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Abstract 

Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three sys-
tematic orders and families. Studying amphibian biology through the genomics lens increases our understanding 
of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources 
is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled 
taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land 
use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided 
a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, 
anti-predator strategies, and resilience and adaptive responses. They also serve as essential models for studying 
broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range 
of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these 
features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due 
to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emer-
gence of long-read sequencing technologies, combined with advanced molecular and computational techniques 
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that improve scaffolding and reduce computational workloads, is now making it possible to address some of these 
challenges. To promote and accelerate the production and use of amphibian genomics research through interna-
tional coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://​mvs.​unime​
lb.​edu.​au/​amphi​bian-​genom​ics-​conso​rtium) in early 2023. This burgeoning community already has more than 282 
members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic 
resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conserva-
tion practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present 
challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable 
amphibian genomics research to “leap” to the next level.

Keywords  Amphibians, Biodiversity conservation, Comparative genomics, Genomics, Lissamphibia, Metagenomics, 
Phylogenomics, Population genomics, Taxonomy, Transcriptomics

State of the field of amphibian genomics
In 2010, the genome of the Western clawed frog (Xeno-
pus tropicalis) was sequenced, marking the first genome 
assembly for Class Amphibia [1]. This species serves 
as a crucial laboratory model organism for cell biol-
ogy, molecular genetics, and developmental biology [2]. 
The first amphibian genome assembly came years after 
the completion of the first genomes for other vertebrate 
groups: fishes in 2002 (Fugu rubripes; [3]), mammals 
in 2003 (Homo sapiens; [4]), birds in 2004 (Gallus gal-
lus; [5]), and reptiles in 2007 (Anolis carolinensis; Anolis 
Genome Project https://​www.​broad​insti​tute.​org/​anolis/​
anolis-​genome-​proje​ct). Since then, the generation and 
annotation of amphibian reference genomes has dramati-
cally lagged behind those of other vertebrates [6], even 
though amphibians represent nearly 22% of all tetrapods 
[7]. Nearly 15  years later, amphibians are still the tetra-
pod class with the lowest number of sequenced genomes 

(111 genomes of 8648 described amphibian species being 
the tetrapod class with the second lowest proportion 
after non-avian Reptiles, i.e. crocodilians, lepidosaurs, 
and testudines [database records accessed on 1 March 
2024], Fig.  1A and Supplementary File 1). This is likely 
attributable to the size of amphibian genomes, which 
are generally larger than the genomes of other terrestrial 
vertebrates (Fig. 1B and Fig. S1; see Supplementary Mate-
rial for methodological information). Indeed, among 
all vertebrates, only the genomes of lungfish are larger 
(up to 130 Gb) than the largest amphibian genomes (up 
to ~ 120 Gb in Necturus lewisi) [8–11].

To reduce costs and enhance feasibility, early amphib-
ian genome sequencing projects tended to select spe-
cies with comparatively small genomes (Fig.  1B). This 
has resulted in disproportionately fewer sequenced sala-
mander genomes, given this is the amphibian order with 
the largest genomes [12]. To date, the largest amphibian 

Fig. 1  Estimated genome size across tetrapod classes in relation to sequenced genomes. A Mosaic plot representing the percentage of species 
with sequenced genomes as a proportion of the number of described species for each tetrapod class (Yes: % species with sequenced genome; 
No: % species without sequenced genome). B Combined box and density plot with raw data as points comparing genome size of species 
with sequenced genome (gray; genome sizes from NCBI genome assemblies) versus a subset of species without a sequenced genome (red; 
genome sizes from the Animal Genome Size Database) for each tetrapod class. The y-axis is log-transformed to facilitate visualization. Information 
about sequenced genomes and genome sizes was obtained from the NCBI Genome Browser, the Animal Genome Size database, and amphibian 
records from [12, 13]

https://mvs.unimelb.edu.au/amphibian-genomics-consortium
https://mvs.unimelb.edu.au/amphibian-genomics-consortium
https://www.broadinstitute.org/anolis/anolis-genome-project
https://www.broadinstitute.org/anolis/anolis-genome-project
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genome assemblies belong to three salamander spe-
cies: Ambystoma mexicanum (27.3  Gb assembly; [14]), 
Pleurodeles waltl (20.3 Gb; [15]), and Calotriton arnoldi 
(22.8 Gb; [16]). However, these only represent the lower 
end of the genome size range for this group, with the 
genomes of Necturus salamanders exceeding 100  Gb 
(Fig. 2) [10].

