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Persistence in time: the hunt for Bacillus anthracis at a historic 
tannery site in Austria reveals genetic diversity thought extinct
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ABSTRACT Identifying and analyzing historic anthrax loci may provide a treasure trove 
to fill in the gaps of persistence in time and genetic diversity of Bacillus anthracis. In 
countries where anthrax has become a disease of the past, detailed knowledge of the 
exact location and stability of spores in soil reservoirs is limited. Reviewing archival 
records may provide valuable clues to unearthing such forgotten sites. Knowledge of 
anthrax diversity in Austria is scarce, as the only available isolates—originating from 
the last outbreak in Austria in 1988—cluster in the B.Br.004 (CNEVA) canonical single-
nucleotide polymorphism (canSNP) group. Thus, we analyzed archival records on anthrax 
incidents in Austria to locate historic B. anthracis soil reservoirs. In parallel, we tested 
the performance of different soil processing protocols for the isolation of B. anthracis 
spores to establish a suitable workflow for screening historical anthrax loci. Using an 
optimized workflow, we were able to isolate viable B. anthracis spores 80 years after 
the last occurrence of anthrax at an abandoned tannery identified through our archival 
work. Genome analysis of the isolated strains allowed to improve the phylogeographic 
resolution within the hitherto poorly covered A.Br.064 (V770) canSNP group by linking 
historical records to genetic information. Furthermore, our results re-emphasize that B. 
anthracis can survive for decades at historic sites and may pose a health threat when 
such sites are eventually reactivated by climatic factors or human intervention.

IMPORTANCE Bacillus anthracis is a continuing threat from a One Health perspective 
since it leads to severe infections in animals and humans. Ongoing climate change 
or human activities can reactivate historical B. anthracis loci, previously considered 
inactive or forgotten. Therefore, knowledge of historic anthrax incidents at abandoned 
animal processing facilities, such as tanneries or farmyards, along with robust detection 
protocols, is of prime interest when monitoring this important zoonosis. As shown here, 
archival records of possible origins of anthrax-contaminated goods received at tanneries 
are valuable sources and support these efforts. Investigation for viable spores at such 
historical sites could not only provide new insights into the past genetic diversity and 
population structure of B. anthracis but also provide important information for taking 
appropriate measures to prevent future outbreaks originating from these sites.

KEYWORDS anthrax, Bacillus anthracis, soil, Austria, isolation, historic, phylogeography, 
A.Br.064, reservoir

B acillus anthracis, which causes the zoonotic disease anthrax, is the most notorious 
member of the Bacillus cereus sensu lato group (1). This Gram-positive, endospore-

forming bacterium mainly infects ungulate herbivorous mammals during grazing, but 
other animals, including carnivores, can also contract the disease. Humans are occa­
sionally affected through the handling of infected animal products or by the consump­
tion of undercooked meat (1, 2). After the death of the host animal, vegetative B. 

March 2025  Volume 91  Issue 3 10.1128/aem.01732-24 1

Editor Charles M. Dozois, INRS Armand-Frappier 
Sante Biotechnologie Research Centre, Laval, 
Quebec, Canada

Address correspondence to Monika Ehling-Schulz, 
monika.ehling-schulz@vetmeduni.ac.at.

The authors declare no conflict of interest.

See the funding table on p. 12.

Received 17 September 2024
Accepted 12 January 2025
Published 7 February 2025

[This article was published on 7 February 2025 with 
Hugo Weidinger's name misspelled in the byline. The 
byline was updated in the current version, posted on 18 
February 2025.]

Copyright © 2025 Mayerhofer-Rochel et al. This is an 
open-access article distributed under the terms of 
the Creative Commons Attribution 4.0 International 
license.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/a
em

 o
n 

21
 M

ar
ch

 2
02

5 
by

 1
93

.1
71

.1
06

.2
18

.

https://crossmark.crossref.org/dialog/?doi=10.1128/aem.01732-24&domain=pdf&date_stamp=2025-02-07
https://doi.org/10.1128/aem.01732-24
https://creativecommons.org/licenses/by/4.0/


anthracis cells can be released into the environment through the discharge of body 
fluids and/or scavengers feeding off the cadaver. The unfavorable growth conditions 
in the environment and the resulting loss of host-associated CO2 trigger sporulation 
which enables B. anthracis to remain dormant as spores for years or even decades (3–6). 
These endospores may get into contact with new hosts through grazing activities (4), 
dissemination through wind, heavy rains, landslides, etc. or by human activities such as 
construction sites, military conflicts, and others (4). Surveillance of B. anthracis spores 
in the environment is of major interest for risk management and possible mitigation. 
Due to climate change, landslides, and precipitation extremes, the likelihood of the 
reactivation of historic anthrax loci is expected to increase (5, 7, 8).

