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Abstract: Zoonotic viruses may be neglected as etiologies of meningoencephalitis in hu-
mans. We performed retrospective testing of cerebrospinal fluid from encephalitis cases in
biobank material for three zoonotic or potentially zoonotic viruses: rustrela virus (Rubivirus
strelense, Matonaviridae); Tahyna virus (Orthobunyavirus tahynaense, Peribunyaviridae); and
lymphocytic choriomeningitis virus (“LCMV”, Mammarenavirus choriomeningitidis, Are-
naviridae). The cohort consisted of 443 samples, received for routine diagnostic testing
year-round between January 2019 and February 2023, and were negative for herpes simplex
viruses, varicella zoster virus, and enteroviruses. Using published RT-qPCR protocols,
we did not detect rustrela virus or Tahyna virus in any sample. Using a herein described
RT-qPCR protocol, we detected LCMV in one sample. Partial genetic sequencing of the
virus suggested that the virus was locally acquired. Our study provides information about
the incidence of these viruses in humans in Austria when encephalitis is suspected.

Keywords: lymphocytic choriomeningitis virus; Tahyna virus; rustrela virus; zoonotic
virus; encephalitis

1. Introduction
Zoonotic disease monitoring and surveillance is important to better understand the

risks posed to public health [1]. A large cohort involving 68 centers in seven European
countries (including two in Austria) investigating outcomes of patients with severe menin-
goencephalitis over 3 years found that 23.7% of cases were due to infectious origin, of which
17.1% were viral, and 26.2% of unknown origin [2]. Similarly, a recent retrospective study
of encephalitis cases across three tertiary care hospitals over 10 years in Austria reported
10% with unknown and 73% with infectious etiologies [3]. Moreover, in that study, 21 of
the 65 patients classified as having a viral etiology were listed as “undetermined” and 13
of the 108 classified as “infectious etiology” were listed as other/undetermined infectious
pathogen, suggesting an additional 30% (34/108) of encephalitis cases were of unknown
infectious etiology [3].

The principal viral infections clinicians should consider in cases of encephalitis are
typically herpes simplex virus 1, varicella zoster virus, enteroviruses, and human immun-
odeficiency virus [4]. Although vector-borne and zoonotic agents are underrepresented in
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diagnostic testing, one study has shown that they were more frequently identified compared
to viruses more commonly considered to be associated with encephalitis [5]. This suggests
that there is a lack of awareness of zoonotic viruses as potential etiologies of encephalitis.
In Austria, several vector-borne and zoonotic viruses should be considered secondarily
or depending on epidemiological context (e.g., time of year) in cases of encephalitis: the
vector-borne arboviruses (Toscana phlebovirus, West Nile or Usutu flaviviruses, tick-borne
encephalitis virus) or mammal-/insectivore-borne viruses (borna disease virus) [4,6,7].

The incidence of some zoonotic viruses known to be endemic in Austria is currently
unknown. For example, rustrela virus (“RusV”, Rubivirus strelense) is a recently character-
ized positive-sense RNA virus, closely related to rubella virus in the family Matonaviridae.
RusV has been associated with the long-recognized “staggering disease” in cats [8], and
subsequently has been associated with neuroinvasive disease and encephalitis in many
mammals [9,10]. The virus is endemic in Austria [11], and is likely maintained in native
rodent hosts [12]. No human cases of RusV have ever been reported.

