effect of the anti-CD74 ADC STRO-001 on 
the various cell lines (Figure 4a–c). STRO-001 is an aglyco-
sylated anti-CD74 IgG1 humanized antibody conjugated to 
a noncleavable linker–maytansinoid warhead.22 STRO-001 
efficiently induced cell death in all CTCL cell lines, with sev-
eral of them killed at low nanogram concentrations (Figure 
4a). PARP1 cleavage (Figure 4b, left) and Annexin V posi-
tivity (Figure 4b, right) following STRO-001 treatment were 
indicative of apoptotic cell death. Remarkably, the induc-
tion of STRO-001-mediated cell death was independent 
of TP53 status (HH and Hut 78 cell lines harbour deleteri-
ous TP53 alterations).24 The isotype-matched control ADC 
GFP-SC236 targeting GFP did not affect the viability of any 
of the cell lines. Furthermore, we explored the response of 
the SS Se-Ax and HuT 78 cells to STRO-001 in combination 
with a conventional chemotherapeutic used in CTCL treat-
ment – gemcitabine (Figure 4c). The combination treatment 
resulted in significantly enhanced cell death compared with 
both substances alone.

Anti-CD74 ADC STRO-001 eradicates cell 
line-derived cutaneous T-cell lymphoma 
xenotransplants in vivo

To test the efficacy of ADC STRO-001 treatment in vivo, 
we selected the two representative CTCL cell lines (Mac-1 
and HuT 78) with high and low CD74 expression levels, 
respectively, and transplanted them subcutaneously into 
NSG mice. When mice developed palpable tumours, we 
intravenously administered three bolus injections (10 mg 
kg–1 each) of the ADC STRO-001 or controls starting at day 
7 (Mac-1) or 10 (HuT 78) from cell injection (Figure 4d). While 
control-treated mice had to be euthanased due to aggres-
sive tumour growth within 3 weeks, STRO-001 treatment 
resulted in tumour shrinking after the first injection and in 
complete tumour eradication for both cell lines examined. In 
an observation period of 140 days, neither tumour relapse 
nor signs of obvious toxicity were observed.

Table 1  Immunohistochemical analyses of CD74 in cutaneous T-cell lymphoma (CTCL)

Entity No. of cases

IHC (% of positive cells)

0% < 10% 10–50% 50–80% > 80%

MF (patch) 22 – – 5 (22.72%) 7a (31.81%) 10b (45.45%)
MF (plaque) 19 – 1 (5.26%) 4a (21.05%) 11a (57.89%) 3a (15.78%)
MF (tumour) 33 – 6 (18.18%) 8 (24.24%) 14b,c (42.42%) 5c (15.15%)
LyP 24 – – 3 (12.5%) 14 (58.3%) 7 (29.16%)
pcALCL 10 – – – 4 (40%) 6 (60%)
SS 16 – – 2 (12.5%) 12 (75%) 2 (12.5%)

In total, 126 CTCL samples from 124 patients were stained for CD74. Lymphoma samples were classified according to the percentage of CD74+ cells 
within the lymphoma cell population, indicated as negative (0%),  < 10%, 10–50%, 50–80% or > 80%. If positive, lymphoma cells usually showed an 
intermediate or – more frequently – strong staining pattern. Note that in primary cutaneous anaplastic large cell lymphoma (pcALCL) the vast majority 
of tumour cells consistently express CD74, as previously seen in systemic ALCL.10 LyP, lymphomatoid papulosis; MF, mycosis fungoides; SS, Sézary 
syndrome. aIndividual samples subclassified as folliculotropic MF. bSame patient, different lesions of different MF stage (MF patch/MF tumour). cSame 
patient, different lesions from MF tumour stage.
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Discussion

Our in-depth analysis has provided evidence that CD74 is 
consistently expressed in all common subtypes of CTCL. 
We have demonstrated that, in large part, tumour cells in a 
given CTCL sample express CD74 and at a high level. This 
finding, together with the observation that CD74 is rap-
idly internalized not only in B cells,12 but also in our CTCL 

cell lines, makes CD74 an ideal target for ADCs in CTCL 
cells. Previous work revealed that CD74 is expressed on 
antigen-presenting cells such as macrophages and by lym-
phocytes in the B-cell compartment.12,38,39 CD74 has also 
been reported to be present in the T-lymphoid compartment 
on activated T cells, in systemic ALCL and HuT 78 CTCL 
cells, and – recently – in regulatory T cells.10,15,40,41 Thus, 
our data extend the spectrum of CD74+ cell types to CTCL.

