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Abstract 

In yeast, tRNA modifications that are introduced by the Elongator complex are recognized by zymocin, a fungal tRNase killer toxin that clea v es 
the anticodon. Based on zymocin resistance conferred by mutations in KTI12 , a gene coding for an Elongator interactor, we further examined 
the y et v aguely defined cellular role of Kti12. Guided b y str uct ural similarities between Kti12 and PSTK, a tRNA kinase in v olv ed in selenocy steine 
synthesis, we identified conserved basic residues in the C-terminus of Kti1 2, whic h upon site-directed mutagenesis caused progressive loss 
of tRNA binding in vitro . The inability of Kti12 to bind tRNA led to similar phenotypes caused by Elongator inactivation in vivo . Consistently, 
tRNA binding deficient kti12 mutants drastically suppressed Elongator dependent tRNA anticodon modifications and reduced the capacity of 
Kti12 to interact with Elongator. We further could distinguish Elongator unbound pools of Kti12 in a tRNA dependent manner from bound ones. 
In summary, the C-terminal domain of Kti12 is crucial for tRNA binding and Kti12 recruitment to Elongator, which are both requirements for 
Elongator function suggesting Kti12 is a tRNA carrier that interacts with Elongator for modification of the tRNA anticodon. 
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ntroduction 

ecent cryo-EM structures have revealed that the architec-
ure of the eukaryotic Elongator complex is highly conserved
mong species [ 1–4 ]. Elongator is composed of two modules,
amely Elp123 and Elp456, and their function in tRNA mod-
fication can be exchanged between lower and higher eukary-
tes [ 5–8 ]. In detail, the Elongator complex decorates uridine
ases in the anticodon wobble position (U 34 ) of several tRNAs
ith 5-carboxy-methyl (cm 

5 U 34 ) groups [ 5 ,9 ]. Subsequently,
hese can be derivatized in concert with other tRNA modifiers,
o complex U 34 modification types such as 5-carbamoylmethyl
ncm 

5 U 34 ), 5-methoxycarbonylmethyl (mcm 
5 U 34 ), or 5-

ethoxycarbonylmethyl-2-thio (mcm 
5 s 2 U 34 ) [ 9–11 ]. 
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Physiologically, U 34 modifications tune anticodon-codon
interactions during mRNA translation and protect against
codon-specific ribosome pausing [ 12–14 ]. Hence, loss of U 34

modifications compromises translation fidelity and protein
homeostasis, causing pleiotropic stress-induced growth phe-
notypes [ 15–17 ]. In yeast, these can at least in part be rescued
by overexpression of elongation factor 1A or Elongator sub-
strate tRNAs, implying that enhanced tRNA delivery to the
ribosome can compensate for inefficient translation rates asso-
ciated with U 34 modification loss [ 13 , 18 , 19 ]. Inappropriately
altered U 34 modification levels are found in animal models for
human diseases and in patients suffering from intellectual dis-
ability, neuropathies and certain cancers [ 20–25 ]. This proves
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clinical importance of understanding the complete U 34 mod-
ification pathway and suggests that only constant Elongator
activity ensures proper protein synthesis rates, particularly in
neuronal cells [ 11 , 25–27 ]. 

However, there is also evidence showing that U 34 modifi-
cations can change during the cell cycle and in response to
varying environmental conditions [ 28–32 ]. It is important to
mention that several accessory proteins with roles in Elon-
gator regulation have been identified in yeast [ 17 , 27 ]. They
include casein kinase 1 (Hrr25 / Kti14), type 2A phosphatase
(Sit4) and Kti12, which is related to PSTK ( O - p hospho s eryl-
t RNA 

Sec - k inase), a tRNA kinase needed for selenocysteine
synthesis [ 33–37 ]. They all interact with Elongator and affect
the phosphorylation state of its Elp1 subunit, suggesting that
its activity is under phospho-regulation in yeast [ 35 , 38 ]. In
support of this notion, functionally relevant phosphorylation
sites in Elp1 map near a tRNA binding domain that is essential
for Elongator to modify U 34 . Of note, Hrr25 kinase recruit-
ment to Elongator depends on the presence of Kti12 [ 38 , 39 ],
suggesting that a complex interplay of the regulatory factors
exists. Sequence homology and partial crystal structures show
that Kti12 contains N- and C-terminal domains (NTD / CTD).
These two domains, like in PSTK, are connected by a linker
region and carry out ATPase and tRNA binding activities, re-
spectively [ 36 , 40 , 41 ]. Markedly, the ATPase activity of Kti12
can be stimulated in the presence of tRNAs in vitro and is cru-
cial for Elongator dependent U 34 modification in vivo [ 41 , 42 ].
How the NTD and CTD are functionally and mechanistically
coupled in Kti12 to support U 34 modification by Elongator,
remains unclear. 

Here we present a comprehensive study to clarify the
mechanism of tRNA binding by Kti12 and identify individ-
ual residues in its CTD responsible for tRNA binding using
site-specific mutagenesis. In addition, we examine the conse-
quences that alterations of these residues have on Kti12 in-
teraction with Elongator. Finally, we describe the significance
of tRNA binding by Kti12 for the U 34 modification activ-
ity of the Elongator complex in vivo . Together with Elonga-
tor bound and unbound fractions of Kti12 that can be dis-
tinguished in a tRNA dependent fashion, our data confirm
that Kti12, through direct tRNA binding, enables Elongator
to modify tRNA anticodons in vivo . 

