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Introduction: Extracellular vesicles (EVs) are emerging as powerful tools used by
pathogens to manipulate host cells, delivering molecular cargo that rewires
cellular processes and the immune response. Toxoplasma gondii, a globally
distributed parasite capable of infecting nearly all nucleated animal cells, uses this
strategy to thrive in diverse host species and tissue environments.

Methods: Here, we reveal the adaptability of T. gondii EVs through proteomic
analysis of vesicles released from tachyzoites cultured in four different host cell
types: human fibroblasts, green monkey kidney epithelial cells, mouse myoblasts
and porcine intestinal epithelial cells.

Results: A core set of 1,244 proteins was consistently identified across TgEVs,
defining a conserved signature. Beyond this conserved cargo, host-cell specific
variation revealed how T. gondii fine-tunes EV content to exploit different cellular
environments. Functional enrichment analyses revealed roles for TgEVs in
targeting host protein synthesis and stress response pathways, with
implications for immune evasion and infection spread.

Discussion: These findings provide insight into the potential role of EVs in host-
pathogen interactions and help us understand the adaptive strategies used by T.
gondii to survive and spread.

KEYWORDS
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1 Introduction

Extracellular vesicles (EVs), a heterogeneous group of particles that are released by
cells, are delimited by a lipid bilayer and have a crucial role in intercellular communication
in all living organisms. They are broadly classified into small and large EVs, distinguished
by their size, biogenesis and molecular composition (Welsh et al., 2024). Small EVs, which
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are smaller than 200 nm in diameter and of endocytic origin, are
released following the fusion of multivesicular bodies with the
plasma membrane and facilitate the transfer of molecular signals.
Large EVs are characterized by a more heterogeneous shape and
size, ranging from 0.2 to 1 um in diameter, and are shed directly
from the plasma membrane (Welsh et al., 2024). These EVs are
instrumental in the transfer of a diverse array of molecular signals,
including proteins, lipids, mRNA, micro-RNA (miRNA) and other
small non-coding RNA species, between cells, significantly
impacting the phenotype and function of recipient cells. EVs have
a pivotal role in modulating both physiological and pathological
processes (Colombo et al., 2014). Transmitting signals in EVs
eliminates the need for cell-cell contact and allows cells to deliver
messages to remote sites (Marcilla et al., 2014).

In parasitology, EVs have gained prominence for their role in
modulating host-pathogen interactions, although studies on
parasite-derived EVs are still limited. In protozoan parasites, EVs
can be directly released from the organellar compartments of the
parasite or via host cells that are either infected by the parasite or
stimulated by antigens, as a response to physiological stressors in
both in vitro and in vivo environments (Olajide and Cai, 2020).
Extracellular vesicles have multifaceted roles in parasite biology,
including cell-cell communication, transfer of proteins, lipids and
nucleic acids, and transport of bio-reactive macromolecules. They
are instrumental in enhancing host-parasite interactions,
modulating the host immune system and inducing inflammatory
responses (de Souza and Barrias, 2020). Specifically, EV's secreted by
protozoans such as Toxoplasma gondii, deliver virulence factors and
other parasite-derived molecules to host cells (Feix et al., 2024),
enabling the parasite to manipulate the host environment for its
own benefit. Toxoplasma gondii have developed sophisticated
mechanisms to manipulate the host cellular environment to their
advantage (Quiarim et al., 2021). This communication relies on
EVs, which are secreted under both normal and stress-induced
conditions by prokaryotic and eukaryotic cells, further
underscoring their critical role in parasitic survival and host
manipulation (Fernandez-Becerra et al., 2023).

Toxoplasma gondii, the causative agent of toxoplasmosis, is a major
public health problem, affecting about one-third of the human
population worldwide (Dubey, 2023). Its remarkable ability to infect
any nucleated cell type of all warm-blooded animals underscores its
pervasive impact on both human and veterinary health (Dubey, 2008).
Toxoplasmosis can have severe clinical manifestations, particularly in
immunocompromised individuals and in fetal infections. Human
infections predominantly arise from consuming water or food
contaminated with sporulated oocysts or undercooked meat of
infected livestock containing latent cysts, but also is reported to be
transmitted via mother-to-child transmission. The variability in
Toxoplasma prevalence among humans is largely attributable to
socioeconomic and environmental factors, as well as cultural

practices (de Barros et al., 2022; Dubey, 2023). Given its wide host

Abbreviations: EVs, extracellular vesicles; TgEVs, Toxoplasma gondii

extracellular vesicles; DEP, differential expressed proteins.
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range, the parasite is a major concern not only to public health, but also
to the livestock industry and wildlife management as it can also
compromise animal health and reproduction. It is the fourth most
common foodborne parasite and a common waterborne parasite
worldwide (Food and Agriculture Organization of the United
Nations and World Health Organization, 2014; Almeria and Dubey,
2020). Despite its global prevalence, critical aspects of T. gondii
pathogenesis, host-parasite interactions and immune response
remain poorly understood. The lack of knowledge represents a
significant barrier to the development of effective control measures
and diagnostic tools.

Current research suggests that T. gondii exploits EVs to exert a
profound influence on its host (Silva et al., 2018). The composition of
T. gondii EVs - comprising a complex assortment of proteins, lipids
and genetic material - is intricately tailored to propagate infection
and ensure survival within the host (Quiarim et al., 2021). Proteomic
analysis has revealed that the vesicles contain immunomodulatory
molecules, which may dampen host immune defenses and promote
persistent infection (Wowk et al., 2017; Ramirez-Flores et al., 2019),
potentially altering host gene expression to favor the replication and
dissemination of the parasite (Silva et al., 2018; Tedford et al., 2023).
Despite these findings, there remain significant gaps in our
understanding. A major area of uncertainty is the molecular
mechanisms governing EV biogenesis, cargo sorting, and
packaging. Furthermore, the functional impact of these EVs across
the diverse range of host cell types that T. gondii can infect has yet to
be characterized. To address this gap in knowledge, the EV cargo
from T. gondii cultured in four host cell lines from different species,
deliberately chosen to represent different tissue origins and species,
was analyzed. This selection aimed to identify common
denominators in EV composition, providing insights into
conserved mechanisms of EV-mediated adaptation. The distinct
environments presented by each cell type represent those
encountered by T. gondii during systemic infections across a range
of hosts. A comparison of EV composition among the cell lines will
facilitate the identification of the range of adaptive strategies
employed by the parasite through EVs. To gain insight into the
composition of T. gondii EVs, we employed a multi-faceted
approach, utilizing nanoparticle tracking analysis (NTA), Fourier-
transform infrared spectroscopy (FTIR), transmission electron
microscopy, and liquid chromatography with mass spectrometry
(LC-MS/MS). This enabled us to characterize parasite EV's following
replication in different host cell lines, and to conduct a quantitative
analysis of the proteomic EV cargo. The findings revealed a common
set of proteins in the composition of EVs isolated from tachyzoites
cultivated in different environments, underscoring the significant
impact of the host cell type on the composition of T. gondii EVs.