In the past two centuries, anthrax was also a common zoonotic disease in central and 
northern European countries. However, anthrax has become very rare or almost extinct 
in countries such as Finland, The Netherlands, Germany, Denmark, and Austria (9–15). At 
the same time, these are the countries for which we have only little information about 
the domestic B. anthracis genotype diversity that typically prevailed in those countries 
over the past centuries. Most of the information stems from strain collections. There is at 
least a 150-year history of anthrax contamination in tanneries or wool-sorting factories, 
as evidenced by the term woolsorters’ disease (16, 17). Previous work has taught us that 
viable B. anthracis isolates can still be recovered from anthrax loci decades later (5, 12, 
18–20). For instance, Cherkasskiy (19) provided historical data on Russian anthrax loci 
from the national anthrax monitoring program, documenting several decades between 
outbreaks and Brawand et al. (5) described a case in cattle after heavy rainfall, which 
occurred 40 years after the last case in this region (5). As such, ancient anthrax loci may 
continue to pose a risk to the environment, animals, and humans. Following the 2001 
“Amerithrax” bioterrorist attacks (21, 22) and the increased awareness of B. anthracis 
as a weapon of terrorist or biocrime, research on pathogen detection in environmen­
tal samples, and bioforensic traceback analysis (23–27) by genomic studies of isolates 
worldwide have accelerated. The B. anthracis population is characterized by its high 
clonality, and strains can be assigned to three major lineages: A, B, and C (26, 28). 
However, the genetic homogeneity of B. anthracis makes subtyping and identification 
of strains sometimes difficult (26). One of the first methods of determining the genetic 
relationship between strains used various variable-number tandem repeats (VNTR), the 
so-called multiple-locus VNTR analysis, to distinguish six major genetic groups (28, 29). 
With the onset of whole-genome sequencing (WGS) and the increase of genome data, 
the clonality of B. anthracis (30–32) and the absence of significant horizontal gene 
transfer were confirmed (33, 34). Canonical single-nucleotide polymorphisms (canSNPs) 
were discovered (23, 24, 26, 35, 36). The combination of VNTRs and canSNPs allows the 
clustering of the B. anthracis population into three major clades, called A (A.Br.), B (B.Br.), 
and C (C.Br.) branch (by VNTRs), subdivided into 13 classical canSNP groups (26, 35). 
Clade A comprises isolates from all over the world while clade B groups B.Br.004 and 
B.Br.008 are primarily found in the central European mountainous regions, in Southern 
Africa and Siberia, respectively (12, 24, 37). Clade C has so far only been recovered from 
the USA. During a natural anthrax outbreak or after a deliberate, malicious release of 
the pathogen, genotyping of canSNPs by PCR-based methods (38, 39) provides a rapid 
means of strain classification.

Numerous protocols have been proposed for the isolation and detection of B. 
anthracis in soil (12, 40–42), but comparison of their respective performance is gener­
ally hampered by the different nature of soil matrices, which exhibit widely varying 
characteristics. This subsequently hinders the effectiveness of isolation and recovery of 
B. anthracis from natural habitats. Due to biosafety issues and practicability, several B. 
anthracis surrogates, including B. atrophaeus, B. cereus, and B. thuringiensis, have been 
introduced (43, 44) and used to establish methods for the recovery of spores from 
environmental samples (45, 46). Transfer of this knowledge to B. anthracis has led to the 
now-established isolation methods that focus on the separation of spores from gross 
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soil debris, followed by bacterial germination and cultivation on semi-selective media for 
subsequent confirmation of B. anthracis-specific marker genes by real-time PCR (47, 48).

Austria had its last anthrax outbreak in Tyrol in 1988, and only three B. anthracis 
isolates (besides an imported “Amerithrax” letter-associated isolate from 2001) have 
been sequenced from strain collections, all belonging to the B branch, probably being 
autochthonous to the European Alpine region (12). In this work, we combined archival 
research and field studies to gain further insight into the history and diversity of B. 
anthracis in Austria. Furthermore, we tested the performances of three soil processing 
protocols for B. anthracis spore recovery to determine the optimal method for further 
analysis of Austrian soils. Using this combinatorial approach, we successfully identified 
and recovered viable B. anthracis spores from soil samples at a relatively ancient (~100 
years) abandoned tannery site in Upper Austria. Four new and unique strains of B. 
anthracis were isolated and subjected to canSNP typing and genomic analysis using WGS 
data.

RESULTS

Soil processing protocols differ in their recovery efficacies of B. anthracis from 
Austrian soil samples

To establish a suitable screening protocol for the isolation of B. anthracis spores in 
soil at historic anthrax loci in Austria, the performance of three commonly used soil 
processing protocols, designated here as BEYER, GABRI, and SILVESTRI (for details see the 
material and method section), was compared. Two sterile reference soils from Austria 
were deliberately contaminated with B. anthracis str. Sterne spores (3.3 × 102 in total) 
and subjected to different soil processing protocols. The average colony-forming unit 
(CFU) per plate and relative plate recovery (Rplate) were calculated to estimate the 
number of agar plates needed for successful isolation of B. anthracis from soil samples. 
An overview of the performance of the three protocols for the isolation of B. anthracis 
spores is provided in Table 1. The GABRI protocol yielded the lowest total spore recovery 
(Rtotal) for Austrian soil samples (20.7% for field soil and 25.1% for alpine soil), while 
the SILVESTRI protocol showed the best performance (80.1% for field soil and 55.9% for 
alpine soil), but was the most time intensive. The BEYER protocol showed a similar spore 
recovery (72.1% for field soil and 43.3% for alpine soil) as the SILVESTRI protocol, but 
the overall process was about 30 minutes faster. Since the relative recovery of the BEYER 
protocol is similar to that of the SILVESTRI protocol but faster to conduct, the BEYER 
protocol was chosen for the screening of soil samples at historic anthrax loci.