In addition to their large sizes, amphibian genomes 
have also been challenging to assemble due to their 
extensive repeat content (up to 82% [19]). Amphib-
ian transposable elements have expanded and become 
highly abundant in younger clades, posing challenges 
for the construction of contiguous genome assemblies 
[20]. These characteristics of amphibian genomes make 
sequencing and assembly both costly and technically 
challenging (e.g., repetitive regions can often lead to frag-
mented assemblies when using short-read sequencing). 
However, the advent of new sequencing approaches such 
as long-read sequencing (e.g., PacBio HiFi and Oxford 
Nanopore Duplex), Hi-C scaffolding, along with reduced 
sequencing costs have resolved many of these assembly 
challenges (e.g., Nanorana parkeri; [21]).

Thus, the number of amphibian genome assemblies has 
increased rapidly in recent years, reaching 111 listed in 
early 2024 as reference genomes at the scaffold level or 
higher in the National Center for Biotechnology Infor-
mation (NCBI) genome database (52 for Anura, 55 for 
Urodela, and four for Gymnophiona; NCBI genome 
database records accessed on 1 March 2024). Despite 
this rapid increase, the quality of available amphibian 

genomes varies significantly: only 38 are chromosome-
level assemblies, and among these, only 16 are annotated. 
This indicates that the majority of available assemblies are 
incomplete or partial. For example, several recently pub-
lished salamander genomes of the genus Desmognathus 
have assembly sizes of ~ 1  Gb while their genome size 
estimates based on flow cytometry or image densitom-
etry average 14 Gb [13, 18]. Furthermore, the gene con-
tent values for many of these incomplete genomes can be 
as low as 0.7% [19]. Besides the variation in quality, there 
are substantial taxonomic gaps in genome representa-
tion across Amphibia. Notably, 48 of the 77 amphibian 
families (62%) lack a representative genome assembly in 
the NCBI genome database (Fig.  2B), indicating signifi-
cant gaps in our understanding (see “The AGC’s genome 
sequencing targets” section and Table  1 for more infor-
mation about these 48 families).

Due to the difficulty of assembling genomes, most 
previous genomic research in amphibians has relied on 
alternative high-throughput sequencing methodologies, 
including RNA sequencing (RNA-seq), reduced repre-
sentation or target-capture approaches, or metagenomic 
methods (Fig.  3 and Supplementary File 2 that contains 
the information for the search term “Amphibia” of the 
NCBI Sequence Read Archive [SRA] accessed on 1 March 
2024). For example, RNA-Seq techniques have been used 
to explore gene expression across more than 300 different 
amphibian species (see Supplementary File 2 and Supple-
mentary Methods for detail information about how SRA 
records were summarized). Furthermore, a substantial 

Fig. 2  Estimated genome size across amphibian orders in relation to sequenced genomes. A Combined box and density plot with raw data 
as points showing genome size of species with sequenced genome (gray color; genome sizes from NCBI genome assemblies) versus a subset 
of species without available genome assembly (red color; genome sizes from the Animal Genome Size Database) for each amphibian order. The 
y-axis is logarithmic transformed to facilitate visualization. Information about sequenced genomes and genome sizes was obtained from the NCBI 
Genome Browser, the Animal Genome Size database [13], and amphibian records from [12]. B Amphibian phylogenetic tree was adapted 
from [17], which includes species with genome size estimates from Genomes on a Tree (GoaT) [18]. Branches are color coded to represent families 
without any genomic record (in red) and families with at least a representative genome sequenced (in gray). Bar plots around the phylogeny 
indicate relative genome sizes
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Table 1  Amphibian Genomics Consortium (AGC) sequencing priority list. Table of amphibian families without any sequenced 
genomes. For each family, AGC proposed a candidate species based on its IUCN Red List category (LC: Least Concern, NT: Near 
Threatened, VU: Vulnerable, EN: Endangered, CR: Critically Endangered, and NA: Not evaluated), ecological and evolutionary 
distinctiveness, and availability of other genomic records. This table shows the amphibian order to which each family belongs and 
its number of genera (#G) and described extant species (#S) as well as distribution region. aSpecies with available draft genome 
assemblies in the GenomeArk (https://​www.​genom​eark.​org/)