2 Materials and methods

2.1 Propagation of Toxoplasma gondii and
host cell lines

Toxoplasma gondii RH strain parasites were grown in human
foreskin fibroblasts [Hs27, obtained from ATCC CRL-1634, (Khan
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and Grigg, 2017)], mouse myoblasts (C2C12, ATCC CRL-1771)
Vero cells [green monkey epithelial kidney cells CCL-181
(Saadatnia et al, 2010)] and intestinal porcine epithelial cells
(IPEC-1, ACC 705, Leibniz Institute DSMZ-German Collection of
Microorganisms and Cell Cultures GmbH, Leibniz, Germany).
They were all grown in T75 flasks (VWR, Vienna, Austria) and
maintained in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% (Hs27) and 5% fetal bovine serum
(Gibco) for the other three cell lines, 100 U/ml penicillin and 0.1
mg/ml streptomycin (PAN-Biotech GmbH, Aidenbach Germany)
at 37 °C in 5% CO,.

A T25 flask was initially seeded with Hs27 cells at a density of
10,000 cells/cm?. After 3 days, when the culture reached
approximately 80% confluency, the cells were infected with T.
gondii tachyzoites at a 1:3 ratio (Khan and Grigg, 2017).
Tachyzoites were harvested after 2 days of infection, and 1 mL (5
x 10°) of the freshly egressed parasites was used to infect the target
host cells. For the experiment, five T75 flasks per cell line were
prepared as biological replicates. Four cell lines were seeded three
days in advance at densities optimized to reach 80% confluency at
the time of infection: 10,000 cells/cm? for Vero cells, 2,000 cells/cm?
for myoblasts, and 25,000 cells/cm? and 10,000 cells/cm® for Hs27
cells. Following infection with T. gondii, the culture media was
replaced 4 hours post-infection and again at 24 hours with DMEM
supplemented with 3% FCS. Tachyzoites were harvested 48 hours
post-infection for Hs27, Vero, and myoblast cells, and 72 hours
post-infection for IPEC cells.

2.2 Experimental design and T. gondii
EV isolation

For each host cell line and five biological replicate of EV
isolation, we used egressed tachyzoites collected from the
supernatant. Tachyzoites were centrifuged at 300 x g for 5 min,
the pellet with the host cells was discarded. In the next
centrifugation step parasites were washed twice with fresh PBS
(Thermo Fisher Scientific Inc., Waltham, USA) at 600 x g for 10 min
and at 2,000 x g for 10 minutes. The cleaned parasites, were
counting and adjusted the number to 2.5 x 10% then incubated
for 2 hours in fresh (EV-free) Dulbecco’s Modified Eagle’s Medium
at 37°C. After incubation the parasites were separated from their
EVs with an extra step of centrifugation at 2000 x g for 10 minutes
and filtering using a sterile 0.22 pm Rotilabo® filter (Carl Roth,
Karlsruhe, Germany). TgEVs were concentrated by several
ultracentrifugation steps, first at 45,000 x g for 1 h at 4°C with an
MLA-55 fixed-angle rotor in an Optima TLX centrifuge (Beckman
Coulter, USA) to exclude potential large protein aggregates,
followed by an EV pellet washing step at 55,000 x g for 1 h at 4°C
in a TLA-45 rotor (Optima TLX centrifuge; Beckman Coulter) and
finally TgEV collection at 100,000 x g in the TLA-45 rotor and
resuspension in PBS (See Supplementary Figure S1) (Feix et al,
2025). The further characterization of TgEVs was performed
according to MISEV guidelines (Fernandez-Becerra et al,, 2023;
Welsh et al., 2024).
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2.3 Nanoparticle tracking analysis

The effective diameter and size distribution of TgEVs were
measured using the ZetaViewx30 TWIN Laser System 488/640
(Particle Metrix, Inning am Ammersee, Germany) as described
(Comfort et al, 2021) and calibrated using 100 nm polystyrene
beads. TgEVs were diluted 1:1,000 in sterile-filtered H,O. Particle
tracking analysis was performed in scatter mode with a 488 nm laser
with the following settings: Minimum brightness 30; minimum area
10; maximum brightness 255; maximum area 1000; temperature 25°
C; shutter of 70 and repeated on three biological replicates with
three technical replicates each.

2.4 Fourier-transform infrared
spectroscopy

Differences in the metabolic fingerprints of TgEVs generated in
different host cell environments were assessed by FT-IR
spectroscopy. Therefore, purified TgEVs were subjected to FT-IR
spectroscopy (Fernandez-Becerra et al., 2023). In brief, suspensions
containing TgEVs were prepared and transferred to zinc selenite
optical microtiter plates (Bruker Optics GmbH, Ettlingen,
Germany) and dried at 40°C for 40 min. Spectra were recorded in
transmission mode with the aid of an HTS-XT microplate adapter
coupled to a Tensor 27 FTIR spectrometer (Bruker Optics GmbH)
using the following parameters: 4000 to 500 cm—1 spectral range, 6
cm-1 spectral resolution, averaging of 32 interferograms with
background subtraction for each spectrum. To compare FT-IR
spectra derived from TgEVs of different cell lines, FT-IR spectra
were pre-processed using vector normalization, baseline correction,
and calculation of second derivates over the whole spectra using a
second-order 9-point Savitzky-Golay algorithm. Spectroscopic
ratios of fatty acids (3500 - 2800 cm-1), proteins (1720 - 1500
cm-1) and polysaccharides (1200 - 900 cm-1) of TgEVs of
different origins were calculated as described previously (Mihaly
et al, 2017; Wong et al., 2022) with minor modifications. In brief,
raw spectra were baseline corrected and smoothed using the
Savitsky-Golay method (5 smoothing points, 3rd-grade
polynomial), followed by total integration of the indicated areas.
Statistical significance was calculated using an ANOVA (*p < 0.05).
All experiments were repeated on five biological replicates with
three technical replicates each.