Localization, detection, and isolation of B. anthracis from historic anthrax 
sites

Archive material (“Bericht der Landesregierung,” 27 February 1914) stated that a tannery 
located in Upper Austria imported contaminated hides in the years 1913–1914 from 
overseas. Additionally, the register of contaminated sites lists an area of the mud ponds 
of the tannery as a possible anthrax-contaminated site. The mud ponds were used for 
storage of the accumulated sludge during the tanning process. Sludge was stored in this 
manner until the then-novel wastewater treatment system was installed in 1991. The 
sampled area of the tannery was explicitly stated to be possibly anthrax contaminated 
since the 1920s and not in use since the mentioned archival record of anthrax. Archive 
records also mentioned a farmyard in the vicinity, where anthrax-diseased cattle were 
buried on 27 October 1980. Personal communication with the retired official veterinarian 
revealed the use of soil from the mud ponds as fertilizer at the farmyard as a possible 
origin of the anthrax outbreak in 1980.

This tannery has been the second largest tannery in Europe with over 1,200 
personnel, providing leathery goods for the then Austrian-Hungarian empire and for 
the automotive industry in Germany. The company operated from 1830 until its closure 
in 2013 (personal communication with the current owner of the area). The tannery 
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most likely imported anthrax-contaminated hides both locally and from overseas. To 
test for the presence of still viable B. anthracis spores, we collected soil samples from 
both the tannery and the adjacent farm. In two samples taken at depths of 150 cm 
from the ground of the mud ponds, animal hair was found accompanied by a distinct 
smell of putrification. Soil samples were processed using the BEYER protocol and plated 
undiluted as well as in serial dilutions on semi-selective BamPLET agar plates. The 
resulting cell lawn of the incubated plates (undiluted samples) was scratched from 
the plates and suspended in phosphate-buffered saline (PBS). DNA was subsequently 
isolated and subjected to anthrax-specific qPCR markers to screen for B. anthracis. These 
qPCR tests revealed positive B. anthracis signals in one tannery soil sample at a depth 
of 150 cm, containing animal hair while the other soil samples of the tannery and 
the farmyard were tested negative. Next, the plates containing the serial dilution of 
the qPCR-positive soil sample were examined for the growth characteristics typical of 
B. anthracis. A total of 62 presumptive B. anthracis colonies were sub-cultivated and 
tested for the B. anthracis-specific genetic markers PL3, cya, capB, and dhp61 (data not 
shown). Four colonies tested positive for all four B. anthracis marker genes, while all other 
tested colonies were negative for all four marker genes. To gain insight into the genetic 
relativeness of these B. anthracis isolates, they were subjected to a detailed genetic 
analysis.

Sequencing and phylogenetic placement of the new B. anthracis isolates

To determine the respective positions of these novel Austrian B. anthracis isolates within 
the canSNP groups of B. anthracis, DNA of the four B. anthracis isolates was extracted and 
subjected to delayed mismatch amplification assay (DMAA) analysis for a first identifica-
tion and classification of our new B. anthracis isolates. Furthermore, the results from 
DMAA were used to determine possible reference strains from the same geographic 
origin or canSNP group for sequencing beforehand and to optimize the reference data 
selection. All four isolates clustered to A.Br.004/A.Br.003 as they exhibited the ancestral 
genotype for canSNPs C.Br.001 (C-clade), B.Br.003 (B-clade), A.Br.008 (TEA), A.Br.002 
(Sterne/Ames), A.Br.003, and A.Br.014 (Aust94) but a derived genotype of A.Br.006 
(A-clade) and A.Br.004, hinting at A.Br.064 (V770; Table S1). To confirm the placement 
of the isolates in A.Br.064 (V770), all four isolates were subsequently subjected to WGS. 
This analysis resulted in a total of 4.46 GB of reads with an average Q30 of 91.57% 
and 2.83 GB with 6.51 kb N50 for Illumina and MinION reads, respectively, resulting in 
a chromosomal coverage of at least >19× for all four B. anthracis isolates (Bioproject 
PRJNA1048328; details of the genome analysis are provided [49]). The analysis of the 
genome data corroborates the canSNP results of the DMAA analysis. All four isolates 
were placed into the A.Br.064 (V770) canSNP group (Fig. 1), together with strains from 
the Americas (Chile, Argentina, Bolivia, and the United States), Africa (South Africa), 
and Europe (Austria, Germany, and Finland). Furthermore, the analysis of the WGS data 
revealed that the four isolates from the historical tannery in Austria represent four 
different genetic lineages. Two of the new Austrian isolates (MH-PR and MH-MFM) fitted 
well into the shallow phylogeny of the A.Br.064 (V770) canSNP group, while the two 
others formed a new deeper branching sub-clade. The only strain more basal was a 
strain isolated from Germany (A142). Notably, A142 and A155 have been isolated from 