Family Region #G #S Candidate species IUCN Motives

Anura: Allophrynidae South America 1 3 Allophryne relicta EN Endangered

Anura: Alsodidae South America 3 26 Alsodes gargola LC High altitude adaptation

Anura: Arthroleptidae Africa 8 151 Leptopelis vermiculatus EN Endangered

Anura: Ascaphidae North America 1 2 Ascaphus montanusa LC High altitude adaptation

Anura: Batrachylidae South America 4 13 Batrachyla leptopus LC High altitude adaptation

Anura: Brachycephalidae South America 2 79 Brachycephalus pitanga LC Transcriptomic resources

Anura: Brevicipitidae Africa 5 36 Breviceps fuscus LC Burrowing adaptation

Anura: Caligophrynidae South America 1 1 Caligophryne doylei NA Pantepui endemism

Anura: Calyptocephalellidae South America 2 5 Telmatobufo bullocki EN Endangered

Anura: Centrolenidae Central & South America 12 166 Centrolene pipilata CR Endangered, Gigantism

Anura: Ceratobatrachidae Southeast Asia 4 103 Platymantis spelaeus EN Cave-dweller, Endangered

Anura: Ceratophryidae South America 3 12 Lepidobatrachus laevis LC Transcriptomic resources

Anura: Ceuthomantidae South America 2 6 Ceuthomantis cavernibardus LC Cave-dweller

Anura: Conrauidae Africa 1 8 Conraua goliath EN Gigantism

Anura: Craugastoridae Central America 3 136 Craugastor fitzingeri LC Transcriptomic resources

Anura: Cycloramphidae South America 3 37 Cycloramphus granulosus CR Critically endangered

Anura: Heleophrynidae South Africa 2 6 Heleophryne rosei CR Critically endangered

Anura: Hemiphractidae Central & South America 6 123 Gastrotheca cornuta CR Critically endangered

Anura: Hemisotidae Sub-Saharan Africa 1 9 Hemisus marmoratus LC Transcriptomic resources

Anura: Hylodidae South America 4 49 Phantasmarana massarti EN Endangered

Anura: Hyperoliidae Sub-Saharan Africa & Madagascar 17 236 Hyperolius thomensis EN Endangered

Anura: Leiopelmatidae New Zealand 1 3 Leiopelma archeyi CR Critically endangered

Anura: Mantellidae Madagascar 12 272 Mantidactylus betsileanus LC Transcriptomic resources

Anura: Micrixalidae India 1 24 Micrixalus mallani EN Endangered

Anura: Nasikabatrachidae India 1 2 Nasikabatrachus sahyadrensis NT EDGE target species

Anura: Neblinaphrynidae South America 1 1 Neblinaphryne mayeri NA Pantepui endemism

Anura: Nyctibatrachidae India & Sri Lanka 3 37 Nyctibatrachus grandis EN Endangered

Anura: Odontobatrachidae Tropical West Africa 1 5 Odontobatrachus fouta EN Endangered

Anura: Odontophrynidae South America 3 54 Proceratophrys redacta EN Endangered

Anura: Petropedetidae Sub-Saharan tropical Africa 3 13 Petropedetes perreti CR Critically endangered

Anura: Phrynobatrachidae Africa 1 99 Phrynobatrachus guineensis LC Tree-hole breeder

Anura: Ranixalidae India 2 19 Indirana chiravasi LC Transcriptomic resources

Anura: Rhacophoridae Eastern Asia 22 444 Buergeria otai LC Transcriptomic resources

Anura: Rhinodermatidae South America 1 3 Rhinoderma darwinii EN Endangered

Anura: Rhinophrynidae Central America 1 1 Rhinophrynus dorsalisa LC Targeted sequencing resources

Anura: Sooglossidae Seychelles Islands 2 4 Sooglossus sechellensis EN Endangered

Anura: Strabomantidae South America 19 792 Oreobates cruralis LC Transcriptomic resources

Anura: Telmatobiidae South America 1 63 Telmatobius simonsi CR Critically endangered

Gymnophiona: Caeciliidae Central & South America 2 49 Caecilia tentaculata LC Transcriptomic resources