2.5 Transmission electron microscopy

For transmission electron microscopy (TEM) imaging, pelleted
parasites along with EVs were fixed in 4% neutral buffered
glutaraldehyde (Merck Millipore, USA) and pre-embedded in 1.5%
agar. The samples were then washed in Sorenson’s phosphate bufter
(pH 6.8; Morphisto, Vienna, Austria) as described by Budik et al.
(2017). Following this, they underwent post-fixation in 1% osmium
tetroxide (Electron Microscopy Sciences, Hatfield Township, PA,
USA). The samples were sequentially dehydrated using a graded
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ethanol series, soaked in propylene oxide, and embedded in epoxy
resin (Serva Electrophoresis GmbH, Heidelberg, Germany).
Ultrathin sections (70 nm) were prepared using a Leica
Ultramicrotome (Leica Ultracut S, Vienna, Austria) and
subsequently contrasted with alkaline lead citrate (Merck
Millipore, USA) and methanolic uranyl acetate (Sigma Aldrich,
USA). The vesicle structures were visualized using a Zeiss EM 900
transmission electron microscope (Carl Zeiss Microscopy GmbH,
Jena, Germany) equipped with a digital Frame-Transfer-CCD
camera (Trondle TRS, Moorenweis, Germany).

2.6 Sample preparation for mass
spectrometry

Radioimmunoprecipitation buffer (RIPA buffer; Thermo Fisher
Scientific) was used for protein extraction. EV samples were
resuspended in 50 pl of RIPA buffer and incubated at 4°C for 30
minutes on ice. Protein concentrations were then measured using
the Pierce 660 nm Protein Assay (Thermo Fisher Scientific), with
bovine serum albumin as the standard. Measurements were
performed using a Nanodrop® spectrophotometer (Thermo Fisher
Scientific). 4.5 ug of the protein in RIPA buffer was reduced with
3.75 ul 200 mM tris(2-carboxyethyl) phosphine and alkylated with
3.75 ul 800 mM chloroacetaldehyde for 30 min at 37°C, respectively.
SDS was added to a final concentration of 2%, and samples were
then acidified with phosphoric acid to a final concentration of 1%.
After adding S—TrapTM buffer (90% methanol, 100 mM
tetraethylammonium bromide (TEAB), 6x the volume of sample),
protein extracts were loaded onto a S—TrapTM column by
centrifugation at 1000 x g for 1 min. Bound proteins were
subsequently washed with S-TrapTM buffer at 1000 x g for 1 min
six times to remove the SDS. After centrifugation at 4000 x g for 1
min to dry the column, digestion was carried out by applying 20 pl
trypsin/Lys C mix (1 ug enzyme in 50 mM TEAB) onto the S-
TrapTM column followed by incubation at 37°C overnight without
shaking. Digested peptides were recovered with 40 pl digestion
buffer (50 mM TEAB), 40 puL 0.2% formic acid and 40 pl 50%
acetonitrile, respectively. The resulting peptides were then
concentrated on a vacuum concentrator and taken up in 50 pl
0.1% trifluoroacetic acid (TFA). Before LC-MS analysis peptide
extracts were desalted further and cleaned up using C18 spin tips
(Pierce) according to the manufacturers protocol and dried in a
vacuum centrifuge. The digested peptide sample was dissolved in 45
ul 0.1% TFA, 3 pl were injected to the LC-MS system, respectively.

2.7 Liquid chromatography with tandem
mass spectrometry

Peptides were analyzed on a high-resolution Q Exactive HF
Orbitrap® mass spectrometer (Thermo Fisher Scientific) coupled to
rapid separation liquid chromatography (nanoRSLC; Thermo
Fisher Scientific) for peptide separation according to Mayr et al.
(2024). Samples were injected in technical replicates.
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In brief, injected peptides were trapped on a 5 mm Acclaim
PepMap U-precolumn (300 um inner diameter, 5 wm particle size,
100 A pore size) for sample preconcentration and desalting using
2% ACN in ultrapure water with 0.05% TFA as a mobile phase at a
flow rate of 5 LL/min. Subsequent separation of peptides on a 25 cm
Acclaim PepMap C18 column (75 pm inner diameter, 2 m particle
size, 100 A pore size) was performed at a flow rate of 300 nL/min:
Solvent A 0.1% FA in ultrapure water, solvent B 80% ACN with
0.08% FA. For gradient elution following parameters applied: 4% B
for 0-7 min, 4-31% B from 7 to 67 min, 31-44% B from 67 to 72
min, 44-95% B from 72 to 72.1 min, 95% B until 77 min, and re-
equilibration at 4% B from 78 to 90 min.

Full MS scans were acquired in positive ionization mode from
350 to 2,000 m/z at a resolution of 60,000. For subsequent
fragmentation of up to 10 of the highest peaks in each MSI
spectrum, a normalized collision energy of 28 was used. Dynamic
exclusion was set at 30 s. Ions with a charge of +1, +7, +8, and >+8
were excluded from fragmentation. Fragment ion spectra were
detected at a resolution of 15,000. For both scan modes a
maximum injection time of 50 ms applied.

2.8 Mass spectrometry data processing

The database search was performed using the Proteome
Discoverer Software 2.4.1.15 (Thermo Fisher Scientific). The
protein databases were downloaded from the UniProt homepage
(http://www.uniprot.org) for the following species: Toxoplasma
gondii RH (taxonomy ID 383379), Homo sapiens (taxonomy ID
9606), Mus musculus (taxonomy ID 10090), Chlorocebus aethiops
(taxonomy ID 9534) and Sus scrofa (taxonomy ID 9823).
Additionally, to the combined Uniprot databases, the common
contaminant database cRAP was used (https://www.thegpm.org/
crap/). Search settings were as follows: 10-ppm precursor mass
tolerance and 0.02-Da fragment mass tolerance; dynamic
modifications allowed were oxidation of methionine as well as the
N-terminal protein modifications acetylation, methionine loss, and
the combination of both, and static modification
carbamidomethylation on cysteine. Only proteins with at least
two identified peptides were reported. Intensity-based label-free
quantification was applied to compare protein abundance in the
experiments. Using Proteome Discoverer Software, abundance raw
values were generated from mass spec raw files. Normalization to
total peptide amount was performed within the software before
abundance values were exported for further statistical analysis. This
normalization approach sums the peptide group abundances for
each sample and determines the maximum sum for all files. The
normalization factor is the factor of the sum of the sample and the
maximum sum in all files. Resulting normalized protein abundance
values of the technical replicates were aggregated by the mean. To
maintain high data quality, only proteins with abundance values for
all or no biological replicate per group were considered for further
data analysis performing ANOVA analysis (R Core Team, 2023).
Changes in protein abundance level were considered statistically
significantly up- or downregulated with a log2 fold change higher/
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lower than 2 fold with a p-value adjusted according to Benjamini-
Hochberg for controlling the false discovery rate (FDR) lower than
0.05. Only proteins identified with more than two tryptic peptides
and quantified with at least one unique peptide were reported.
The mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the PRIDE partner repository (Perez-
Riverol et al., 2022) with the dataset identifier PXD055601.