TABLE 1 Performance of GABRI, SILVESTRI, and BEYER processing protocols for B. anthracis isolation from spore-spiked soil samplesa,b

Field soil Alpine soil

Method t (min) Vreconstitution (mL) CFUplate Rplate Rtotal CFUplate Rplate Rtotal

GABRI 60 10 3.4 ± 1.0 1.0 20.7 4.1 ± 2.5 1.3 25.1
SILVESTRI 110 2 66.0 ± 5.1 20.0 80.1 46.1 ± 13.8 14.0 55.9
BEYER 80 2 59.4 ± 5.0 18.0 72.1 35.7 ± 2.6 10.8 43.3
aFive hundred microliters of extracted spore suspensions was plated for each protocol. Number of spiked spores was 330 ± 12 for each replicate.
bCFU, recovery per plate (Rplate), and the total recovery (Rtotal) [%] of Sterne on LB agar after 24 h at 37°C.
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an abandoned tannery site in Germany in 2007 (W. Beyer, personal communication). To 
facilitate the genotyping of future A.Br.064 isolates, DMAA primers for A.Br.064, as well as 
the newly designated A.Br.064/AUT sub-branch, were designed (see Table S2).

To gain deeper insights into the phylogenetic connections of the new isolates with 
previously characterized strains, a minimum spanning tree of clade A.Br.064 (V770), 
B.Br.004 (CNEVA), and the Ames-Ancestor reference genome was calculated (Fig. 2). 
The genetically closest pair of the new strains (MH-VW and MH-JJ) from the historic 
tannery, designated as A.B.064/AUT, was separated by 21 single-nucleotide polymor­
phisms (SNPs), with strain BA1015 from the USA as their closest relative. Strains MH-PR 
and MH-MFM were 39 SNPs distant from each other and 45 SNPs apart from the node 
leading to MH-VW and MH-JJ. The closest relatives of strain MH-PR were A0096 and 
A0094 (South Africa) with 31 and 32 SNPs distance, whereas strain MH-MFM had its 
closest relatives with A1096 (Argentina) and ZA047 (South Africa) with 26 and 29 SNPs 
distance, respectively. As future sampling at the historic tannery site may yield additional 
isolates, the newly designed DMAA primers will aid in the identification of B. anthracis 
strains there and likely also at other historic anthrax sites or outbreaks even possibly in 
the future.

FIG 1 Rooted maximum-likelihood phylogenetic tree including four newly isolated B. anthracis strains from a historic anthrax site in Austria. The tree 

was calculated from chromosomal single-nucleotide polymorphism (SNP) analysis of 2,314 SNP positions (bootstrap confidence from 500 permutations was 

generated, and the tree with the highest likelihood is shown). The new B. anthracis isolates are indicated in red, and all strains originating in South America and 

South Africa are indicated in magenta. A newly identified sub-branch of A.Br.064/AUT is designated in red. The names of countries of origin are labeled in orange 

or black. Inset: The pages from an import chart of the tannery receipt book (source: Wolfgang Vogl, Austria; reprinted with permission) show the delivery of hides 

from South America and South Africa imported through the port of Hamburg (see Table S4).
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DISCUSSION

Challenges arise when sampling historic anthrax loci because one must expect to 
encounter very low levels of viable spores that can be recovered by cultural methods. 
Thus, efficient isolation protocols are of utmost importance. Because germination rates 
of B. anthracis spores at ancient anthrax sites (~100 years) may be reduced compared 
to those at currently active anthrax sites, a high recovery rate is likely necessary for 
efficient sampling at such sites. To this end, the SILVESTRI and BEYER methods (12, 40, 
42) turned out to be the most suitable ones for both soil types tested in the frame of 
this work. Although the GABRI method has facilitated successful isolation of B. anthracis 
from a comparably relatively recent Italian burial site from the 2000s (41), it may not 
be the optimal protocol for the analysis of older historic loci when the exact burial 
site is unknown. For the latter, a higher number of samples is advisable, requiring a 
method allowing fast and easy processing of samples, such as the BEYER method (12, 
40). Using the BEYER method, we were indeed able to isolate viable B. anthracis spores 
from an ancient tannery with a history of anthrax in its vicinity. Such historic anthrax 

FIG 2 Minimum spanning tree of A.Br.064 (V770) canSNP group and B.Br.004 (CNEVA; with the Ames “Ancestor” reference as root), derived from chromosomal 

SNPs. Indicated are numerical SNP differences (logarithmic scale) between chromosomes. The geographical origin of strains is indicated using a three-letter 

country code (e.g., AUT-Austria, FRA-France,…). The new Austrian soil isolates from the historic tannery are highlighted in red. The newly identified sub-branch of 

A.Br.064, including two out of the four novel isolates from Austria, is designated in red. A.Br.064 group strains originating from Germany are depicted in yellow, 

and South America and South Africa A.Br.064 group strains are depicted in magenta.