In contrast to RusV, the rodent-borne lymphocytic choriomeningitis virus (“LCMV”,
Mammarenavirus choriomeningitidis, family Arenaviridae) is a segmented ambisense RNA
virus that has been associated with neurovirulence in humans. First isolated from a
house mouse (Mus musculus) in the USA, 1935, LCMV has historically caused outbreaks of
meningitis and encephalitis in the USA and Europe [13,14]. With the exception of congenital
and transplantation-related cases [15,16], few cases of LCMV have been reported worldwide
since then, despite the demonstration that the virus is actively circulating in wild rodents
worldwide [17–19]. LCMV has been recently detected in rodents in Austria [20] and nearby
on the border between Germany and Czechia [21]. Notably, a laboratory strain of LCMV
was detected in Japan from a wild-derived mouse strain originating from Austria [22].
Seroconversion has been detected in zoo workers in Vienna, Austria [23], forest workers
and hunters in Italy [18,24], and patients in Hungary [25,26]. However, to our knowledge,
no acute human cases of LCMV infection have ever been reported from Austria.

Tahyna virus (“TAHV”, Orthobunyavirus tahynaense, family Peribunyaviridae) is a minus-
sense segmented RNA virus that is transmitted by mosquitoes [27]. It has a relatively wide
geographic distribution, and is known to be present in mosquitoes in central and southern
Europe [28–31] as well as China [32,33], and seroconversion of wildlife in Europe sug-
gests that the virus has a complex ecological maintenance potentially involving multiple
vertebrate hosts [34,35]. Human cases were originally detected in Czechia, where the
disease was associated with mild flu-like symptoms to more severe meningitis or menin-
goencephalitis [36–38]. Seroconversion in humans has more recently been demonstrated
in Czechia, Austria, and Croatia [39–41], although the precise association with disease
remains unclear. Experimental infections have shown that TAHV is neurovirulent and
neuroinvasive in rhesus macaques and laboratory mice, depending on strain [42]. Closely
related viruses in the California encephalitis serogroup are known to cause meningitis or
meningoencephalitis [43,44]. Nonetheless, to our knowledge, no human cases of TAHV
have ever been reported from Austria in the 50 years since it was first identified.

To establish the incidence of these zoonotic or potentially zoonotic viruses in Aus-
tria, specifically in cases where encephalitis was suspected, we retrospectively screened
biobanked cerebrospinal fluid (CSF) samples using molecular methods.

2. Materials and Methods
2.1. Sample Cohort

To assemble the cohort, we drew upon our biobank of samples, accumulated over
time as the national reference laboratory for arboviruses and other viruses, as well as a
routine clinical diagnostic laboratory for suspected viral infections serving Vienna and
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eastern Austria. We queried the biobank for cerebrospinal fluid (CSF) samples from January
2019 to February 2023 where clinical symptoms indicated possible meningitis, meningoen-
cephalitis, or encephalitis (as indicated by the attending physician). In addition to including
samples where the physician specifically indicated “encephalitis”, we included samples
from patients where symptoms included gait abnormality, limb paralysis, neuropathy,
status epilepticus, seizure, aphasia, ataxia, dementia, dysesthesia, or vigilance disorder,
sometimes in addition to more nonspecific symptoms (e.g., fever, headache, vomiting,
somnolence). We also included samples where the physician specifically requested test-
ing for tick-borne encephalitis virus. Typically, these cases are tested for our standard
panel of neurotropic viruses, including Herpes simplex virus-1 (Simplexvirus humanalpha1),
Herpes simplex virus-2 (Simplexvirus humanalpha2), Varicella zoster virus (Varicellavirus hu-
manalpha3), or enteroviruses (Picornaviridae). Endemic arbovirus infections from tick-borne
encephalitis virus, West Nile virus, or Usutu virus were also tested during summer and
early fall. Collection date and city of residence were recorded for each sample; otherwise,
no additional identifying information was considered. Apart from the establishment of
the biobank (approved by the ethics commission of the Medical University of Vienna,
EK1513/2016 and EK1035/2016), no ethical approval was required.

2.2. Nucleic Acid Extraction and Amplification

Total nucleic acids were extracted from CSF using automated easyMag® NucliSENS®

kits (bioMérieux Austria, Vienna). A pre-extraction control virus (phocid alphaherpesvirus)
was spiked into each sample according to [45]. The samples were tested for TAHV us-
ing a previously described RT-qPCR [30] targeting the viral nucleoprotein open reading
frame (Table 1). RusV was tested using the previously described “panRusV-2” RT-qPCR
protocol [8] (Table 1).