2.9 Identification and analysis of
differentially expressed proteins

TgEvs proteins with an adjusted p-value (FDR) < 0.05 in at least
one of the pairwise comparisons between fibroblasts and the other
cell lines, and exhibiting an absolute log2 fold change>1, were
classified as significantly differentially expressed. To further
examine the expression profiles of these proteins, we applied a
pattern detection algorithm using the degPatterns function from the
DEGreport package (version 1.42.0; Pantano, 2024). This algorithm
grouped proteins with similar expression patterns across the
conditions, and the resulting clusters were sorted by size (from
largest to smallest). Protein abundance values were normalized via
row-wise z-transformation, in which each protein’s abundance was
standardized by subtracting the mean abundance across all
conditions and dividing by the corresponding standard deviation,
thereby allowing for a direct comparison of expression patterns.
The normalized data were visualized as an unclustered heatmap and
expression pattern generated with SRplot (Tang et al., 2023).

For functional enrichment analysis of the differentially
expressed proteins (DEPs), we employed ShinyGO 0.80 (Ge et al.,
2020) to identify overrepresented Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways and Gene Ontology (GO) terms.
Enrichment p-values were calculated using the hypergeometric
test, with multiple testing corrections performed via the
Benjamini-Hochberg method; terms with an adjusted FDR < 0.05
were deemed statistically significant. Finally, the DEPs were ranked
based on both FDR and fold enrichment to prioritize the most
relevant functional categories.

3 Results

3.1 Characterization of TgEVs from
tachyzoites derived from different
host cells

In an initial pilot study, a protocol for isolating EVs from T.
gondii (TgEVs) was refined to yield sufficient EV material for
quantification, separation, and proteomic analysis. To evaluate the
efficacy of our isolation protocol, we employed NTA, FT-IR and
TEM. NTA analysis revealed that identical amounts of parasites
shed varying numbers of particles of different sizes on the range of
the exosomes, depending on the host cell line (Figures 1A, B).
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Specifically, TgEVs cultivated in Vero cells exhibited a higher
concentration and a broader size distribution compared to those
from IPEC, myoblast, and fibroblast cells. T¢gEVs from Vero and
fibroblast cells displayed a more heterogeneous population,
including smaller vesicles, whereas those from IPEC and myoblast
cells appeared more uniform and larger in size.

FT-IR spectroscopy was employed to assess the molecular
composition of the isolated TgEVs. The spectra indicated distinct
lipid, protein, and nucleic acid profiles for TgEVs from each host cell
line (Figure 1C). FT-IR analysis revealed characteristic absorbance peaks
corresponding to lipids, proteins, and nucleic acids. For example, the
lipid region (2800-3000 cmA-1) and protein region (1500-1700 cmA-1),
showed notable differences with Vero cell-derived TgEVs displaying
higher absorbance. In particular, the lipid region showed two distinct
patterns among the TgEV's derived from different host cells. EVs from
fibroblast and IPEC cells exhibited similar lipid absorbance profiles,
indicating comparable lipid content. In contrast, T¢gEVs from myoblast
and Vero cells displayed a different lipid absorbance pattern, suggesting
higher lipid content in these TgEVs. Additionally, the nucleic acid
region (900-1200 cmA-1) had pronounced peaks in TgEVs from Vero
cells, suggesting variations in nucleic acid content. These spectral
differences indicate the influence of the host cell environment on the
biochemical composition of TgEVs. Transmission electron microscopy
(TEM) offered detailed morphological characterization of the TgEVs.
The images confirmed the presence of typical vesicular structures and
revealed variations in size and shape among EVs from different host cell
lines (Figure 1D; Supplementary Figure S2). TEM also provided clear
visualization of the intact bilayer membranes of the EVs and suggested
that they are preferentially shed at the apical end of tachyzoites
(personal observation).

3.2 EV proteomes of T. gondii

To understand the proteomic changes in the TgEVs, the protein
composition was analyzed using LC-MS/MS analysis to quantify
and compare protein abundance. We optimized the sTRAP method
for protein digestion prior to peptide separation. In total, 2,664
proteins were identified with at least two peptides, of which at least
one peptide was unique per protein. After filtering out contaminant
proteins from the cell lines, the samples yielded a combined dataset
of 1,833 proteins assigned to the T. gondii genome. Of these, 1,392
proteins were reliably quantified, meaning that they were detected
in all five biological replicates of at least one experimental group,
allowing for robust comparative analyses. These proteins were then
subjected to hypothesis testing. A total of 1,296 proteins were
identified as significantly differentially expressed in at least one of
the four tested contrasts, using a global FDR cut-off of 5% and a
minimum absolute log2 fold change of one (Table 1). The Venn
diagram (Figure 2A) illustrates the overlap of DEPs among the four
host cell lines. Principal component analysis on these 1,296 proteins
showed clustering according to their host cell along the first and
second axes, explaining 44.2% and 33.0% of the variance,
respectively (Supplementary Table 1). There were 1,244 proteins
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FIGURE 1

Isolation and characterization of EVs of T. gondii. (A) Distribution of EV size (nm) and particles/ml measured by NTA. The data represent the three
reads of five biological replicates. (B) Concentration (particles/ml), values represent the mean + standard deviation (SD). Asterisks represent significant
difference (****P<0.0001). (C) The insets show FT-IR spectra for lipid (2800-3000 cm ™ for C-H stretching) and protein regions (1500-1700 cm ™2,
represented as amide | and Il bands). (D) Transmission electron microscopy images of EVs and tachyzoites of T. gondii grown in the fibroblast cell

line. Scale bar: 100nm.