Materials and methods 

Yeast genetic manipulation and phenotypic 
characterization 

Saccharomyces cerevisiae strains ( Supplementary Table S1 )
were generated as previously described [ 41 ]. Briefly, genes of
interest were deleted using primers ( Supplementary Table S2 )
to amplify a KlURA3 marker cassette by polymerase chain
reaction (PCR) with homology to the targeted loci includ-
ing KTI12 . Similarly, epitope-tags were introduced [ 43 ] at
the C-termini of gene products of interest via PCR and
primers ( Supplementary Table S2 ) followed by yeast genome
insertion. Site-directed mutagenesis used PCR and primers
( Supplementary Table S2 ) as described [ 44 ] with a template
plasmid carrying KTI12-HA::KlTRP1 ; the resulting PCR
products were reinserted into the kti12 � strain. Yeast trans-
formants were selected for tryptophan prototrophy and 5-
fluoroorotic acid resistance, confirmed by PCR and DNA se-
quencing. All yeast strains were generated in UMY2893 [ 5 ]
containing the Elongator-dependent ochre (UAA) tRNA sup- 
pressor ( SUP4 ) and suppressible ade2-1 ochre and can1-100 ochre 

reporter genes. To analyze Elongator function on the basis of 
SUP4 assays, yeasts were grown in synthetic complete media 
containing 2% glucose (w / v), 0.7% yeast nitrogen base (w / v),
supplemented with or without adenine and canavanine. Func- 
tional Elongator and mcm 

5 U 34 modification of SUP4 enable 
stop codon read-through of ade2-1 ochre and can1-100 ochre ,
which can be assessed by adenine prototrophy or canavanine 
sensitivity [ 5 ]. Galactose induced expression of γ-toxin was 
achieved by transformation with pLF16 [ 45 ] and incubation 
on media lacking leucine at 30 ◦C for at least 2 days. Exoge- 
nous zymocin was prepared by growing the Kluyveromyces 
lactis killer strain AWJ137 ( Supplementary Table S1 ) at 30 ◦C 

for 2 day [ 17 ] and ultrafiltration of culture supernatant us- 
ing a 50 kDa molecular weight cut-off (MWCO) filter [ 46 ].
Zymocin was plated on rich media (2% glucose (w / v), 2% 

tryptone (w / v), 1% yeast extract (w / v), 2% agar-agar (w / v)) 
in different concentrations. Yeast cells were spotted as ten-fold 
serial dilutions and grown in the presence (or absence) of zy- 
mocin for 2 days at 30 ◦C. 

γ-toxin tRNA cleavage and LC-MS / MS 

quantification of tRNA modifications 

To estimate the amount of mcm 
5 s 2 U 34 -modified tRNA, bulk 

tRNA was purified and cleaved by γ-toxin in vitro and an- 
alyzed as previously described [ 3 , 4 ]. Nucleoside levels were 
analyzed via liquid chromatography-tandem mass spectrom- 
etry (LC-MS / MS) as reported previously [ 47 ] with the sam- 
ple amount being adjusted to 1 μg of digested tRNA spiked 
with 100 ng of internal standards (digested 13 C-labeled tRNA 

from S. cerevisiae ). For absolute quantification of biological 
duplicates in technical triplicates, internal and external cali- 
bration with synthetic standards was applied as detailed in 
[ 48 ]. Of note, the internal standard did not contain s 2 U, which 
is why s 2 U calculations were performed with external calibra- 
tion only . Finally , the total levels of modified nucleosides were 
normalized to the amount of uridines and related to the cor- 
responding reference sample (set to 1). 

Yeast extract preparation 

Yeast cells were grown to mid-logarithmic phase, centrifuged 
for 2 min (4 ◦C) and washed. Centrifugation was repeated 
and supernatants discarded. Next, cells were resolubilized in 
B60 buffer (50 mM HEPES-KOH pH 7.3 at 4 ◦C, 60 mM 

K O Ac, 5mM Mg(O Ac) 2 , 0.1% (v / v) Triton TM X-100, 10% 

(v / v) glycerol, 1 mM NaF, 20 mM ß-glycerolphosphate, 1 mM 

DTT) and 300 μl per 50 OD 600 units of cOmplete TM pro- 
tease inhibitor cocktail (Roche) were added. Cells were lysed 
by adding 300 μl glass beads (0.5 mm diameter) under vigor- 
ous shaking in the Mini Bead-beater for 60 s [ 49 ] and chilled 
on ice for 5 min. Shaking was repeated six times, after which a 
centrifugation at 4 ◦C 15 000 rpm for 10 min was carried out.
The lysate was transferred to a new reaction tube and another 
centrifugation at 4 ◦C 15 000 rpm for 30 min was performed 
to clear the lysis. The cleared supernatant was pooled, pro- 
tein concentration determined by Bradford [ 50 ] and frozen at 
–20 ◦C for further analysis. 

Co-immune precipitation (Co-IP) experiments 

For co-immune precipitation (Co-IP), 100 μg antibodies of 
choice were amide coupled to 20 mg magnetic Dynabeads TM 
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270 Epoxy (Thermo Scientific) according to the manufac-
urer’s instruction resulting in a final concentration of 5 μg
ntibody / mg Dynabeads TM . Typically, 8 mg of total yeast pro-
ein were used for the Co-IP experiment. Protein extracts were
djusted in B60 buffer and as a loading control, 1 / 10 was de-
atured with Laemmli buffer (60 mM Tris HCl pH 6.8 at 4 ◦C,
% (w / v) sodium dodecyl sulfate (SDS), 5% (v / v) glycerol,
.5% (v / v) ß-mercaptoethanol, 0.001% (v / v) bromophenol
lue) at 99 ◦C. The remaining protein isolate was incubated
ith 20 μl antibody coupled Dynabeads or anti-FLAG® M2
agnetic beads (Sigma-Aldrich) at 4 ◦C overnight. After incu-
ation, beads were retained by a magnet and washed thrice
ith 500 μl B60 buffer at 4 ◦C. Protein elution used incuba-
ion with 64 μl IP Elution buffer (50 mM Tris HCl pH 8.0
t rt, 0.2% w / v SDS, 0.1% (v / v) Tween) at 50 ◦C for 10 min
nd eluates were denatured with Laemmli buffer as above.
nput and bead-precipitated protein were subjected to SDS-
olyacrylamide gelelectrophoresis (PAGE) and Western blot
nalyses. 