(a)

(b)

(c)

Figure 2  Co-detection by indexing (CODEX) multiplexed tissue imaging of cutaneous T-cell lymphoma (CTCL) entities lymphomatoid papulosis 
(LyP) and Sézary syndrome (SS). (a) Seven-colour overview of a case of LyP from a multitumour tissue microarray (TMA), imaged using a 39-marker 
CODEX panel. Left and centre represent seven-colour overviews for the markers CD74, CD30, CD3, Ki-67, Podoplanin, CD138 and DRAQ5 nuclear 
stain, with individual markers shown on the right. Original magnifications: × 20. Scale bars: 100 µm (left and centre); right 50 µm (right). LyP used No. 
33 core according to Figure S2(a). (b) Seven-colour overview of a case of SS as described in (a), using No.7 core according to Figure S2(a). Markers 
include CD74, CD3, CD4, CD7, CD26, CD138 and DRAQ5 nuclear stain, with individual markers shown on the right. (c) Quantification of CD74 
signals for all cases of CTCL analysed by CODEX multiplexed imaging. Left: percentage of CD74+ tumour cells per CTCL entity; right: CD74 mean 
fluorescence intensity (MFI) for CD74+ tumour cells per CTCL entity. Each dot represents an individual patient (mean of two separate TMA scores). 
MF, mycosis fungoides; pcALCL, primary cutaneous anaplastic large cell lymphoma.
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(a)

(b)

(c)

Figure 3  Single-cell analyses of mycosis fungoides (MF) and Sézary syndrome (SS) skin biopsies, CD74 gene methylation and treatment of 
cutaneous T-cell lymphoma (CTCL) cell lines with brefeldin A (BFA) and cycloheximide (CHX). (a) Single-cell RNA and T-cell receptor sequencing 
of five MF (top) and five SS (bottom) skin biopsies. Left: Uniform Manifold Approximation and Projection (UMAP) of all cells in the respective skin 
biopsies according to the similarity of their transcriptome and annotated by the (left) individual patient, (centre) cell type and (right) CD74 expression. 
Right: CD74 mRNA expression levels in the various cell types, as indicated, in the same skin biopsies as denoted in the left-hand image. Note that 
infiltrating B cells and macrophages with known high-level CD74 expression are among the cell types with the highest CD74 mRNA expression. 
B, B cells; EN, endothelial cells; EP, epithelial cells; FB, fibroblasts; Mϕ, macrophages; NK, natural killer cells; pDC, plasmacytoid dendritic cells; 
T, T cells. (b) Analysis of CD74 methylation in CTCL and control cell lines. Top: heatmap showing DNA methylation levels at 15 CpGs associated with 
CD74 in haematopoietic precursor cells (HPCs; n = 6), pre-B cells (n = 40), mature B cells (n = 46), pre-T cells (n = 17), mature T cells (n = 31), anaplastic 
large cell lymphoma cell lines [Karpas-299 (K299), FE-PD], T-ALL cell lines (Jurkat, KE-37) and the CTCL cell lines (Se-Ax, HuT 78, My-La, HH). 
Bottom: combined DNA methylation levels of the four CpGs [cg18065728, cg25988603, cg22183016, cg22975568; associated with different parts 
of the gene: 3ʹ untranslated region (UTR), gene body and transcription start site (TSS)] with the highest DNA methylation decrease during B-cell 
differentiation. CD74 mRNA and protein levels are depicted underneath (see also Figure 1). Note the profound promoter hypermethylation in the 
T-ALL control cell lines with no CD74 expression (Jurkat and KE-37). (c) Extracellular flow cytometry of CD74 following treatment of CTCL cell lines 
Mac-1, Se-Ax, My-La and HH with Brefeldin A (BFA; top panels) or cycloheximide (CHX; bottom panels). Cell lines were left untreated or treated 
for the indicated timepoints (t.p.; indicated in min) with BFA or CHX. Thereafter, cell surface expression was analysed as in Figure 1(b). The mean 
fluorescence intensity (MFI) for each sample is indicated on the right. pt, patient.
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(a)

(b)

(d)

(c)