Samples were tested for LCMV using multiple approaches. First, we used forward
and reverse primers from an RT-qPCR recommended by a 2021 European external quality
assessment for rodent-borne viruses [46] designed to amplify a region of the S segment
(originally published in [47]). We modified these primers based on recently published
LCMV sequences from central Europe, and validated the assay using the LCMV-Armstrong
reference strain. The primers were LCMV_S1 (5′-GGG ATC CTA GGC TTA TTR GAT-
3′) and LCMV_AS1 (5′-GCA CWA TWA TRA CAA TGT TGA T-3′). The reaction was
performed as a one-step RT-qPCR with SYBR Green (“SuperScript™ III Platinum™ SYBR™
Green One-Step qRT-PCR Kit”, ThermoFisher Scientific, Vienna, Austria) on a real-time
PCR thermocycler, acquiring a melting curve after 40 cycles. Putatively positive samples
had an exponential-type amplification curve and amplicon melting temperatures ≥ 80 ◦C.
Putatively positive samples were confirmed with a nested, conventional RT-PCR targeting
the S segment, combining primers from two sources [48,49] to amplify a 444 nt product
(Table 1).

Table 1. Primers and probes used to detect viruses in this study.

Target Name Sequence (5′–3′) Reference

TAHV 1 TsF205 CAGGGGAGGTCGTCAATAAT [30]
TsR291 AGCACCCATCTAGCCAAATAC

TsP256 [FAM]ATAACAACGATCCTTACCAT
CCACCGGCTA[BHQ1]
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Table 1. Cont.

Target Name Sequence (5′–3′) Reference

RusV 1 RusV_234+ CCCCGTGTTCCTAGGCAC [8]
RusV_323- TCGCCCCATTCWACCCAATT

RusV_256_P [FAM]GTGAGCGACCACCCAGCACT
CCA[BHQ1]

LCMV 2 1817V-LCM ANATGATGCAGTCCATGAGTGCACA [49]
2477C-LCM TCAGGTGAAGGRTGGCCATACAT
1902V-LCM CCAGCCATATTTGTCCCACACTTT
2346C-LCM AGCAGCAGGYCCRCCTCAGGT

PhHV-1 3 Forward GGGCGAATCACAGATTGAATC [45]
Reverse GCGGTTCCAAACGTACCAA

Probe [TET]TTTTTATGTGTCCGCCACCAT
CTGGATC

1 Primers and probes for RT-qPCR reactions to target Tahyna virus (“TAHV”) or rustrela virus (“RusV”). 2 A nested
conventional RT-PCR using 1817V-LCM and 2477C-LCM as the outer primers in an RT-PCR, and 1902V-LCM
and 2346C-LCM as the inner primers in a PCR; used for sequencing. 3 Phocid alphaherpesvirus-1 (PhHV-1) was
added to samples pre-extraction and used as a nucleic acid extraction control.

2.3. Phylogenetic Analysis of LCMV

The amplicon was sequenced by the Sanger method. For phylogenetic analysis, we
selected reference sequences from GenBank using the discontinuous megablast search
algorithm, and selected sequence matches by eliminating laboratory strains, removing
exact duplicates and removing pairs with high sequence identity by an iterative method
(e.g., when multiple sequences were obtained from the same hosts at the same location
at approximately the same time). The reference strain “Armstrong 53b” (NC_004294)
was included in the analysis, and Ryukyu virus (“Rat arenavirus-1” [50], Mammarenavirus
ryukyuense, NC_039009) was used as an outgroup to root the tree. The phylogenetic tree
was inferred over 5000 bootstraps using the TIM3+F+I+I+R2 substitution model, identified
with ModelFinder in IQTree2 (v2.2.0.3). The resulting consensus tree was visualized with
“ggtree” (v3.10.1) [51] and related packages, including treeio (v1.26.0) and tidytree (v0.4.6),
with assistance from the package “ape” (v5.8) in R (v4.3.3).