Gymnophiona: Chikilidae India 1 4 Chikila gaiduwani LC Coloration adaptation

Gymnophiona: Grandisoniidae Africa, Seychelles & India 7 24 Hypogeophis montanus NA Miniaturization

Gymnophiona: Herpelidae Sub-Saharan Africa 2 11 Boulengerula niedeni EN Endangered

Gymnophiona: Scolecomorphi-
dae

Africa 2 6 Crotaphatrema lamottei CR Critically endangered

Gymnophiona: Typhlonectidae South America 5 14 Typhlonectes compressicauda LC Transcriptomic resources

https://www.genomeark.org/
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number of de novo transcriptomes are available through 
the NCBI Transcriptome Shotgun Assemblies (TSA) 
database (79 total: 59 for Anura, 15 for Urodela, and 5 
for Gymnophiona). Various reduced-representation (e.g., 
ddRADseq) and targeted-capture sequencing approaches 
have also been implemented in recent years to obtain 
genome-wide sequence information from more than 1,400 
amphibian species (see Supplementary File 2 and Supple-
mentary Methods for detail information about how SRA 
records were summarized). All this information—from 
whole genomes to gene transcript features—has advanced 
the understanding of amphibian biology and directly con-
tributed to conservation efforts as described below.

Advancing research and conservation 
through amphibian genomics
Amphibians have many unique characteristics that 
make them subjects of interest to a wide variety of sci-
entific disciplines, spanning from developmental biol-
ogy and medical research to ecology and evolution. 
The rapid development of genomic tools is galvaniz-
ing the study of amphibian biology and uncovering 
important facets of their biology and conservation 
[22–24]. We highlight some examples here and state 
the imperious need to generate amphibian genomic 
resources to decrease further biodiversity loss as the 
ultimate reason.

Table 1  (continued)

Family Region #G #S Candidate species IUCN Motives

Urodela: Cryptobranchidae Asia & North America 2 6 Cryptobranchus alleganiensis VU Vulnerable

Urodela: Dicamptodontidae North America 1 4 Dicamptodon tenebrosus LC Gigantism

Urodela: Hynobiidae Eastern Asia 9 98 Hynobius vandenburghi VU Vulnerable

Urodela: Rhyacotritonidae North America 1 4 Rhyacotriton olympicus NT Near threatened

Fig. 3  Main sequencing techniques applied to amphibian genomics studies. Yearly cumulative number of amphibian BioProjects split 
and color-coded by sequencing technique (DNA accessibility Sequencing includes ATAC-Seq and Mnase-Seq; Immunoprecipitation Sequencing 
includes: ChIP-Seq and RIP-Seq; Amplicon sequencing was included with Targeted-Capture Sequencing; Noncoding RNA Sequencing includes: 
miRNA-Seq and ncRNA-Seq). BioProject information was obtained from the NCBI Sequence Read Archive (SRA, accessed 1 March 2024)
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Embryogenesis, developmental and regenerative biology
Amphibians have played a fundamental role in uncov-
ering developmental principles (for a detailed review 
see [25]). Research on anurans has enabled the under-
standing of critical developmental mechanisms such as 
the breaking of egg asymmetry [26], axis establishment, 
and nerve transmission [27]. Notably, the availability of 
genome assemblies for Xenopus laevis and X. tropica-
lis has significantly advanced embryological and devel-
opmental biology. This advancement has enabled gene 
loss-of-function research through the combination of 
transgenesis with RNA interference, gene editing, and 
enhanced morpholino design. This has facilitated the 
in-depth analysis of regulatory and non-coding genomic 
influences in developmental processes [28, 29]. Con-
sequently, these studies have generated thousands of 
genomic and transcriptomic resources for these two spe-
cies [30, 31].

Yet, there is much more to uncover about amphibian 
development, especially given the numerous develop-
mental modalities found across amphibians, which likely 
demonstrates the highest diversity among vertebrates 
[32]. This includes direct development (egg to froglet; 
the first genome of a direct-developing amphibian, 
Eleutherodactylus coqui, was published in 2024 [33]), and 
phenotypic plasticity [34, 35].