Full-Length Text Applied and Environmental Microbiology

March 2025  Volume 91  Issue 3 10.1128/aem.01732-24 6

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/a
em

 o
n 

21
 M

ar
ch

 2
02

5 
by

 1
93

.1
71

.1
06

.2
18

.

https://doi.org/10.1128/aem.01732-24


sites may pose a potential threat as they may be reactivated by ongoing climate change, 
landslides, and extreme weather events. For instance, after more than 20 years without 
any anthrax outbreaks, an old carcass burial site in an opened cave system flooded by 
heavy rainfalls caused a bovine anthrax case in Switzerland (5). Furthermore, climate 
factors leading to the thawing of permafrost have been described as a crucial factor for 
an anthrax outbreak in Northwest Siberia that affected reindeer as well as humans after 
70 years without outbreaks in this region (7, 50).

Additionally, experiments conducted at Scottish Gruinard Island in 1942 during the 
Second World War contaminated the land, leaving it uninhabitable for over 40 years (51). 
This deliberate, experimental contamination reflects the high capacity of B. anthracis to 
persist in the environment in its dormant form. It was only after extensive decontamina­
tion efforts (52) using formaldehyde that the island of Gruinard was declared “free of 
anthrax” in 1990 (52). Our results corroborate the findings of these studies that such 
historical anthrax loci may still contain viable B. anthracis spores that persist in time. 
These may have been long forgotten, but they continue to pose a risk to both animals 
and human beings.

As revealed by our work, archival records represent a valuable, yet-to-be-exploited 
source for the discovery of “lost” anthrax loci, even if anthrax is currently unknown in a 
particular region. Interestingly, the historic receipt book of the tannery investigated in 
this work stated imports from South America and South Africa in the year 1939 (see Fig. 
1 for details). The data contained therein may help to explain the transmission route that 
led to the isolation of B. anthracis strains from the A.Br.064 (V770) clade in Austria. So far, 
A.Br.064 (V770) has been found predominantly in South America and South Africa (24, 
53), while previously isolated Austrian B. anthracis from Tyrol belongs to B.Br.004 (CNEVA), 
which is the predominant genotype in many mountainous European regions (12, 54, 55). 
Dispersal of B. anthracis to other continents is best explained by human activities (e.g., 
colonization or trade). The diversity of the four Austrian A.Br.064 (V770) clade isolates 
of this study is a likely result of the tannery site having been contaminated by hides 
imported from either South America or South Africa. The MH-MFM isolate clustered to 
South African and South American B. anthracis strains (A1096 and SA047), MH-PR was 
closer to strains originating from South Africa (A0094, A0096, and A0097), and MH-VW 
and MH-JJ are branching into their own subbranch named A.Br.064/AUT. Of note, the 
historic tannery receipt book dates only go back to the year 1939, while the archive 
records list the 1910s–1920s as the first occurrence of B. anthracis in this region in Upper 
Austria. Unfortunately, no older records on imports could be obtained, but trading routes 
may have already been established in the prior years, as the tannery operated since the 
1830s (personal communication, current owner of the tannery area). If our hypothesis on 
the origin of the new Austrian A.Br.064 isolates (or their ancestors in the contaminated 
soil) originating from the trade of contaminated hides from South America or South 
Africa is valid, then these organisms have remained viable in the soil for more than eighty 
years. However, it remains an open question (56) whether B. anthracis persisted in the 
soil during this time only as dormant spores or if the bacterium underwent active growth 
cycles in soil (18, 57), resulting in low levels of fresh spores (58). The bifurcated topology 
of the novel A.Br.064/AUT clade may be the result of germination, vegetative growth, and 
re-sporulation in the soil or of repeated infection cycles within soilborne organisms as 
previously suggested (18, 58). Alternatively, spores of these two strains may have been 
imported from a world region where this genotype is more diverse.

When screening for B. anthracis at tannery or animal processing sites, various 
genotypes covering several major clades may be present in soil samples or other 
environmental samples such as dust (59, 60). Conversely, in natural outbreak scenarios, 
typically strains of a single genotype differing only by a few SNPs are usually isola­
ted (13, 18), with rare exceptions (50, 61). If an unexpected anthrax outbreak yields 
different genotypes, for example after landslides, it could hint at (possibly forgotten) 
historic anthropogenic artifacts, such as animal (product) processing facilities as well 
as unregulated or unlawful carcass disposal. Vice versa, it would be prudent to screen 
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B. anthracis-positive samples of known but abandoned animal processing facilities for 
different genotypes of B. anthracis, especially if historic import records are available. As 
thousands of hides have been processed over the decades, sampling expeditions to 
historic tannery sites may reveal novel genotypes and could provide important insights 
into the ecology and evolution of B. anthracis. To decipher such historical sites, archival 
records could represent a crucial and valuable resource to consider.