3. Results
The cohort consisted of 393 samples from patients with suspected meningoencephalitis,

and 50 samples from patients thought to have tick-borne encephalitis (all negative by RT-
PCR and TBEV-reactive IgM). All samples were negative for RusV and TAHV RNA. One
sample was RT-qPCR positive for LCMV, collected from a patient living in Vienna in
September 2021, with the physician’s indication “suspected encephalitis”.

The amplified LCMV sequence (Austria/MUW1451606/2021, GenBank PQ799301)
matched only three other sequences using the online megablast algorithm from the NCBI
standard database: a sequence from Mus musculus in Czechia in 2009 (MZ568449, 85.84%
sequence identity); a sequence from Mus musculus in Germany in 2022 (OP958780, 83.56%
identity); and a sequence from a patient in Spain in 2008 (JN872495, 83.56% identity). A
discontinuous megablast further identified the strain from Japan that originated from
wild-caught mice in Illmitz, Austria (AB261990) with 85.84% identity [22]; otherwise, the
sequence identities to mammarenaviruses in the GenBank (NCBI) database were less than
85%. Phylogenetic analysis placed the sequence in a well-supported clade (97% bootstrap
support) with previously described strains from Germany [52], France [53], Czechia [21],
and a patient-derived virus sequence from Australia, with the patient having reported
travel to “former Yugoslavia” (the so-called “Dandenong strain” [54]). More specifically,
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the sequence shared a common ancestor (88% bootstrap support) with the Austrian-derived
laboratory strain in Japan (Figure 1).
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Figure 1. The maximum-likelihood phylogenetic tree of lymphocytic choriomeningitis
virus (Mammarenavirus choriomeningitidis), including a case of encephalitis in Austria (Aus-
tria/MUW1451606/2021, Accession PQ799301, indicated by a black dot). The consensus tree was
inferred over 5000 bootstraps, with the TIM3+F+I+I+R2 substitution model identified with Mod-
elFinder in IQTree2 (v2.2.0.3), and nodes with bootstrap support >60% are shown over branches in
gray text. Reference sequence names are given as the GenBank accession number, the presumed
country of origin (or importation), and the year of collection. The scale bar indicates branch distance
in substitutions per site over the 444 nt partial sequence of the viral S segment.

4. Discussion
The successful detection of viral genetic material in an infected patient is dependent

on the course of disease, the samples tested, and—importantly—the specificity of the test.
We identified acute infection with LCMV in the CSF of one patient from a cohort of patients
with encephalitis. However, we are cautious when inferring the incidence of LCMV, RusV,
and TAHV in Austria based on these observations. Our data suggest that approximately
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0.2% of encephalitis patients might have LCMV, and less than 0.2% of patients might have
RusV or TAHV. However, each of these viruses is assumed to be seasonally abundant
in their enzootic transmission cycles, and therefore spillover to humans would also be
seasonal. Furthermore, we must be cautious about associating these viruses with a specific
course of disease, and interpreting our data in terms of the sensitivity and specificity of
our tests. While biobanks are important resources for retrospective analyses such as ours,
they introduce additional considerations in sample processing and virus stability during
storage that may reduce the likelihood of detection.