Sexual development and determination are also diverse 
and unique in amphibians [36]. Unlike most mammals 
and birds who have degenerate Y and W chromosomes, 
most amphibians have undifferentiated sex chromo-
somes, making it extremely difficult to study sex evolu-
tion through traditional cytogenetic techniques [37, 38]. 
However, sex-determining systems are starting to be 
explored through high-throughput sequencing [6, 39–
43]. For example, the application of multiple omics tech-
niques led to the identification of a Y-specific non-coding 
RNA in the 5’-region of the bod1l gene, which is involved 
in male sex determination in Bufotes viridis [42].

Strikingly, some salamanders in the genus Ambystoma 
exist as a single all-female, polyploid lineage that can 
incorporate new chromosome sets from up to five other 
sexual species [44]. Transcriptomes from these salaman-
ders have shown that gene expression from their diver-
gent genomes is balanced for some genes but biased for 
others [45]. Sexual development in amphibians can result 
in sexually dimorphic features such as nuptial spines, 
which have been explored using comparative genomics 
approaches such as in the frog Leptobrachium leishan-
ense [46].

The increasing availability of amphibian genomes will 
enable a deeper understanding of the molecular mecha-
nisms underlying such ontogenetic diversity. Chromo-
some-level reference genomes provide high-resolution 

data crucial for identifying sex-determining regions, 
revealing new insights about these processes and, helping 
to address challenges of sex reversal due to temperature 
fluctuations and the increasing presence of endocrine 
disruptors [47].

Metamorphosis sets many amphibian species apart 
from amniotes. Transcriptomics has revealed a remark-
able turnover in gene expression between larval and adult 
stages of both frogs [48–51] and salamanders [52, 53]. 
This represents genomic uncoupling of these life history 
phases with major macroevolutionary implications [50, 
54]. Amphibian omics approaches are rapidly increas-
ing our understanding of the developmental process of 
metamorphosis, including the role of methylation in gene 
regulation and other epigenetic markers [55]. Amphib-
ians have also been found to respond to environmental 
perturbations by altering their behavior or phenotypes 
in various ways. These mechanisms, including change 
developmental rate [34], hybridization with positive fit-
ness effects [56], production of novel trophic morpholo-
gies [57], and kin recognition to avoid cannibalizing 
relatives [58–60], remain poorly understood, and would 
benefit from further genomic research.

Due to their exceptional tissue repair and regenera-
tive capacities [61, 62], amphibians are leading models 
for understanding the mechanisms of regeneration. This 
is particularly true for salamanders, which display the 
most extensive adult regenerative repertoire among ver-
tebrates, including the ability to regenerate parts of their 
eyes, brain, heart, jaws, lungs, spinal cord, tail, and entire 
limbs [62]. Due to new genome assemblies for urodele 
species, Ambystoma mexicanum and Pleurodeles waltl, 
regeneration can now be studied with transgenesis, 
advanced imaging, and genome editing. Intensive tran-
scriptomic sequencing for these two salamander species 
has facilitated gene expression studies, including inves-
tigations into regeneration processes and characteriza-
tion of other genomic features [63]. Additionally, a novel 
mechanism of telomere length maintenance and elonga-
tion has recently been described in P. waltl [64], poten-
tially linking regenerative capability with longevity. Other 
amphibian species have also contributed to genomic 
research on regeneration, for example, an early database 
compiled from gene expression resources of Notophthal-
mus viridescens [65].

Ecology and evolution
Modern amphibians are the sister lineage of all amni-
otes, making them a valuable resource for studying spe-
cies relationships and trait evolution. This is exemplified 
by studies that explore the rapid diversification of frogs 
[66], the evolution of vision [67], hybridogenesis [68–
70], and the evolution of limblessness [71]. Amphibian 
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phylogenomics has addressed many longstanding ques-
tions in amphibian evolution [17, 72–74]. Comparative 
genomic analyses including amphibian groups have also 
revealed important gaps in our understanding of tet-
rapod molecular evolution such as chromosomal rear-
rangements and group-specific gene families that remain 
unclassified to date [71, 75, 76]. Nevertheless, there are 
numerous open questions and unresolved evolution-
ary relationships that could benefit from high-quality 
genomes, which are especially powerful in revealing the 
role of transposable elements in adaptation and evolution 
[77]. In this section, we explore how genomics is being 
applied to understand the diverse ecological and evolu-
tionary features unique to amphibians. 