Conclusion

Prospective outbreak management aiming at estimating the risk potential of historical 
B. anthracis loci should also consider archival records, such as state archives as well 
as archive material from historic tanneries and animal processing facilities. To the best 
of our knowledge, this study is the first to utilize state archive material to uncover a 
historic anthrax locus in Austria, and possibly even Central Europe. Additionally, this 
study reports the first finding of A.Br.064 (V770) genotypes of B. anthracis in Austria. The 
historic receipt book of the tannery sampled here may explain the spread of A.Br.064 
(V770) strains not only into Austria but also into Germany by the trade of hides through 
the port of Hamburg. Similar events have been proposed for the anthropogenic-driven 
introduction of isolates of the A.Br.009 group and its progeny to North America from 
Spain, France, and Italy (62, 63). Therefore, the observed SNP distances between isolates 
suggest a rather “recent” radiation of the A.Br.064 (V770) clade in human history, possibly 
within the last few hundred years.

MATERIALS AND METHODS

Bacteria and media used in this study

Bacteria were routinely cultivated at 37°C in Lysogeny broth (Luria Bertani, LB) consisting 
of 1% NaCl, 1% tryptone, and 0.5% yeast extract in deionized water or on LB agar 
plates supplemented with 1.5% agar (64). For the isolation of B. anthracis spores from 
soil samples, a blood amended modified PLET (BamPLET) agar, consisting of 4.2% PLET 
agar base (Merck, Darmstadt, Germany) in deionized water supplemented with 2 mg/L 
trimethoprim (Sigma-Aldrich, St. Louis, MI), 38 mg/L sulfamethoxazole (Sigma-Aldrich, St. 
Louis, MI), and anthrax selective supplement (Merck, Darmstadt, Germany) consisting of 
30,000 U/L polymyxin B and 300,000 U/L lysozyme, 20 mg/L fosfomycin disodium salt 
(Sigma-Aldrich, St. Louis, MI), 0.03125 mg/L azithromycin dihydrate (Sigma-Aldrich, St. 
Louis, MI), 0.0625 mg/L erythromycin (Sigma-Aldrich, St. Louis, MI), and 2.5% defibrina-
ted sheep blood, was used. Presumptive B. anthracis isolates from soil samples were 
subcultivated on Standard I Agar (StdI) plates (Carl Roth, Karlsruhe, Germany), which 
were prepared according to the manufacturer’s instructions.

Spore preparation of B. anthracis str. Sterne

Spores of B. anthracis str. Sterne were prepared using Malvar medium (65), which consists 
of 0.8% nutrient broth Difco (BD, Franklin Lakes, USA) supplemented with 0.05 mM 
manganese dichloride tetrahydrate (Merck, Darmstadt, Germany), 1 mM magnesium 
dichloride (Merck, Darmstadt, Germany), and 0.07 mM calcium dichloride (Merck, 
Darmstadt, Germany). One colony of B. anthracis str. Sterne was suspended in 1 mL 
PBS and heated to 65°C for 30 min to kill vegetative cells. One hundred microliters of 
this suspension was transferred to 100 mL of Malvar medium (65) in a baffled 500 mL 
Erlenmeyer flask and incubated at 37°C, 180 revolutions per minute, for 72 h. TWEEN 80 
(Sigma-Aldrich, St. Louis, USA) was added to a final concentration of 3%, and incubation 
was continued for 24 h. The purity of spore suspensions was checked by phase contrast 
microscopy, and spores were harvested by centrifugation when purity was >95% (66). 
If purity was less than 95%, spores were washed in Spore wash buffer (SWB) with 
3% TWEEN 80 and incubated for another 24 h until purity was sufficiently high. SWB 
consisted of 8 mM dipotassium hydrophosphate, 2 mM potassium dihydrophosphate 
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(Merck, Darmstadt, Germany), and 0.1% TWEEN 80 (Sigma-Aldrich, St. Louis, USA) in 
deionized water (67). The spore pellet was washed six times with SWB, subsequently 
suspended in 40 mL of SWB, and stored at 4°C until use (67). Spores were found to be 
stable for up to 3 months (for the duration of all experiments; data not shown). Spore 
preparations were used for the comparison of soil processing protocols and as spike-in 
for soil samples (see below).

Comparison of soil processing protocols and estimation of recovery rates 
with artificially spiked reference soils

Reference soil samples were taken from Lower Austria and in the vicinity of a historic 
anthrax locus at Upper Austria (180 km distance). Soil samples were dried at 80°C, 
sieved through a 3 mm sieve, and sterilized at 140°C for 72 h. Sterility was checked by 
inoculating 1 g of treated soil in 10 mL of LB media after incubation for 24 h at 37°C.