(95.98%) common across all host cell lines, indicating a substantial
core TgEVs protein cargo shared by T. gondii-infected cells. Unique
protein profiles were also identified, with fibroblasts, IPEC, and
Vero cells exhibiting exclusive proteins (3, 14, and 2 proteins,
respectively), while no unique proteins were detected in the
myoblasts (Figure 2A; Supplementary Table 1). These 1,244
proteins were sorted according to their abundance pattern-cluster
membership (Figure 2B). Notably, TgEVs proteins from IPEC and
fibroblast cells clustered closely together, suggesting a more similar
protein expression profile compared to myoblasts and Vero cells.
To further investigate the differential expression of T¢EVs proteins,
we generated Volcano plots for each pairwise comparison between

TABLE 1 Summary table of the differential expression analysis of 1,244
proteins of T. gondii EVs.

1,244 proteins > significant at 5% FDR and a minimum
effect size of abs(log2(FC))>1

Contrast Fibroblast Fibroblast Fibroblast
vs IPEC vs Vero vs Myoblast

Not significant = 622 595 146

Upregulated 435 635 1087

Downregulated = 187 14 11

We compared fibroblast versus IPEC, Vero and myoblast host cell lines. We show the number
of significantly up- or downregulated contrast at 5% FDR with a minimum effect size of
absolute log2 fold change >1 and the number of not differentially expressed proteins.
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fibroblasts and the other host cell lines (Figure 2C). Volcano plot
analyses showed significant upregulation of proteins in fibroblast
derived TgEVs: 1,087 proteins were upregulated and 11
downregulated compared to myoblasts; 635 proteins upregulated
and 14 downregulated compared to Vero cells; and 435 proteins
upregulated and 187 downregulated compared to IPEC cells
(Supplementary Table 2).

3.3 Protein composition, EVs markers and
GO terms

The 1,244 proteins identified were classified into functional
categories, including 201 hypothetical and 137 miscellaneous
proteins. Among the proteins related to invasion, 136 were
identified, with 92 being secreted proteins. These included
micronemal proteins (MIC), rhoptry-related proteins (ROP and
RON), dense granule proteins (GRA), and 29 SAG-related proteins.
Additionally, 26 cytoskeleton proteins such as actin, myosin,
tubulin, and clathrin were detected, along with 33 vesicle traffic-
related proteins including Ras and Rab proteins. The category
associated with RNA processes was well-represented with 270
proteins, alongside proteins involved in DNA and protein-related
processes with a total of 224 proteins. Furthermore, 27 proteins
were identified as being involved in cell-signaling processes, and
139 proteins were associated with metabolism (Figure 3A;
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FIGURE 2

Proteomic analysis of EVs released from tachyzoite stages of T. gondii infection. (A) Venn Diagram illustrates the overlap of protein markers between
the EVs isolated from four different host cell lines: fibroblasts, myoblasts, intestinal porcine epithelial cells (IPEC), and Vero cells. The numbers within
the diagram sections indicate the count and percentage of unique and shared proteins among these cell lines. (B) Clustered heatmap showing row-
wise z-transformed protein levels across four groups. Each row represents a distinct protein identified within the EVs. The colour scale indicates
expression levels, with red representing higher than average expression, white indicating average expression, and blue signifying lower than average
expression. The x-axis lists the different host cell lines (myoblasts, fibroblasts, IPEC, and Vero) with the mean values of five biological replicates for
each cell line, labelled R1-R5. (C) Volcano plots show the differential expression of proteins in T. gondii EVs when comparing fibroblasts with each of
the other host cell lines: Myoblast, Vero and IPEC. Each dot represents a protein, with the x-axis showing the log2 fold change in expression and the
y-axis showing the -log10 p-value of the change in expression. Significantly upregulated proteins are shown in red, significantly downregulated
proteins are shown in blue and non-significant proteins are shown in grey. The numbers in brackets indicate the total number of proteins in each

category for each comparison.

Supplementary Table 1). Previously characterized EV protein
markers were detected. We reported 75 proteins including Rab
and Ras related proteins, SNARE, heat shock proteins, actin
and tubulin, GAPDH, histones and proteins related to the
Golgi apparatus, endoplasmic reticulum, mitochondria and
membrane proteins (Figure 3B).

To investigate the functional implications, we performed GO
term enrichment analysis on the common set of TgEVs proteins
(Figure 4). For each GO category the ten significant terms with the
lowest p-values are displayed. Biological Process GO term
enrichment analysis revealed significant enrichment of proteins
associated with ribonucleoprotein complex subunit organization,
ribonucleoprotein complex assembly, and ribosome biogenesis
(Figure 4A). Other significantly enriched processes included
regulation of protein metabolic processes, translational initiation,
translation, peptide biosynthetic process, peptide metabolic process,
and cellular amide metabolic process. Molecular Function GO
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analysis revealed significant enrichment in protein folding
chaperone activity, ATP-dependent protein folding chaperone
activity, and RNA helicase activity (Figure 4B). Additional enriched
functions included ATP-dependent activity acting on RNA,
translation initiation factor activity, structural constituent of
ribosome, and nucleic acid binding. For cellular components, the
enriched terms included nucleolus, ribosomal subunit, proteasome
complex, endopeptidase complex, and ribonucleoprotein complex
(Figure 4C). Other significant components were peptidase complex,
ribosome, nuclear lumen, non-membrane-bounded organelle, and
intracellular non-membrane-bounded organelle. These GO terms
showed fold enrichments between 2 and 4, with the number of
genes involved ranging from 50 to over 150. KEGG pathway analysis
revealed significant enrichment in pathways such as ribosome,
protein export, proteasome, ribosome biogenesis in eukaryotes, and
phagosome (Figure 4D). Other enriched pathways included
toxoplasmosis, spliceosome, protein processing in endoplasmic
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Characterization of EV protein content based on protein distribution. (A) The pie chart depicts the biological functions categorization of proteins found in
EVs. The biological function of proteins coded by each of the 1,244 proteins was assigned manually based on ToxoDB, Blast2Go, KEGG or annotations
published previously highlighting the relative abundance of different functional groups. (B) The bar chart illustrates the distribution of EV proteins marker
categorized by their association with specific cellular components. The number of proteins in each category is indicated along the x-axis.

reticulum, metabolic pathways, and biosynthesis of secondary
metabolites. The fold enrichment for these pathways varied from
2.5 to 7.5, with the number of genes ranging from 30 to over 90.