Like mammals, birds, and reptiles [78–80], some 
amphibians have evolved the ability to live in high-ele-
vation environments such as the Andes (up to 5400  m) 
[81, 82] and the Tibetan Plateau (4478  m) [21]. How-
ever, unlike other groups, amphibians lack fur, feathers, 
or scales to protect them from physiological stressors 
such as UV exposure. This vulnerability makes them an 
intriguing model for studying the effects of UV radia-
tion, which is relevant not only to humans [21] but also 
to species impacted by climate change. Amphibians have 
evolved multiple mechanisms of resisting UV, includ-
ing increasing antioxidant efficiency and gene regulatory 
changes in defense pathways [21, 83]. There is evidence 
that genes that impact other high-elevation traits (e.g., 
hypoxia resistance, immunity, cold tolerance) have 
evolved convergently across distantly related families 
(e.g., Dicroglossidae, Bufonidae, Megophryidae, Rani-
dae) [84, 85], and that intraspecific divergence in many 
of these genes correlates with elevation deepening our 
understanding of evolutionary processes shaped by envi-
ronmental conditions [86, 87]. While we are beginning 
to understand the genetic mechanisms of high-elevation 
adaptation in some Asian and North American frogs, 
this has yet to be investigated in other high-elevation 
amphibians where genomic data is still missing, including 
Andean anurans (e.g., Telmatobius culeus [88]) and high-
elevation salamanders, such as Pseudoeurycea gadovii 
[89]).

The ability to produce or sequester toxins has evolved 
across all three amphibian orders, where it primar-
ily serves as an anti-predation mechanism. The source 
of amphibian toxins varies: some species are capable 
of synthesizing poisonous compounds (e.g., bufonids, 
myobatrachids), whereas others sequester toxic sub-
stances from their diet (e.g., dendrobatids, mantellids) 
[90–93] or microbial symbionts (e.g., newts) [94]. Since 
dendrobatid frogs sequester their toxins from prey (e.g., 
mites and ants), they lack genes encoding these toxins 
[95, 96]. However, they require genes to facilitate the 

transport of these toxins to the skin. Recent genomic 
and proteomic research has identified candidate genes 
coding for proteins that may serve dual roles in toxin 
transport and resistance [97–99]. Comparative genomic 
research has identified specific substitutions that allow 
toxic amphibian species to effectively mitigate the 
effects of the sequestered toxins on their own tissues 
[100–102]. Skin transcriptomes have also proven to be 
a rich source for data mining and the identification of 
candidate toxins and antimicrobial peptides in various 
amphibians [103–107], which could potentially be used 
for future human medical treatments​.

Interactions between toxic amphibians and their 
predators have resulted in a fascinating variety of co-
evolutionary arms races. These include well-charac-
terized systems of toxicity resistance mechanisms in 
amphibian predators [108–112] and aposematism and 
mimicry in toxic species [113, 114]. Research on apose-
matism and mimicry has utilized whole genome, exome 
capture, and transcriptome sequencing to elucidate the 
genes underlying the vast diversity of color patterns 
across populations and species in dendrobatids [115–
120]. These approaches have yielded a goldmine of 
information that can be used to understand the genes, 
gene networks, and biochemical pathways that under-
lie variation in coloration in other amphibian groups 
including highly diverged aposematic taxa such as 
Australian myobatrachid frogs (e.g., Pseudophryne cor-
roboree), Malagasy poison frogs (Mantellidae), caecil-
ians (e.g., Schistometopum thomense), and salamanders 
(e.g., Salamandra salamandra). Indeed, these methods 
have already enabled the identification of genes and loci 
involved in coloration in the salamander S. salamandra 
bernardezi [121].

Despite the numerous advances made with amphib-
ian omics in elucidating evolutionary and ecological 
mechanisms, fully unraveling their genetic basis requires 
the generation of a vast number of genomes, given the 
comparative nature of these fields and the evolutionary 
uniqueness of each lineage. Some of the exciting research 
avenues in amphibians include behavioral adaptations 
like parental care [122, 123], milk production or skin 
feeding in caecilians [124, 125], spatial navigation [126]; 
adaptations to environmental conditions, like niche 
expansion due to the evolution of gliding ability [127], 
the evolution of lunglessness [128, 129] or predator–
prey interactions like unusual defense mechanisms, such 
as the ability of some newts to pierce their ribs through 
toxin glands in their skin [130, 131].