We were screening for evidence of acute-phase virus infection in symptomatic patients.
LCMV is known to cause meningitis in patients, causes neurological complications par-
ticularly in transplant patients, and is a serious congenital infection [55]. Therefore, it is
not surprising that we could link a suspected encephalitis case to an infection with LCMV.
However, the situation is not as concrete for TAHV, where the precise description of disease
has ranged from simple fever to more complicated neurological symptoms [27,36,37,56].
Our findings support the cumulative evidence that TAHV is a relatively rare infection in
humans in Austria [40] and in Europe [27–29,41] (particularly in cases with neuropathy),
while it has a relatively high seroprevalence in wildlife [34] and is focally and seasonally
present in mosquitoes [30,39]. Even less is certain about the course of potential human
disease for RusV—it is known to infect and cause encephalitis in many, distantly related
mammalian species [9,10], and therefore human infection is suspected, but not yet verified.
Our study represents the first extensive screening of human clinical samples for evidence
of RusV infection.

Our approach was designed with routine diagnostics in mind, to provide insight
into benefits and limitations when implementing routine testing for these viruses among
patients with suspected meningoencephalitis. We note that our assembled cohort had
been previously screened for a number of viruses in our laboratory, including typical
neuroinvasive human viruses, tick-borne encephalitis virus, and other mosquito-borne
viruses; however, we have no knowledge about the ultimate diagnosis of these patients,
whether, for example, another microbiological laboratory was able to associate bacterial
infections as the cause of the disease. Our biobank approach allowed us to perform
retrospective analyses with the intention of identifying and characterizing these viruses to
improve diagnostics.

The most important caveat for our study is that we relied on PCR-based molecular
diagnostic methods. Other molecular approaches for detecting viral nucleic acids non-
specifically, such as “shotgun sequencing” or metagenomics, are becoming more feasible for
routine diagnosis [57–59]. However, these approaches still have low sensitivity compared
to RT-qPCR and require either more sample material, high sequencing depth, and/or a
relatively high viral load [57,59]. Importantly, prior to screening, we validated our opti-
mized LCMV RT-qPCR primers to show that they have similar sensitivity compared to the
published assay as well as the nested conventional RT-PCR described herein for a laboratory
strain of LCMV; and, having identified the virus in a patient sample, we were able to show
the similarity in sensitivity of these assays against a “wildtype” strain found in Austria.
Additionally, alternative methods, involving serological tests to detect virus-specific IgM or
IgG, are not commercially available for our three selected viruses. TAHV has remarkably
low sequence diversity over time and across its range in Europe [30], providing confidence
that our PCR would have detected the virus. Similarly, we used the assay that has been
known to be specific to the clade of RusV identified in Austria in cats [8].

In contrast to TAHV, LCMV is known to have very high sequence diversity [21],
complicating diagnostic tests [46]. Very few sequences of LCMV from Central Europe are
available [26], and, as mentioned, the single LCMV sequence available linked to Austria
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had uncertain and indirect provenance [22]. Indeed, all available human- and rodent-
derived LCMV sequences must be cautiously interpreted in terms of viral phylogeography,
as discussed in [21] (Figure 1). Therefore, designing specific primers for PCR-based testing
that will detect local strains remains a major hurdle. To our knowledge, there are few, if
any, contemporary isolates of LCMV from Europe available for assay validation. Nonethe-
less, our sequence fits into a strongly supported clade with viruses from central Europe,
described from wild-captured rodents [21,52], specifically sharing a direct common ances-
tor with the laboratory mice reportedly captured in Austria (Figure 1). We are therefore
confident that the sequence represents an endemic strain, although we cannot exclude the
possibility that it was travel-associated. However, we believe this sequence will assist in
further optimizing diagnostic methods to detect autochthonous cases.

5. Conclusions
The rapid expansion of known virus diversity and of newly discovered virus species

is evident from the rapidly expanding databases of publicly available virus sequences [60].
Molecular diagnostic tools must keep up with this pace by incorporating new sequence data
to update primers and probes, and include tools that are sensitive to novel, emerging, or
re-emerging pathogens that may cause similar clinical features in patients—fever, flu-like
illness, meningitis, or meningoencephalitis. Our identification of LCMV confirms that
human cases occur in Austria, possibly at a low overall incidence, but improved diagnostic
methods are necessary to better understand the incidence in the population.
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