3.4 Quantitative comparison of EV-
derived proteins

The proteomic analysis revealed distinct patterns of protein
abundance when comparing fibroblast-derived TgEVs with those
from other host environments. In the fibroblast vs. myoblast T¢gEV's
comparison, we identified only 14 proteins with higher abundance in
myoblast-derived TgEVs, primarily related to DNA and RNA
processing. In fibroblast- TgEVs, we observed a significant
enrichment of proteins involved in cytoskeleton, invasion
mechanisms, metabolism, protein processing, DNA and RNA
processing, and vesicle trafficking compared to those from the Vero
cell environment. In contrast, DNA-related proteins, particularly
histones, were found in higher abundance in the Vero cell
environment. Overall, fibroblast-derived TgEVs showed an
upregulation of proteins associated with invasion, metabolic
pathways, ribosomal proteins, RNA processing, and vesicle
trafficking. Conversely, TgEVs derived from IPEC cells exhibited an
enrichment of proteins involved in DNA processing, RNA
processing, translation, and protein phosphorylation
(Supplementary Table 2).

To elucidate the functional implications, we performed GO
term enrichment analysis on the upregulated and downregulated
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proteins from each comparison, using the total set of common
TgEVs proteins as the background. In the comparison between
fibroblast and myoblast host cells (Figure 5A), our analysis revealed
significant enrichment of membrane-associated proteins among the
upregulated proteins, while downregulated proteins were enriched
in DNA repair mechanisms. For the comparison between fibroblast
and IPEC host cells (Figure 5B), upregulated proteins showed
enrichment in processes related to protein synthesis and
ribosomal assembly, whereas downregulated proteins were linked
to DNA repair mechanisms. Upregulated proteins were also
associated with ribosomal and other organelle components, while
downregulated proteins showed decreased association with
translation and nucleic acid binding functions. In the fibroblast
versus Vero cell comparison (Figure 5C), upregulated proteins were
enriched in protein degradation and transport mechanisms.
Downregulated proteins were associated with DNA packaging
and chromatin organization. Upregulated proteins also showed
enrichment in components involved in protein degradation, while
molecular functions included increased binding and catalytic
activities. Downregulated proteins were linked to chromatin
structure and DNA binding activities.

3.5 Expression patterns of invasion related
proteins in T. gondii EVs

To investigate the expression patterns of invasion-related
proteins in TgEVs, a four-group analysis was conducted,
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GO and KEGG pathway analysis of the 1,244 shared proteins identified in T. gondii EVs. The top 10 enriched GO terms are presented for the differentially
expressed proteins, categorized into three main groups: (A) Biological Process, (B) Molecular Function and (C) Cellular Component. Each GO category
shows the identified functions, with corresponding numbers of differentially expressed proteins and fold enrichment values. (D) KEGG pathway analysis,
illustrating the top enriched pathways. The X-axis represents the fold enrichment of the pathway, and the Y-axis lists the major pathways enriched in the
dataset. Circle size reflects the number of proteins involved in each pathway, and the colour gradient represents -log10(FDR).

comprising microneme proteins (MIC), SAG (surface antigen)
proteins, rhoptry proteins (ROP and RON), and dense granule
proteins (GRA) (see Supplementary Table 3). These proteins were
subjected to a pattern detection algorithm with detected patterns
shown in Figure 6 and then sorted according to their pattern-cluster
membership. MIC proteins showed variations in abundance
between host cell lines. A significant decrease in expression levels
was observed in TgEVs from IPEC samples. In contrast, TgEVs from
fibroblasts and Vero cells showed significantly higher expression
levels, with no notable differences between these two groups,
suggesting an enrichment of microneme proteins in these cell
types. T. gondii EVs from myoblast samples showed intermediate
expression levels, with a slight downregulation compared to
fibroblast and Vero samples (Figure 6A). SAG proteins showed
variability in expression between cell lines. T. gondii EVs derived
from IPEC, Vero and myoblast samples showed lower expression
levels of SAG proteins, whereas fibroblast-derived TgEVs showed
significant upregulation (Figure 6B). Rhoptry proteins showed a
distinct pattern of expression, with significant upregulation in
TgEVs from fibroblasts and IPEC samples, followed by
downregulation in EVs from myoblasts and Vero samples
(Figure 6C). GRA proteins also showed variability between the
different host cell lines. TgEVs from myoblast samples showed
significantly reduced expression compared to the other cell lines.
In contrast, TgEVs from fibroblasts showed the highest expression
levels, while TgEVs from IPEC and Vero cells showed relatively
stable expression with a slight upregulation compared to myoblast
samples (Figure 6D).
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4 Discussion

There is growing evidence that the host cell environment plays a
critical role in T. gondii biology. In this study, we demonstrated the
adaptability of T. gondii to its cellular environment by showing that
the protein cargo of its EVs shifts after growth and egress in
different host cell types, including those commonly used in T.
gondii research and a porcine intestinal epithelial cell.

Understanding the role of EVs in parasite biology is an
emerging frontier in parasitology. Once regarded as cellular
debris, EVs are now recognized as critical mediators of
intercellular communication, capable of influencing a range of
biological processes (Sibley et al., 1986; Blader and Saeij, 2009).
The observed flexibility in EV protein composition may be a key
factor behind the ability of T. gondii to infect nucleated cells across a
broad range of warm-blooded hosts with varying susceptibilities to
clinical toxoplasmosis. This adaptability allows T. gondii to thrive in
diverse environments, infecting highly susceptible hosts like
primates as well as more resistant species such as pigs (Dubey,
2023; Dubey et al., 2020).

4.1 Influence of host cell line on EV size
and composition

Initial analyses were carried out to characterize the TgEVs

derived from tachyzoites cultured in four different host cell lines.
Using NTA, FT-IR and TEM, we observed consistent EV release
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GO Term enrichment analysis of differentially expressed proteins in T. gondii EVs across different host cell lines. (A) Fibroblast vs myoblast. (B) Fibroblast
vs IPEC and (C) Fibroblast vs Vero. In all panels, the x-axis represents the -logl0(p-value) of the enrichment, indicating the statistical significance, while
the size of the dots represents the count of proteins associated with each term. Red bars indicate upregulated proteins, and blue bars indicate
downregulated proteins. The analysis uses the total set of common EV proteins as the background for enrichment calculations.

behavior across all host cell lines. NTA revealed that although
identical amounts of T. gondii were used, the number and size of
TgEVs varied significantly between host cell lines. Herein it is
shown two classes of vesicles with range sizes of 50-200 nm,
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similar to those found in previous studies (Silva et al., 2018;
Quiarim et al, 2021), which were classified according to their
sizes as small EVs according to MISEV 2023 (Welsh et al., 2024).
In particular, the particle size distribution and number of TgEVs
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FIGURE 6