estern blotting procedures 

rotein solutions were incubated with denaturing Laemmli
uffer at 99 ◦C for 10 min. The mixture was then loaded onto
 discontinuous SDS-PAGE with a stacking gel (6% (w / v)
crylamide (acrylamide / bis-acrylamide 37.5:1), 1x stack-
ng buffer (125 mM Tris HCl pH 6.8 at rt, 0.1% (w / v)
DS), 0.003% (w / v) bromophenol blue, 0.1% (w / v) APS,
.05% (v / v) TEMED) and a separating gel (12% (w / v)
crylamide (acrylamide / bis-acrylamide 37.5:1), 1x separation
uffer (375 mM Tris HCl pH 8.8 at rt, 0.1% (w / v) SDS,
.1% (w / v) APS, 0.05% (v / v) TEMED). The gel was run
t 200 V for ∼60 min in SDS running buffer (25 mM Tris,
92 mM glycine, 0.1% (w / v) SDS). Proteins were blotted
rom the gel to a 0.45 μM pore sized polyvinylidene fluo-
ide (PVDF, Merck Millipore) membrane using a Trans-Blot®
urbo TM apparatus (Bio-Rad) and Bjerrum Schafer-Nielsen
uffer (48 mM Tris, 39 mM glycine, 0.1% (w / v) SDS, 20%
v / v) EtOH) [ 51 ]. Antibodies immune detection of epitope-
agged proteins of interest or pyruvate kinase (Cdc19) were
nti-c-Myc (9E10; Santa Cruz), anti-HA (DLN-012263 Di-
nova), anti-His (PA1-983B, Thermo Fisher) and anti-Cdc19
donated by Dr J. Thorner). 

ecombinant protein purification and 

ST / strep-pulldown 

ecombinant Kti12 and Elp1 domains were purified as de-
cribed [ 41 ]. Purification of the γ-toxin-GST fusion used
garose matrix bound to glutathione (Protino® GST / 4B,
acherey-Nagel). Bacterial lysate was produced as described

 41 ] and diluted 1:10 in GST wash buffer (50 mM Tris HCl
H 7.5 at rt, 300 mM NaCl, 2 mM DTT). To remove pre-
ipitate, the solution was spun down at 4 ◦C and 4000 rpm
or 10 min. The supernatant was loaded onto the Protino®
ST column and circulated for at least 2 h. Next, the column
as washed with 8 column volumes (cv) of GST wash buffer.
he Protino® GST column was eluted with 10 cv GST elu-
ion buffer (50 mM Tris HCl pH 7.5 at rt, 300 mM NaCl,
 mM DTT, 20 mM glutathione) and protein was concen-
rated using a 30 kDa MWCO. γ-toxin was further purified
sing a Sepharose 75 (HiLoad® 16 / 600 Superdex® 75 pg)
olumn and eluted with SEC buffer (50 mM Tris HCl pH
.5 at rt, 150 mM NaCl, 2 mM DTT). Fractions with the
desired protein were pooled. GST / Strep-tagged proteins were
incubated with Protino glutathione agarose 4B (Macherey
Nagel) / Strep-Tactin TM XT4Flow 

TM (IBA-Lifesciences) beads
overnight at 4 ◦C, washed three times with pulldown buffer
(50 mM Tris HCl pH 7.5 at rt, 150 mM NaCl, 2 mM DTT,
0.1% Triton X-100) and precipitated from the beads by incu-
bation in 1x Laemmli buffer at 99 ◦C for 5 min. Precipitates
were controlled by SDS-PAGE and Coomassie staining. 

Electrophoretic mobility shift assays 

tRNA-protein interaction was analyzed by the change in
electrophoretic mobility of tRNA when bound to a protein.
Therefore, recombinantly purified protein was incubated with
80 nM bulk tRNA purified from yeast in 20 mM Tris-HCl
pH 7.5 at 4 ◦C, 150 mM NaCl, 2 mM DTT, 1 MgCl 2 for 30
min at rt. Samples were split in half and controlled for protein
loading via SDS-PAGE. The other half was loaded onto na-
tive PAGE together with 10% sucrose (45 mM Tris-HCl pH
7.5 at 4 ◦C, 45 mM boric acid, 10% sucrose, 5% acrylamide
(19:1), 0.1% APS, 0.1% TEMED). Native PAGE was pre-run
in 45 mM Tris-HCl pH 7.5 at 4 ◦C, 45 mM boric acid at 60 V
for 60 min at 4 ◦C and samples were resolved at 60 V for 90
min at 4 ◦C. The electrophoretic mobility shift assay (EMSA)
gel was stained in SYBR 

TM -Gold and tRNA was visualized via
an LED transilluminator (FastGene). 