Three different soil spore extraction methods, designated as BEYER (after the first 
author of the respective publication, Wolfgang Beyer [40]), GABRI (Ground Anthrax 
Bacillus Refined Isolation [41]), and SILVESTRI (after the first author of the respective 
publication, Erin Silvestri [42]), were used to evaluate extraction efficacy using soils 
collected in Austria. For reasons of comparability, the same quantity of soil (5 g), the 
same total numbers of B. anthracis str. Sterne spores (3.3 × 102) for spiking the soil 
samples, the same volume of extraction solution (15 mL), and plating volume (500 
µL, Vplating) for spore re-isolation were used. The recovery quotes of the spores from 
the artificially contaminated soil samples were determined by plating serial dilutions 
according to the following protocols.

For the BEYER protocol (12, 40), the soil was added to PBS in a 50 mL screw-cap 
bottle. After vortexing for 30 min, the suspension was filtered through a sterile gauze 
inside a sterile syringe to remove larger soil particles. The filtered soil spore slurry was 
centrifuged at 4,000 × g for 15 min. The supernatant was discarded, and the spore pellet 
was resuspended on 2 mL deionized water (Vreconstitution). The mixture was heated at 
65°C for 20 min to inactivate vegetative cells and plated onto LB agar plates. For the 
GABRI protocol (41), the soil was added to deionized water containing 0.5% TWEEN 
20 (molecular grade, Sigma-Aldrich, St. Louis, USA). Samples were vortexed for 30 min. 
Soil slurries were centrifuged at 657 × g for 5 min to pellet large soil particles, and the 
supernatant was transferred into a new 50 mL tube. Vegetative cells were inactivated by 
heating the mixture at 64°C for 20 min. A volume of 5 mL of the resulting spore slurry 
was mixed 1:1 ([vol/vol], Vreconstitution) with tryptose phosphate broth (TPB) amended 
with 125 µg/mL of fosfomycin. The resulting TPB-Spore slurry was plated onto LB agar 
plates. For the Silvestri protocol (42), the soil was added to a spore extraction solution 
(SES) consisting of PBS supplemented with 1% TWEEN 80 and 2% sodium hexameta­
phosphate. The soil slurry was vortexed for 20 min. After centrifugation at 100 × g 
for 5 min, the supernatant was transferred into a new 50 mL tube. The remaining soil 
debris was then extracted again using the same amount of SES and shaking, and after 
centrifugation at 100 × g, the supernatant was combined in the same 50 mL tube of the 
first extraction. The supernatant was then centrifuged at 4,000 × g for 30 min to collect 
the spores. The supernatant was removed, and the spore pellet resuspended in 2 mL 
deionized water (Vreconstitution) and plated onto LB agar plates.

Each experiment was performed in quintuplicates with three plates each. The LB agar 
plates from the three different protocols were incubated at 37°C for 24 h. CFU were 
counted, and recoveries were calculated. The percentage of recovery per plate (Rplate) 
was calculated by the following formula:

Rplate = CFUreplicates/CFUspikedspores × 100

The total recovery quota (Rtotal)  was calculated by the following formula:
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Rtotal = CFUreplicates × VreconstitutionVplating
× 100

Uncovering historic anthrax loci in Austria by archive screening

State archives of Upper Austria were searched for the terms: “Anthrax” and the 
German term “Milzbrand.” Digital copies of the respective historic documents 
were retrieved and stored (Oberösterreichisches Landesarchiv; landesarchiv-ooe.at; 
accessed 2019–01-30). In addition, internal documents from a tannery with a history 
of anthrax were screened for further information on the origin of potential B. 
anthracis  contamination sources.

Sampling of historic anthrax loci in Austria

Soil samples at the possible anthrax-contaminated historic mud disposal pond sites 
of the tannery and at the adjacent farmyard, previously identified as historic anthrax 
loci, were taken by using hand augurs (Ejkelkamp, Giesbeek, The Netherlands). In brief, 
soil samples from 5, 50, 100, and 150 cm of depth were taken in 500 mL screw-cap 
containers. Personal protective equipment consisted of DuPont Tyvek 400 protective 
suites (DuPont, Delaware, USA), FFP3 masks, and chemical-resistant gloves. Before 
moving to the next digging site, the augur was decontaminated with a 5% terralin PAA 
(Schülke&Mayr GmbH, Hamburg, Germany) solution. A total of 30 samples were taken at 
the mud disposal pond and at the farmyard with anthrax history.