Expression patterns of invasion-related proteins in T. gondii EVs across different host cell lines. This figure illustrates the relative expression patterns
of invasion-related protein groups in T. gondii EVs derived from four distinct host cell lines (myoblasts, fibroblasts, IPEC cells, and Vero cells). The
panels represent: (A) microneme proteins, (B) SAG (surface antigen) proteins, (C) rhoptry proteins, and (D) dense granule proteins. The Z-scores of
protein abundance were calculated to normalize and compare the relative expression levels across cell types. Each dot represents a single protein,
and red lines connect the same protein across cell types, visualizing variations in abundance between host environments. Statistical significance for
pairwise comparisons is indicated as follows: *P < 0.05, **P < 0.01***, P < 0.001, ****P <0.0001; ns denotes no significant difference.

differed significantly between the different host cell lines, suggesting
that T. gondii may adjust its EV production as an adaptive
mechanism to optimize host-parasite interactions. FT-IR analysis
further supported these observations by revealing distinct EV
spectral fingerprints for each host cell line, demonstrating
differences in the lipid and protein composition of the TgEVs.
These differences, as shown by the unique FT-IR spectral profiles
suggest that TgEVs derived from different host cells have different
biochemical compositions. Such variations in lipid and protein
content could influence the biological functions of EVs, including
membrane fusion, signaling and/or immune modulation, thereby
affecting host-pathogen interactions. TEM images combined with
NTA data revealed that EVs produced by T. gondii ranged in size
from 100 to 200 nm, resembling microvesicles. These TEM results

Frontiers in Cellular and Infection Microbiology

11

are consistent with previous studies on T. gondii EVs (Ramirez-
Flores et al., 2019; Quiarim et al., 2021; Silva et al., 2018), which
reported that tachyzoites spontaneously release numerous EVs into
the extracellular environment, particularly from the apical and
posterior regions, as well as from the plasma membrane.

4.2 Proteomic analysis and differential
expression

The proteomic analysis of Toxoplasma gondii EVs revealed a
conserved core of 1,244 proteins consistently identified across all host
cell lines studied. This significantly exceeds the number of proteins
reported in previous studies, which identified 321 proteins of
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ectosomes and exosomes (Ramirez-Flores et al, 2019) and 340
proteins (Wowlk et al, 2017). Furthermore, except for a small
fraction (~2.5%, Supplementary Figure S3), almost all proteins
identified in these previous studies are also detected in our core
proteomic data, highlighting both the coverage and the
reproducibility of those results. The higher protein yield in our
study likely reflects the use of the optimized S-Trap method
(HaileMariam et al, 2018), which enhances protein digestion
efficiency compared to the traditional SDS-gel band digestion
approach used in earlier analyses (Silva et al., 2018; Wowk et al.,
2017; Quiarim et al., 2021). The broad functional diversity of EV
proteins underscores the complex role of TgEVs in modulating host
cell biology (Vicentini et al., 2024). The significant proportion of
proteins involved in RNA and DNA processes, invasion, and protein
metabolism suggests that TgEV's are crucial vehicles for delivering key
molecular signals that facilitate parasite survival, replication, and
immune evasion. Our findings align with previous studies, which also
identified a similar pattern of protein categories (Quiarim et al., 2021;
Ramirez-Flores et al., 2019). Notably, proteins associated with
ribosomes constitute the largest category, as previously described in
T. gondii ectosomes and exosomes (Ramirez-Flores et al., 2019)
further validating the consistency and importance of these
components in T. gondii EVs. In addition, these TgEVs deliver
virulence factors to the host, including key invasion proteins such
as SAG, MIC, GRA, and ROP/RON, as demonstrated in previous
studies (Ramirez-Flores et al., 2019; Torrecilhas et al., 2012; Vicentini
et al., 2024; Quiarim et al., 2021).

The core set of proteins were also analyzed to characterize the
EVs biomarker, following the five-component framework
introduced in MISEV2023 (Welsh et al., 2024). Our results reveal
the presence of proteins associated with intracellular compartments,
the cytosol, and the plasma membrane associated proteins. We
detected in our samples actin and tubulin, Rab and Ras proteins as
previously described in T. gondii EVs (Ramirez-Flores et al., 2019).
In addition to these, other proteins such as heat-shock proteins
(HSPs), thioredoxin peroxidase, metalloprotease, and glutathione S-
transferase have also been identified in parasite-derived EVs. In our
results we found Clathrin, SNARE, histones, enolase 2, and
GAPDH, which have not been previously described in T. gondii,
are known EV biomarkers in mammalian cells (Welsh et al., 2024;
Kim et al, 2015, 2013; Kalra et al, 2012). The enrichment of
nucleus-associated proteins suggests that T. gondii EVs may play a
role in altering host gene expression (Zhou et al., 2024), while the
presence of cytoskeletal and membrane proteins could facilitate the
remodeling of host cell architecture to favor parasite invasion and
intracellular survival (Sung et al., 2021). The results of the KEGG
and GO- biological process (BP) analysis indicated a notable
increase in the representation of categories associated with
ribonucleoprotein complex subunit organization, ribosome
biogenesis, and translational initiation. In addition, the molecular
function (MF) analysis revealed a significant enrichment of proteins
involved in RNA binding, RNA helicase activity, ATP-dependent
activity acting on RNA, structural constituent of ribosome and
protein folding chaperones and the cellular component are enriched
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in proteins involved ribosome and ribosomal subunit. This
indicates that T. gondii EVs may be a crucial factor in regulating
host cell processes, particularly by stabilizing RNA and enhancing
translation efficiency. Furthermore, it suggests that TgEVs play a
pivotal role in modulating the regulation of ribosome assembly and
function, which in turn reprograms receptor cells and alters their
phenotype (Ochkasova et al., 2023). In addition, the presence of
proteasome-related activity and peptidase complexes indicates the
potential involvement of TgEVs in protein degradation pathways.
This suggests that T. gondii may utilize these vesicles to regulate
protein turnover and maintain cellular homeostasis (Ben-Nissan
et al, 2022) or a similar role as in P. falciparum in which the 20S
proteome of the EVs altered the membrane stiffness of red blood
cell to facilitate malaria parasite growth (Dekel et al., 2021).