UV crosslinking of proteins to nucleic acids 

UV crosslinking of immunoprecipitated proteins was as de-
scribed [ 52 ] and performed after a sequential IP on two
Kti12 containing fractions. Yeast cells co-expressing Elp1-c-
Myc and Kti12-HA were grown, harvested and washed as de-
scribed above. Cells were lysed in ice cold IPP100 buffer (10
mM Tris-HCl pH 8.0 at RT, 100 mM NaCl, 2 mM MgCl 2 ,
0.1% (v / v) Nonidet TM P -40, 1 mM DTT) supplemented with
cOmplete TM protease inhibitor cocktail. For the first IP, 10
mg protein extract was incubated with anti-c-Myc coupled
Dynabeads for 30 min at room temperature, to generate the
Elp1-bound fraction. The bound fraction was collected using
a magnetic rack and the remaining Elp1 immunodepleted pro-
tein extract was removed into a new reaction tube, to precip-
itate Elp1-free Kti12 using anti-HA coupled Dynabeads, for
30 min at room temperature. Both fractions were washed four
times with IPP300 buffer (same as IPP100 buffer, but 300 mM
NaCl). Elp1-bound and Elp1-free fractions were resuspended
in a small volume of IPP100 buffer and split in two (control
and UV irradiated). The control fraction was kept on ice and
the second fraction was irradiated with UV light on ice (254
nm, 3.2 J / cm2 at 10 cm distance). Both samples were washed,
resuspended in IPP100 buffer with Laemmli buffer, incubated
at 99 ◦C for 10 min and subjected to Western blot analysis. 

IP based assay for Kti12 to association Elp1 

The impact of tRNA and / or adenosine nucleotides (AxP) on
Kti12 interaction with Elp1 used immune-precipitated Elp1-c-
Myc from kti12 � cells and recombinant Kti12 for association
studies in vitro . Kti12 was pre-incubated on ice, either mock
or with AxP and in absence or presence of bulk yeast tRNA.
A 25 μl preassociation reaction consists of ice cold IPP100
buffer containing 5 μM Kti12 together with 2 mM AxP (Jena
Bioscience) and ± 3 μM tRNA. The sample was diluted to
250 μl with 1 / 9 th volume bound of Elp1-c-Myc so that each
reaction contained an amount equivalent to an IP from 1 mg
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protein extract. Untreated Elp1-c-Myc served as input control
without Kti12. The association reactions were incubated for
60 min at 4 ◦C under constant rotation. Elp1 and associated
Kti12 were collected using a magnetic rack. The supernatant
was discarded and samples washed twice in ice cold IPP100
buffer. The samples were resuspended in IPP100 and Laemmli
buffer, incubated at 99 ◦C for 10 min and subjected to Western
blot analysis. 

Protein modeling and software 

Kti12 was modeled using SWISS-MODEL [ 53 ] and aligned
to the MjPSTK (3ADB) structure and CtKti12 (6QP0) using
PyMOL. Sequences of Kti12 like proteins were aligned using
MAFFT [ 54 ] and the FFT-NS-i algorithm. 

Results and discussion 

Identification of conserved and functional relevant 
residues in the CTD of Kti12 

PSTK from Methanocaldococcus jannaschii (MjPSTK) binds
ATP via its NTD, which is connected to the CTD via a flexi-
ble linker [ 40 ]. Previously, comparative analysis had suggested
that the CTDs in both, PSTK and Kti12, are involved in tRNA
binding [ 40 , 41 ]. Guided by the resolved structures of full-
length MjPSTK and the NTD of Kti12 from Chaetomium
thermophilum (CtKti12), we generated a structural model of
Kti12 from S. cerevisiae (ScKti12) in its tRNA bound form
(Fig. 1 A and Supplementary Fig. S1 A). We identified several
conserved CTD residues in the projected helices α9 (Asp-220,
Ser -224, L ys-225, L ys-228) and α10 (L ys-235, Arg-281, L ys-
283, and Lys-284, Lys-291), which in MjPSTK are known to
be crucial for tRNA binding [ 40 ] (Fig. 1 B). 

These residues were individually substituted by alanine at
the genomic KTI12 locus, except for Ser-224, which was re-
placed by arginine to imitate the corresponding site in MjP-
STK (Fig. 1 B). In addition, substitutions of individual residues
within helix α9 and / or α10 were also combined in mutants to
create multiple replacements (3KA, 3KRA, 4KRA, and 7KRA)
(Fig. 1 C). Next, we examined the effect of all substitutions
generated on Elongator function in vivo . In detail, we used
the SUP4 tRNA 

Tyr 
U �A system (with the critically modified

U 34 underlined). SUP4 promotes read-through of ochre (UAA)
stop codons in ade2-1 ochre and can1-100 ochre reporter genes
dependent on U 34 modifications and therefore, allows to mon-
itor Elongator activity by conferring adenine prototrophy and
canavanine sensitivity , respectively , when U 34 is modified to
mcm 

5 U 34 [ 5 , 45 ]. Our data show a similar level of canava-
nine resistance between the kti12 � control and the combined
CTD substitutions (3KRA, 4KRA, and 7KRA), which point
to an Elongator-linked U 34 modification defect due to Kti12
inactivation (Fig. 1 C). The same CTD mutations (i.e. 3KRA,
4KRA, and 7KRA) were found to be as auxotrophic for ade-
nine as the kti12 � control (Fig. 1 C), again indicating Elon-
gator loss-of-function and failure of ade2-1 ochre read-through
by SUP4 . Collectively, our data indicate that while individual
substitutions in the CTD of Kti12 (D220A, S224R, K225A,
K228A, K235A, R281A, K283A, R284A, and R291A) do not
elicit Elongator-minus phenotypes, their combination, in par-
ticular replacements of basic residues in helix α9 and / or helix
α10 (3KRA, 4KRA, and 7KRA), reduces Elongator function
in vivo (Fig. 1 C). We conclude that multiple substitutions in
the candidate tRNA binding region of Kti12 trigger pheno-
types typically associated with Elongator-loss-of-function mu- 
tants (e.g. elp3 �). 