Processing of soil samples from historic anthrax loci, screening, and isolation 
of B. anthracis

Samples were processed according to the BEYER method (see above). For isolation of 
B. anthracis, 500 µL of the resulting slurry was plated on the semi-selective BamPLET 
agar directly and in serial dilutions. Plates were incubated at 37°C for 24 h. The cell lawn 
was scraped off the BamPLET agar plates with a sterile loop and resuspended in 500 
µL PBS. A 100 µL aliquot was heated to 95°C for 10 min to generate a crude cell lysate. 
After centrifugation at 4,000 × g for 1 min, 5 µL of this cell lawn lysate supernatant 
was subjected to qPCR analysis. For a broad screening, a triplex qPCR targeting PL3 
(chromosomal marker), cya (pXO1 marker), and capB (pXO2 marker) genes were used 
(47). qPCR reactions consisted of 5 µL lysate, 10 µL Luna Universal Mastermix for Probes 
(New England Biolabs, Ipswich, USA), PCR-grade water, and 1 µL Primer-Probe mix (see 
Table S2 for further details). qPCR reactions were set by using the MYRA Liquid Han­
dling System (BioMolecular Systems, Australia), cycling comprised initial denaturation 
for 1 min at 95°C, and 45 cycles of amplification with denaturation for 15 s at 95°C 
and combined annealing and extension for 35 s at 60°C using the Magnetic Induction 
Cycler System (BioMolecular Systems, Australia). Data were analyzed using the micPCR 
v2.12.6 software (BioMolecular Systems, Australia). In addition, the standard chromoso­
mal marker for B. anthracis dhp61 (48) was used to confirm the presence of B. anthra­
cis DNA. Colonies derived from enrichment cultures were screened for morphological 
features typical for B. anthracis (non-hemolytic, ground-glass appearance, and egg-white 
consistency of colonies) and transferred to StdI agar plates. After incubation at 37°C for 
24 h, the cell material of candidate colonies was resuspended in 100 µL of PBS and 
heated at 95°C for 10 min to lyse the cells and release DNA. After centrifugation at 
4,000 × g, the supernatant was subjected to triplex qPCR targeting PL3, cya, and capB 
(47), as well as dhp61 marker (48). Positive colonies were stored in Microbank (Pro-Lab 
Diagnostics, Bromborough, UK), at −80°C in a biosafety 3 (BSL-3) laboratory for further 
analysis.

Four soil samples previously determined negative by the above-mentioned method 
were deliberately spiked with a total of 2 × 102 and 1 × 103 spores of B. anthracis strain 
Sterne (see above) and used as positive controls for the detection of anthrax-specific 
qPCR markers in the cell lawn.
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DNA extraction, genome sequencing, and assembly of B. anthracis isolates

DNA of B. anthracis strains was extracted with the MasterPure Total DNA/RNA Purification 
kit (Lucigen Middleton, WI 53562, USA) according to the manufacturer with the following 
modification: a pre-lysis step using 24,839 U of Ready-to-Lyse lysozyme solution (Lucigen 
Middleton, WI 53562, USA) for 60 min at 37°C was included. WGS was performed on 
MinION and MiSeq using the SQK-LSK109 chemistry on a R10.4.1 flow cell on the MinION 
system (Oxford Nanopore Technologies, Oxford, UK) running system software MinKNOW 
23.07.8 for the generation of long reads for hybrid assembly and ILMN DNA LP (M) 
Tagmentation (24 Samples, IPB) for library preparation and the MiniSeq Mid Output 
Kit (300-cycles) on the MiSeq system (Illumina, California, USA) chemistry as described 
elsewhere (49). MinION raw reads were first assembled using FLYE v2.9.2-b1786 (68), 
Illumina raw reads were mapped against the FLYE output using BWA v0.7.17-r1188 (69), 
and the resulting raw hybrid assembly was further polished using Pilon v1.24 (70) and 
Ragtag v02.01.00 (71) with a reference guided assembly using the B. anthracis str. Ames 
Ancestor (ASM844v1) reference genome.

CanSNP typing by delayed mismatch amplification assay

DNA extracts (5 µL) of the B. anthracis isolates were subjected to DMAA reactions (38). 
The two master mixes consisted of either the SNP-specific ancestral or derived primer, 
the common reverse primer, and 2 × HRM mix (Biozym Biotech Trading GmbH, Vienna, 
Austria) and water (according to Table S2). Sample and master mix setup was pipet­
ted by the MYRA Liquid Handling System (BioMolecularSystems, Australia) to minimize 
contamination and pipetting errors. qPCR was performed on magnetic induction cyclers 
(BioMolecularSystems, Australia) as described above.

Phylogenetic analysis, SNP discovery, and DMAA primer design

SNP calling was performed using the WGS data of novel isolates with known A.Br.064 and 
B.Br.004 canSNP-group WGS data and reference genome Ames “Ancestor” (72) from NCBI 
(Table S1). SNPs were called using parSNP (parameters -C 1000 c -e -u) from HarvestTools 
(73) v1.3. SNPs were called using all “complete”-flagged genomes from NCBI, in the same 
fashion as above, as the basis for novel DMAA SNP qPCR assays (Table S2). A maximum-
likelihood tree and a minimum spanning tree were calculated using an in-house R script 
(see Text S1) utilizing R libraries tidyverse (74), phangorn (75), ggtree (76), phytools (77), 
and devEMF using R v4.3.2 (78). DMAA primers were designed using Geneious Prime 
2023.2.1 (https://www.geneious.com) according to previously published methods (38).
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