4.3 Host-cell environment

Toxoplasma gondii encounters a wide variety of cellular
environments when infecting different host cell types. Each of
these cell types provides the parasite with distinct ecological
niches, influenced by their unique physiological and metabolic
characteristics (Swierzy et al,, 2017). These variations have a
significant impact on the protein composition of the EVs released
by T. gondii, reflecting the ability of the parasite to adapt to and
exploit its host. Although T. gondii strains have different growth
rates in various cell lines (Evans et al, 1999), human foreskin
fibroblast cells have been utilized widely as the primary cell line to
maintain in vitro cultures of T. gondii (Khan and Grigg, 2017).
Fibroblasts are the most common cells of connective tissue in
animals (Plikus et al., 2021). Besides their commonly known role
as structural components, fibroblasts play a critical role in an
immune response, functioning as sentinel cells that respond to
infections or tissue damage by producing cytokines, such as IL-6
and IL-8, and chemokines, like CXCL10. They can be activated by
IFN-y, triggering anti-parasitic mechanisms, such as tryptophan
degradation, which can inhibit the growth of intracellular
pathogens (Cavagnero and Gallo, 2022). Fibroblasts, as
metabolically active cells, offer a permissive environment for T.
gondii replication, making them a valuable model in host-pathogen
interaction research due to their ease of culture and robust
characteristics (Mital et al., 2005). With a doubling time of 24
hours, fibroblasts create a nutrient-rich and favorable environment
that facilitates efficient invasion, replication, and survival. In
this setting, T. gondii likely optimizes its EVs composition to
invade surrounding cells, as suggested by the high abundance
of invasion related proteins compared to the other host-cell
environments, indicating also a potential strategy for more
effective manipulation of host cell functions. A strong enrichment
of processes related to protein biosynthesis, including peptide
biosynthetic processes, ribosome biogenesis, and translation,
reflects a robust support for TgEVs enriched in invasion-related
and translational machinery proteins. The second host cell line,
Vero cells, are widely used in infectious disease research because of
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their permissiveness to pathogens. They lack certain antiviral
responses, such as interferon production, making them
susceptible to a variety of intracellular pathogens. This weak
immune activation makes Vero cells particularly useful for
studying T. gondii (Evans et al., 1999). Myoblasts, skeletal muscle
precursor cells form the third preferred tissues for persistence of T.
gondii and experimental evidence indicate that myoblast are an
appropriate cell type for T. gondii stage conversion and tissue cyst
formation (Swierzy et al., 2014), primarily function in repair and
regeneration rather than immune defense. Although they can
produce some inflammatory mediators like IL-6, they are
generally less immunologically active compared to fibroblasts or
IPEC. In these two faster-propagating cells, myoblasts (Yaffe and
Saxel, 1977) and Vero cells (Ammerman et al., 2008), which have an
average doubling time of 17 and 22 hours respectively, and are
metabolically more active than fibroblast, T. gondii releases EVs
enriched in proteins that support rapid parasite replication and
cellular proliferation. The increased abundance of proteins involved
in cell cycle progression, chromatin assembly (histones),
chromosome organization and RNA biosynthesis proteins in
TgEVs from Vero cells likely are indicative for active replication
compared to fibroblast. Histones could play a role in modulating
gene expression, immune responses, or cellular stress pathways,
creating more optimal conditions for parasite survival and
replication (Zhou et al., 2024). In contrast, myoblasts, might
present a less restrictive environment compared to fibroblast for
T. gondii. This reduced immunological activity may limit the
necessity for T. gondii to secrete EVs rich in proteins for immune
modulation or invasion. Furthermore, while myoblasts are
metabolically active, their primary function is not to provide the
permissive environment seen in fibroblasts or the nutrient-rich
conditions characteristic of Vero cells. Instead, the environment in
myoblasts may present fewer resources for the parasite, leading to a
lower release of TgEV's or a downregulation of EV cargo synthesis.
This is consistent with the observed reductions in invasion-related
proteins, such as micronemes, dense granules, and rhoptries, in
myoblast-derived TgEVs compared to fibroblast- or Vero-derived
TgEVs. As well, in these TgEVs we observed a higher abundance of
proteins related to nucleic acid-binding proteins suggesting a
transfer of proteins involved in binding or interacting with DNA/
RNA. The higher abundance of metal-binding proteins might
impact enzymatic functions, or the structural stability of proteins
and DNA delivered by EVs (Egli, 2002). This has led to the
hypothesis that if myoblast may trigger spontaneous stage
conversion of T. gondii (Ferreira-da-Silva et al, 2009; Rahman
etal, 2021), then T. gondii EVs carry a different abundance cargo to
prepare the transition. IPEC cells, or intestinal porcine epithelial
cells, serve as a model for the intestinal epithelium studies in C. suis,
another member within the Family Sarcocistidae (Worliczek et al.,
2009). TPEC-1 are distinguished by their ability to produce
cytokines and chemokines, which are essential components of
innate immunity (Oswald, 2006). Their robust barrier functions
and strong immune responses create a highly regulated
environment that presents significant challenges for parasites like
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T. gondii to establish infection. When T. gondii infects IPEC-1 cells,
it adapts its strategy to prioritize immune evasion and long-term
survival rather than aggressive replication. This is likely influenced
by the slower growth rate and lower metabolic activity of IPEC-1
cells, which have a doubling time of 40 hours and are generally in a
non-proliferative state (Nossol et al., 2015). EVs released by T.
gondii in IPEC cells reflect these adaptations, often carrying cargo
that helps the parasite evade host immune responses, modulate
stress pathways, and survive in nutrient-limited environments. In
this context, T. gondii appears to adopt a survival-focused approach,
avoiding the synthesis of proteins linked to rapid invasion or
elevated replication. This may explain the lower abundance of
invasion-related as micronemes and dense-granule proteins, DNA
repair and ribosomal proteins in TgEVs derived. By contrast,
fibroblast TgEVs are enriched with invasion-related proteins,
highlighting a distinct strategy in these cells, where T. gondii
enhances its invasive capabilities to facilitate infection spread.

5 Conclusions

Our findings demonstrate that T. gondii adjust the number of
EVs and the protein composition of its EVs in response to the cellular
environment, revealing a conserved core of 1,244 proteins alongside
host cell-specific variations. The ability of T. gondii to fine-tune its
EVs underscores its evolutionary success as a pathogen capable of
infecting a broad range of hosts with differing susceptibilities. These
findings not only expand our understanding of the biological role of
EVs in parasitic infections but also highlight their potential as
biomarkers for host-specific infection states. Furthermore, the
identification of distinct EV protein profiles across host cell types
opens new avenues for therapeutic exploration, particularly in
targeting EV-mediated pathways to disrupt parasite survival
and dissemination.
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