To further study the consequences of CTD substitutions on 
Kti12 function and U 34 modification levels, we employed zy- 
mocin, a tRNase killer toxin complex, which requires Elonga- 
tor dependent mcm 

5 s 2 U 34 modifications for anticodon cleav- 
age [ 27 , 55 ]. Yeast cells were transformed with a conditional 
expression plasmid, allowing for galactose dependent produc- 
tion of γ-toxin, the active tRNase subunit of zymocin [ 5 , 17 ,
56 ]. Next, the growth of the various strains was compared un- 
der repressing and inducing conditions (Fig. 2 A). On galactose 
medium, the behavior of most single CTD substitution mu- 
tants (i.e. D220A, S224R, K225A, K228A, K235A, R281A,
and R291A) recapitulated KTI12 wild-type cells, showing 
strongly inhibited growth by the γ-toxin (Fig. 2 A). This re- 
sult indicates that the U 34 modification function of Elonga- 
tor, which is required for tRNase activity of γ-toxin, is hardly 
altered by individual amino acid changes in the CTD (Fig.
2 A). Of note, two single (i.e. K283A and R284A) and one 
patch mutation (3KA) showed partial phenotypes. However,
all other mutants carrying multiple combined substitutions 
(3KRA, 4KRA, 7KRA) (Fig. 2 A) displayed full resistance to 
γ-toxin. In fact, their response recapitulates the resistance of 
the kti12 � control, lacking Elongator activity (Fig. 2 A). In 
summary, the observed phenotypes are consistent with loss- 
of-Elongator activity in the SUP4 read-through assays (Fig.
1 C). To complement the γ-toxin assays, growth inhibition 
was also assessed using zymocin purified from culture fil- 
trates of the K. lactis killer strain. Again, among all mutants 
tested, the CTD patch substitutions (i.e. 3KRA, 4KRA, 7KRA) 
conferred zymocin resistance similar to the kti12 � control 
( Supplementary Fig. S1 B). 

Furthermore we performed in vitro tRNA cleavage assays,
which use purified γ-toxin [ 3 , 4 , 56 , 57 ] to compare conse- 
quences on U 34 modification between mutants in the CTD 

(i.e. 4KRA, 7KRA) with previously established mutants in 
the NTD of Kti12 (i.e. K14A and D85A) that are known to 
be defective in ATP binding and ATPase activity [ 41 ]. Iso- 
lated bulk tRNA from an Elongator wild-type strain is effi- 
ciently cleaved by purified γ-toxin, which produces cleavage 
products for mcm 

5 s 2 U 34 modified anticodons (Fig. 2 B and 
Supplementary Fig. S2 ). tRNA from the D85A strain shows 
significantly less tRNA cleavage than KTI12 wild-type cells,
while tRNAs from the K14A mutant are fully resistant against 
tRNA cleavage (Fig. 2 A). The combined CTD substitutions 
(i.e. 4KRA, 7KRA) do not show tRNA cleavage in vitro (Fig.
2 B), which confirms that Elongator activity is lost when mul- 
tiple substitution mutations are introduced into the CTD of 
Kti12 (Fig. 2 A). Thus, our data strongly support the option 
that similar to PSTK [ 40 ], the CTD as well as the NTD are 
both required for full-length Kti12 to function and support the 
U 34 modification activity of the Elongator complex in vivo . 

Kti12 binds tRNA through basic residues in its CTD 

To elucidate the mechanistic impact of CTD substitutions 
on Kti12 function, EMSA were carried out that probe for 
tRNA binding capacity in vitro (Fig. 3 ). Using mixtures 
of bulk tRNA isolated from yeast and different concentra- 
tions of the Kti12 variants purified from Esc heric hia coli ,
we observed robust tRNA binding activity with the puri- 
fied ScKti12 wild-type protein (Fig. 3 ). This finding recon- 
firms our previous report [ 41 ] demonstrating that Kti12 from 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf296#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf296#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf296#supplementary-data
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Figure 1. Domain conservation with PSTK identifies putative tRNA binding residues in the CTD of Kti12. (A) Str uct ural Kti12 model showing conserved 
α-helices ( α-9 orange, α-10 magenta) in the CTD with candidate tRNA binding roles. (B) Alignment and selection of conserved residues in α-9 / α-10 
(see A) of ScKti12 for substitution mutagenesis. (C) SUP4 ochre stop-codon read-through analysis of ade2-1 ochre and can1 -1 00 ochre reporter genes 
in v olv ed kti12 substitution mutants, wild-type (wt) or kti12 � controls in order to assess Kti12 and Elongator function in vivo based on adenine 
prototrophy and canavanine sensitivity (control: synthetic complete medium; for details see the “Materials and methods” section.). 

C  

t  

u  

D  

i  

m  

(  

b  

7  

T  

c  

f  

t  

v  

c  

c  

L
m

T  

p  

s  

5  

t  

a  

4  

g  

n  

(  

n  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/53/7/gkaf296/8113169 by guest on 18 April 2025
. thermophilum binds bulk yeast tRNA. Recombinant mu-
ants with single CTD substitutions in helix α9 or α10 show
naffected (i.e. S224R, K235A) or only slightly decreased (i.e.
220A, K225A, K228A, R281A, and R291A) tRNA bind-
ng compared to wild-type Kti12 (Fig. 3 ). In contrast to these
ild effects, the combined CTD substitutions in helices α10
4KRA) or α9 / α10 (7KRA) have a dramatic effect on tRNA
inding (Fig. 3 ). The respective Kti12 mutants (i.e. 4KRA and
KRA) have lost the ability to bind tRNA in vitro (Fig. 3 ).
hus, basic CTD residues in helices α9 and / or α10 (Fig. 1 B),
ollectively mediate tRNA binding by Kti12. Moreover, their
ailure to bind tRNA in vitro (Fig. 3 ), might as well explain
he Elongator-minus phenotypes shown to be triggered by the
ery same mutations in vivo (Figs 1 and 2 ). Therefore, we con-
lude that CTD-dependent binding of Kti12 to tRNA is indeed
rucial for the U 34 modification activity of Elongator in vivo .