Conservation
Amphibians are the most endangered class of vertebrates 
with current estimates suggesting that more than 40% of 
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species are threatened with extinction [132]. The threats 
amphibians face continue to increase [132], creating a 
clear need to develop innovative and effective methods to 
conserve them. Paradoxically, current rates of amphibian 
species description are exponential, and numerous can-
didate species are being flagged worldwide. This suggests 
that we are still far from overcoming the amphibian Lin-
nean shortfall, especially in tropical regions [133, 134]. 
Hence, numbers of threatened species are likely under-
estimated, as undescribed species cannot be assessed 
and are more likely to become extinct [135]. Further, 
the conservation status of many amphibians remains 
unknown, especially for tropical species [136] and for a 
number of soil-dwelling caecilians for which only a lim-
ited number of specimens are available [137]. Generating 
genomic data is one method to address this challenge, 
as it can be used to estimate both evolutionary potential 
and extinction risk [138, 139]. Genomes are also vital for 
understanding species boundaries and the geographic 
distribution of genetic diversity within species, and for 
identifying populations under higher risk due to anthro-
pogenic pressures or climate change [22, 23, 140, 141]. 
These features make genomic resources invaluable for 
developing species conservation action plans [142].

Amphibian conservation efforts should leverage 
population genetic theory and the burgeoning field of 
conservation genomics. These approaches enable the 
quantification of both neutral and adaptive diversity 
across genomes, thereby facilitating the promotion of 
adaptive potential or genetic rescue through transloca-
tion programs [143–146]. High quality genomes can also 
facilitate more comprehensive genomic diversity analy-
ses, enabling the analyses of structural variants in addi-
tion to single nucleotide polymorphisms (SNPs), which 
are often overlooked, and an improve of the runs of 
homozygosity (ROH) analyses.

Typically, these studies begin with the genomic char-
acterization of populations across various environmen-
tal conditions, assessing population genetic health and 
disease risk [147, 148]. They can also support monitor-
ing and surveillance efforts by identifying populations 
most at risk of declines due to potential genetic threats 
like maladaptive alleles, genetic load, inbreeding and 
outbreeding depression, hybridization, and/or genetic 
incompatibility [143, 149]. Increased monitoring and 
maintenance of genomic diversity are key targets of many 
national and international recommendations such as the 
US Endangered Species Act [150], the Kunming-Mon-
treal Global Biodiversity Monitoring Framework [151], 
and the Amphibian Conservation Action Plan [142].

A more specific application of amphibian genomics for 
conservation requires understanding the genetic basis of 
traits that impact fitness, such as disease resistance or 

climate change tolerance. The increased availability of 
long-read sequencing technology is particularly valuable 
in addressing the challenges of identifying highly variable 
gene regions accountable for immunological processes 
such as the major histocompatibility complex (MHC) 
[152]. This information can be used to promote adapta-
tion using approaches like Targeted Genetic Intervention 
(TGI), which aims to increase the frequency of adap-
tive alleles with approaches such as selective breeding, 
genome editing, or targeted gene flow [153]. Consider-
able effort has been invested in understanding the genetic 
basis of resistance to the devastating amphibian disease 
chytridiomycosis. This has resulted in the identification 
of multiple candidate genes [154–156] that could be tar-
geted to increase chytridiomycosis resistance with TGI.

Additionally, the efficacy of TGI at increasing chytridi-
omycosis resistance has already been demonstrated in 
North American mountain yellow-legged frogs (Rana 
muscosa and R. sierrae) where translocation of resist-
ant individuals increased recipient population persis-
tence [157]. Despite the obvious appeal of using genetic 
intervention approaches for conservation, these meth-
ods should be evaluated in contained facilities whenever 
possible and accompanied by long-term monitoring to 
ensure their efficacy and rule out any unintended impacts 
[153, 158–160]. Although such conservation interven-
tions require extensive resources, this may be the only 
effective method for restoring some species to the wild, 
especially in those threatened by intractable threats such 
as chytridiomycosis [161].