Figure 4  CD74-targeting of cutaneous T-cell lymphoma (CTCL) in vitro and in vivo. (a) Induction of cell death in CTCL cell lines after treatment 
with the CD74-targeting antibody–drug conjugate (ADC) STRO-001. CTCL cell lines (Se-Ax, HuT 78, My-La, HH, Mac-1; all CD74+), as well as the 
anaplastic large cell lymphoma (ALCL) cell line Karpas-299 (CD74+) and the T-cell leukaemia-derived cell lines Jurkat and KE-37 (both CD74–) – the 
latter three included as controls – were treated with various concentrations of the CD74-targeting ADC STRO-001 (red lines) or the isotype-matched 
control ADC GFP-SC236 recognizing green fluorescent protein (GFP; blue lines). After 72 h, the induction of cell death was determined by propidium 
iodide (PI) staining and flow cytometry. The percentage of viable cells is indicated. Right: indication of the LD50 for STRO-001 for the various cell 
lines. Note that below 5 μg mL–1 only the CD74+ cell lines are killed by STRO-001 and that the control ADC GFP-SC236 does not exert cytotoxicity 
in any of the cell lines. One of three independent experiments is shown. (b) Induction of apoptosis by STRO-001 in CTCL cell lines. Left: Se-Ax, HuT 
78 and Mac-1 cells were left untreated (0 h) or treated for 24 h and 48 h with STRO-001 or – as a control – GFP-SC236. At the indicated times, whole 
cell extracts were prepared and analysed by immunoblotting using an antibody recognizing full-length poly(ADP-ribose) polymerase 1 (PARP1) and 
its large cleavage product (the latter marked by an asterisk). Note that an increase in cleaved PARP-1 is only detectable in the CTCL cell lines treated 
with STRO-001. One of three independent experiments is shown. Right: Mac-1 and HuT 78 cells were left untreated (left) or treated for 72 h with 
control ADC GFP-SC236 (centre) or STRO-001 (right). Thereafter, cells were analysed by Annexin V–fluorescein isothiocyanate (FITC)/PI staining. 
The percentages of cells in the respective quadrants are indicated. Note the increase of Annexin V–FITC+ cells after STRO-001 treatment. One of 
three independent experiments is shown. (c) Se-Ax and HuT 78 cells were treated with control ADC GFP-SC236 (CTRL), STRO-001 (both 0.185 μg 
mL–1), gemcitabine (Se-Ax, 20 nmol; HuT 78, 12 nmol) or combinations thereof. After 96 h, induction of cell death was determined by PI staining and 
flow cytometry. One of three independent experiments is shown. (d) In vivo antitumour efficacy of anti-CD74 ADC STRO-001 in murine xenograft 
models of the Mac-1 and HuT 78 cell lines. For each cell line mice were randomized into three groups to receive – when tumours were palpable – 
either vehicle [phosphate buffered saline (PBS); n = 6], control ADC GFP-SC236 (10 mg kg–1; n = 5) or anti-CD74 ADC STRO-001 (10 mg kg–1; n = 5) 
intravenously at days 7, 10 and 14 for the Mac-1 group and at days 10, 14 and 17 for the HuT 78 group. Note that three injections of the 10 mg kg–1 
dose is much below the maximum dose tolerated by mice in vivo.22,56 Tumour volumes were measured over time and are shown as mean (SEM). P -
values were calculated with a two-tailed unpaired Student’s t-test. ****P < 0.0001. DMSO, dimethylsulfoxide; Gem, gemcitabine; n.a., not available; 
ns, not significant.
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Targeting CD74 is effective in vitro and in vivo, even 
against TP53 -defective CTCL cell lines, such as HH and HuT 
78, which harbour deleterious TP53 alterations.24 This is of 
clinical relevance as SS cells frequently harbour TP53 altera-
tions.24,42 It is important to note that in this study STRO-001 
was able to achieve complete tumour eradication in preclin-
ical CTCL in vivo models – not only in Mac-1 cells with a 
high CD74 expression level, but also in HuT 78 cells with 
low CD74 expression. Such cell line-derived xenotransplant 
eradication has rarely – if ever – been documented, includ-
ing preclinical models using CTCL cell lines with substances 
used for routine CTCL treatment such as anti-CCR4 anti-
body, CD30-targeting ADC and pralatrexate.41,43–47 The CD74 
ADC STRO-001 has so far been well tolerated in a clinical 
trial for B-NHL, with a favourable safety profile.16 In addi-
tion, the anti-CD74 antibody milatuzumab has been explored 
in preclinical models and clinical trials for B-NHL and auto-
immune disease.17–20,22,48 These findings warrant clinical 
testing of CD74 ADCs in patients with CTCL. Of note, the 
microenvironment, including macrophages, plays an impor-
tant pathogenic role in CTCL.49–51 Given the expression of 
CD74 on, for example, macrophages, B cells and regulatory 
T cells,15 one could speculate targeting CD74 might not only 
hit CTCL tumour cells, but also disrupt the supporting func-
tion of the tumour microenvironment by targeting nonma-
lignant bystander cells. In line with such additional effects 
on CTCL bystander cells, CD74 treatment of cynomolgus 
monkeys induced dose-dependent, reversible B-cell and 
monocyte depletion,22 and drugs beneficial in patients with 
CTCL resulted in decreased numbers of regulatory T cells.50 
The impact of CD74 engagement on these cell populations 
in CTCL raises interesting questions for future studies, as 
well as for exploration of the exact function of CD74 in CTCL.

Of note, bacterial superantigens (SAgs) such as 
Staphylococcus aureus enterotoxins have long been sus-
pected to play a role in CTCL pathogenesis and drug resist-
ance.52–54 Remarkably, CD74 is known to control the binding 
of SAgs (e.g. staphylococcal enterotoxin A) to MHC class 
II molecules and is required for subsequent T-cell activa-
tion.36,37 Consequently, CD4+ T cells lacking CD74 respond 
only poorly to SAgs.55 It will be an exciting future task to 
study the link between CD74 and SAgs in CTCL pathogen-
esis.

Overall, we provide a robust basis to advance CD74 tar-
geting alone or in combination with, for example, conven-
tional chemotherapeutics in CTCL to clinical trials, including 
clinically challenging entities such as SS and advanced-
stage MF.
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