C-MS / MS reveals U 34 modification defects due to 

ultiple CTD substitutions 

o examine the role that the tRNA binding CTD of Kti12
lays for Elongator function in vivo , we used previously de-
cribed mass spectrometry (LC-MS / MS) protocols [ 38 , 41 ,
8 , 59 ] and compared relative abundances of U 34 modifica-
ions between a KTI12 wild-type strain, a kti12 � null-mutant
nd different CTD mutants (i.e. K228A, R281A, K291A, 3KA,
KRA, and 7KRA) (Fig. 4 ). We found that in contrast to sin-
le mutations (i.e. K228A, R281A, and K291A), the combi-
ation of CTD substitutions in helix α9 (4KRA) or α9 / α10
7KRA) drastically reduced Elongator dependent formation of
cm 

5 U 34 , mcm 
5 U 34 and mcm 

5 s 2 U 34 derivatives (Fig. 4 ). With
defects in mcm 
5 U 34 and mcm 

5 s 2 U 34 modification types previ-
ously shown to block tRNA suppressor SUP4 and deny tRNA
cleavage by γ-toxin, respectively [ 5 , 45 , 56 ], our LC-MS / MS
profiles are in line with the above SUP4 and γ-toxin assays
(Figs 1 and 2 ) that diagnosed Elongator dysfunction in CTD
mutants (4KRA, 7KRA). Moreover, as a result of Elongator
defects that likely associate with Kti12 inactivation, our LC-
MS / MS profiles reveal elevated amounts of s 2 at U 34 in the af-
fected CTD mutants (i.e. 4KRA, 7KRA) also found in kti12 �
cells (Fig. 4 ). s 2 U 34 is a thio-modification usually not detected
in endogenous tRNAs from Elongator wild-type yeast cells,
which only appears when U 34 cannot be properly modified to
mcm 

5 s 2 U 34 by Elongator (e.g elp3 �) [ 58–60 ]. Thus, elevated
s 2 U 34 levels further indicate Elongator dysfunction in the CTD
mutants (4KRA and 7KRA). In summary, altered LC-MS / MS
profiles (Fig. 4 ) support our view above that kti12 mutants,
which lack tRNA binding due to multiple CTD substitutions
(4KRA and 7KRA), copy kti12 � loss-of-function scenarios
and suppress Elongator dependent U 34 modifications in vivo .

The CTD of Kti12 is also important for Elongator 
interaction 

ATP binding in the NTD and ATP hydrolysis by Kti12 are
known to be required for Elongator function [ 41 ]. Here we
demonstrate that substitutions in the CTD that affect tRNA
binding have a similar effect (Fig. 3 ). This strongly suggests
that the integrity of both domains is crucial for Kti12 func-
tion and Elongator activity. In addition, we show that the ex-
pression of each domain alone neither supported Elongator
function ( Supplementary Fig. S3 A) nor was it able to mediate

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf296#supplementary-data
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Figure 2. CTD integrity is crucial for Kti12 and Elongator function based on mcm 
5 s 2 U 34 dependent γ-toxin tRNase activity. (A) Galactose-dependent 

expression of the tRNase γ-toxin identifies loss-of-function phenotypes among the indicated kti12 substitution mutants. Their resistance to growth 
inhibition is in contrast to the KTI12 wild-type (wt) with normal Elongator dependent mcm 

5 s 2 U 34 modification capacity. (B) Assay for mcm 
5 s 2 U 34 

clea v age b y γ-to xin in vitro (upper panel) and quantification (lo w er panel) of tRNA clea v age efficiencies. Compared are tRNAs purified from pre viously 
characterized N-terminal Kti12-ATP binding pocket mutants (K14A, D85A) and selected CTD substitution mutants (3KA, 4KRA, 7KRA) generated in this 
report. As a control (ctrl), the wt sample was incubated without γ-toxin. In the lower panel, error bars indicate standard deviation. Statistical significance 
was tested using a t wo-t ailed t-test (** P < 0.01, * P < 0.05, ns: not significant). 
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proper protein–protein interaction seen between full-length
Kti12 and Elongator in vivo ( Supplementary Fig. S3 B). Next,
we examined potential effects of CTD mutations on the inter-
action between Elp1-c-Myc and Kti12-HA in vivo using Co-IP.

As judged from these experiments, all CTD substitutions
were expressed in vivo . None of the single CTD substitutions
had a discernible effect on Kti12 interaction with Elp1 (Fig.
5 A). However, the combined CTD mutations showed progres-
sive loss of Elongator interaction that correlates with the num-
ber of substituted residues (3KA < 3KRA < 4KRA < 7KRA)
and the severity of their tRNA binding deficiencies (Fig. 3 ),
suggesting that the residues in Kti12 needed for tRNA bind-
ing are also necessary for the physical contact with Elongator
(Fig. 5 A). Since Elp1 has been shown to bind Kti12 in vitro via
WD40 motifs in its own NTD [ 41 ], we performed direct GST
pull-down experiments between the first WD40 domain of
Elp1 (aa42-431: Supplementary Fig. S4 ) and wild-type Kti12
or CTD mutants (3KA, 7KRA). As shown from these inter-
action assays, the direct binding between Elp1 and Kti12 de-
pends on an integer CTD region in vitro and the CTD mutants
(3KA, 7KRA) gradually lose the ability to get captured by the
GST-tagged Elp1 bait (Fig. 5 B). Thus, additive alanine substi-
tutions in helices α9 / α10 of the CTD likely lead to a cumula-
tive decline in the ability of Kti12 to associate with Elongator
in vivo (Fig. 5 A) or the Elp1 subunit in vitro (Fig. 5 B). In sum,
this body of evidence complements our genetic and biochem- 
ical data above further supporting the notion that the CTD 

capable to bind tRNA also supports Kti12 interaction with 
Elp1. A direct pull-down of Kti12 by Elp1 in the absence of 
tRNA ( Supplementary Fig. S4 ) shows that tRNA is not re- 
quired for the contact between Kti12 and Elp1 in vitro . 

tRNA binding in vivo distinguishes free from 

Elongator bound pools of Kti12 

Prompted by previous data showing that there are Elonga- 
tor bound and unbound pools of Kti12 [ 17 , 33 , 61 ], we de- 
cided to separately examine the potential tRNA binding ca- 
pacity of these different forms. Therefore, total protein was 
extracted from a yeast strain ( ELP1-c-myc , KTI12-HA ) that 
co-expresses c-Myc- and HA-tagged forms of Elp1 and Kti12,
and subjected to IP using anti-c-Myc antibodies. The resultant 
Elongator immune depleted fraction was further precipitated 
with anti-HA antibodies to enrich for the free form of Kti12 
that is not bound to Elongator. Next, SDS-PAGE and Western 
blots were carried-out with anti-c-Myc and anti-HA antibod- 
ies to analyse the content of Elp1-c-Myc and / or Kti12-HA in 
each IP sample. The data show that free forms of Kti12 can be 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf296#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf296#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf296#supplementary-data
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Figure 3. The CTD of Kti12 binds tRNA. The affinity of the indicated CTD mutants to tRNA was examined by EMSA together with the wild-type (wt) 
protein. Increasing concentrations of recombinant Kti12 (1.5, 3, and 7.5 μM) were incubated with 55 nM wt bulk tRNA and run on a 5% native PAGE. As 
control (ctrl), a sample without protein was used. tRNA mobility and capture by Kti12 was detected via SYBR Gold st aining , whereas protein loading was 
controlled via SDS-PAGE and Coomassie st aining . 

Figure 4. The CTD in Kti12 promotes wobble uridine modification by Elongator. LC-MS / MS quantification of Elongator dependent mcm 
5 s 2 U, mcm 

5 U 

and ncm 
5 U modifications (different shades of green) from the indicated kti12 mutants and controls ( kti12 �, wt). The initial carboxymethylation reaction 

by Elongator is indicated by the dashed box. Detection of s 2 U is a telltale sign of Elongator inactivity (hence labeled by red bars) since the thiolation 
occurs independently of the C5 modification [ 58–60 ]. Measurements were performed from biological triplicates. Error bars indicate standard deviation, 
and statistical significance was tested using a two-tailed t-test (** P < 0.01, * P < 0.05, ns: not significant). 
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Figure 5. The Kti12 CTD is important for Elongator interaction. (A) Co-IP of Elp1 and Kti12 from an ELP1-c-myc and KTI12-HA tagged strain. Elp1-c-Myc 
w as immobiliz ed and Kti12-HA precipitation w as detected via Western blots. T he anti-Cdc19 antibody w as used to control protein loading. (B) 
GS Tpull-do wn (left panel) of recombinant Kti12 mutants and the NTD of Elp1 (WD40 aa1-734, see Supplementary Fig. S4 , for details). Cumulative CTD 

substitutions attenuate direct Kti12 interaction with Elp1. Interaction quantifications (right panel) were performed in triplicates. Error bars indicate 
standard deviation and statistical significance was tested using a two-tailed t-test (** P < 0.01, * P < 0.05). 
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enriched upon Elongator depletion and hence separated from
Elongator-bound pools of Kti12 (Fig. 6 A). 

To further study whether these Kti12 fractions may differ
in tRNA binding in vivo , we resorted to a UV cross-linking
IP (UV-CLIP) technique previously shown to trap more tran-
sient nucleic acid–protein complexes [ 52 , 62 ]. We split our
IP samples, irradiated half of the Elongator bound and un-
bound Kti12 pools with UV 254nm light to induce cross-linking
between protein and nucleic acids. Next, untreated and irradi-
ated material were subjected to Western Blot, and cross-linked
species with retarded mobility were detected only in the free,
Elongator-unbound Kti12 fraction (Fig. 6 A). Thus, only free
Kti12 is able to form a complex with nucleic acids in vivo , con-
firming the results obtained with recombinant Kti12, which is
able to bind tRNA in vitro (Fig. 3 ). Such scenario, in which
tRNA is differently recognized by Elongator-bound and un-
bound Kti12 pools (Fig. 6 A), suggests that Kti12 may act as
a tRNA deposition module for Elongator. Since ATP binding
and hydrolysis by Kti12 are also critical for Elongator func-
tion [ 41 ], we analyzed whether the binding to either Elonga-
tor or tRNA may change in response to nucleotide treatment.
Hence, we enriched Elongator from a kti12 � mutant express-
ing c-Myc tagged Elp1 by anti-c-Myc IP and combined the
precipitates with nucleotide-preincubated Kti12 material in
absence or presence of tRNA (Fig. 6 B). Robust association be- 
tween recombinant Kti12 and immune purified Elongator was 
detectable in the absence of tRNA (Fig. 6 B) and in the pres- 
ence of any of nucleotides (i.e. ATP , ADP , or non-hydrolysable 
AppNHp) tested. Kti12 samples pre-incubated with tRNA,
however, showed drastically reduced interaction levels with 
Elongator. Even though the interaction occurred irrespective 
of whether or not the samples were treated with nucleotides 
(Fig. 6 B), the data correspond with the UV-CLIP assays above 
(Fig. 6 A) as they demonstrate that Kti12 mainly binds tRNA 

in a fashion separate from Elongator. 
Although several options are possible to explain this tRNA 

specific effect, one possible scenario may include the competi- 
tion for tRNA binding between Kti12 and Elongator. There- 
fore, we determined the tRNA affinity of Kti12 using different 
tRNA concentrations ( Supplementary Fig. S5 ). We observed 
K D values ranging from ∼1.3–1.6 μM ( Supplementary Fig. 
S5 ), suggesting a tRNA affinity for Kti12 that is weaker 
than the fully assembled Elongator complex ( ∼200 nM), the 
Elp123 subcomplex ( ∼70 nM) or the Elp3 subunit alone 
( ∼600 nM) [ 1 , 39 , 62 , 63 ]. Whether the weaker interaction 
implies a role for Kti12 as a tRNA carrier that assists the 
Elongator complex by acting as a tRNA deposition factor 
rather than a catalyst in the U 34 modification pathway is 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf296#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf296#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf296#supplementary-data


tRNA binding to Kti12 is crucial for wobble uridine modification 9 

Figure 6. Kti12 mainly binds tRNA separate from Elongator. (A) Protein extracted from ELP1-c-myc KTI12-HA expressing cells was subjected to 
anti-c-Myc IP to precipitate Elp1. From these Elongator immune depleted fractions, Kti12-HA was enriched by a second anti-HA IP and irradiated with (+) 
UV (254 nm) to induce nucleic acid cross-links or without UV (-). Subsequently, immune blots of both IP samples were probed with anti-c-Myc and 
anti-HA antibodies. Note that UV treatment shifts the electrophoretic mobility of Elp1-unbound Kti12 material to a higher molecular w eight comple x lik ely 
composed of a cross-linked nucleic acid. This is in marked contrast to the behavior of Elp1-bound Kti12 pools. (B) Elongator was precipitated from a 
kti12 � strain expressing Elp1-c-myc by IP (see A) and served for association assays, in which recombinant His-tagged Kti12 material preincubated 
without (no AxP) or with nucleotides (i.e. ATP, ADP, or non-h y droly sable AppNHp) was used in the absence (left panel half: Kti12) or the presence of bulk 
tRNA (right panel half: Kti12-tRNA). 
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n intriguing option that needs to be further elucidated in
he future. 

onclusions 

lthough PSTK and Kti12 are structurally very similar, they
iffer in function. While PSTK is part of tRNA 

Sec synthesis
or UGA translational recoding and selenocysteine incorpora-
ion into proteins [ 40 , 64 ], Kti12 appears to act as a tRNA
elivery factor rather than a catalyst for Elongator in the U 34

odification pathway [ 37 , 41 ]. Our data confirm that sim-
lar to PSTK, Kti12 binding to tRNA is mediated by multi-
le positively charged amino residues in the CTD, i.e. helix
9 and helix α10 (Fig. 1 ) [ 40 , 65 ]. As a consequence, cu-
ulative CTD substitutions (4KRA and 7KRA) disrupt the

nteraction with tRNA, inactivate Kti12 function and essen-
ially, suppress the U 34 modification activity of Elongator in
ivo . These negative effects on Elongator activity are compa-
able to ATPase mutations in the NTD (K14A; D85A), which
reviously indicated that ATP hydrolysis by Kti12 is required
or Elongator function, too [ 41 ]. Thus, binding to both, ATP
nd tRNA, drives the function of Kti12 and ultimately, the
 34 modification activity of the Elongator complex. There-
ore, more research is needed to clarify the ill-defined role of
he ATPase activity [ 41 ] and to address how ATP hydroly-
is and tRNA binding are coupled in Kti12 to support Elon-
ator’s tRNA modification activity. Whether and how Kti12
elps to provide Elongator with substrate tRNAs is impor-
ant to understand mechanisms and conditions underlying
longator regulation. Here, comparison of dissociation con-
tants for tRNA in complex with either Elongator or Kti12
ay be helpful and clarify the precise roles that Elongator
ound and unbound Kti12 pools play in the U 34 modification
athway. 
In summary, our study provides further evidence that the
U 34 modification pathway depends on a tRNA carrier pro-
tein dedicated to Elongator, namely Kti12. It seems likely
that Kti12 together with other regulatory factors (i.e. Kti11,
Kti13, and Kti14) forms part of a dynamic protein network
[ 27 ], whose associations with the Elongator complex appear
to be sensitive to certain metabolic signals (i.e. nucleotides;
SAM; acetyl-CoA) and substrate tRNA [ 4 , 41 ]. In support
of this notion it was shown that loss of U 34 modifications
in Elongator mutants confers altered metabolic profiles [ 66 ]
and sensitivity to various stress conditions including inhibi-
tion of the TOR pathway [ 67 , 68 ], a central growth con-
troller that coordinates nutritional signals with cell prolifera-
tion. Thus, tRNA modifications dependent on Kti12 and Elon-
gator appear to provide cells with means that amongst other
epitranscriptomic marks, can contribute to tRNA modifica-
tion biased gene expression and stress-specific cell responses
[ 28–30 , 69 , 70 ]. 
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