Challenges for amphibian genomic research 
and ways forward
The future of amphibian omics research will rely on high-
quality reference genomes, which necessitates overcom-
ing unique bioinformatic challenges in genome assembly 
and securing high-quality starting materials (e.g., tissue, 
blood). Additionally, challenges in obtaining funding, 
particularly in low-income countries, exacerbate these 
issues. Here, we outline these challenges in amphibian 
omics and highlight emerging developments aimed at 
addressing them.

The large genomes of amphibians increase require-
ments and costs for sequencing, computing, and data 
storage [6, 162]. Despite technological advancements 
and decreasing service costs, assembling these genomes 
remains methodologically challenging due to the nota-
ble intron lengths and repetitive content of amphibian 
genomes [163], especially when repeat lengths exceed 
sequencing read lengths. Regions of low complexity can 
result in erroneously joined contigs [164] or a signifi-
cant loss of sequence information (by as much as 16%) 
through the collapsing of repetitive sequences [165]. 
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Polyploidy has also evolved repeatedly in amphib-
ians [166, 167], making haplotype-specific assemblies 
challenging and may require dramatically increased 
sequencing and computational efforts [168, 169]. The 
development of long-read sequencing (e.g. PacBio HiFi, 
ONT), optical mapping and 3C technology (i.e., Hi-C 
scaffolding) is therefore especially important for assem-
bling amphibian genomes [164, 170]. 

Annotations are as crucial as genome assemblies, but 
current homology-based approaches using ortholog 
databases like UniProt [171] often miss or poorly anno-
tate genes, especially polymorphic genes or those lacking 
representation in model taxa. This limits amphibian stud-
ies on gene evolution [72], repeats [19, 163], or immune 
genes [172].

Additionally, functional genomics tools like gene edit-
ing, in  vitro fertilization and transgenesis are rare for 
most amphibians [153, 173], developed primarily in 
model species (e.g., Xenopus spp., Ambystoma mexi-
canum) [62, 174–177]. Immortal cell lines have been 
successfully generated for some amphibians [178] and 
protocols have been established to facilitate the initiation 
of spontaneously arising cell lines for a subset of anurans 
[179]. However, establishing cell cultures for most species 
requires extensive problem-solving and expertise [178].

Most tissue sampling protocols for sequencing refer-
ence genomes recommend harvesting samples from fresh 
tissue, followed immediately by flash freezing in liquid 
nitrogen (LN2) and storing at -80  °C until extraction 
(https://​www.​verte​brate​genom​elab.​org/​resou​rces/​guide​
lines). This often requires fieldwork with many logistical 
challenges.

The small body sizes and blood volumes of most 
amphibians (e.g., < 30 g) may necessitate lethal sampling 
to obtain sufficient high-molecular-weight DNA for 
generating reference genomes (HMW, reaching 100  Kb 
or ultra HMW, reaching 1  Mb) [180, 181]. While this 
characteristic is shared with other taxonomic groups 
(e.g., invertebrates), lethal sampling may not always be 
legally permitted or ethically advisable in amphibians, 
especially for threatened species or those in captive col-
lections [182]. Non-lethal sampling approaches, such as 
buccal swabs or toe or tail clips, are increasingly viable 
for various genomic applications, including low-cov-
erage whole genome sequencing or targeted sequenc-
ing approaches [183, 184]. Until these become suitable 
for reference-grade genome sequencing, an alternative 
to minimize sampling impacts may be to use tadpoles 
instead of adults (e.g., to generate the genome of Taudac-
tylus pleione [185]).

Working with museum or natural history collections 
[the burgeoning field of (“museomics”; [186]) is a prom-
ising avenue of research for circumventing the intrinsic 

problems of sample collection. Moreover, it allows 
access to past amphibian biodiversity and is revolution-
izing amphibian taxonomy by integrating DNA from 
name-bearing type specimens, overcoming impedi-
ments like uncertainty in nomenclature, species com-
plexes, and cryptic species [187–190]. Key challenges 
of such research include issues with DNA degradation, 
preservation methods, and contamination that need to 
be overcome [191–193]. This is particularly relevant for 
wet-preserved amphibian specimens, as retrieving DNA 
can be challenging due undocumented fixation and pres-
ervation methods that may alter nucleotide integrity. 
Methodological advances in laboratory protocols (e.g., 
[194–196]) and the development of sequencing strate-
gies, such as ‘Barcode Fishing’, have made significant pro-
gress in addressing these challenges, including the ability 
to sequence extinct species [187, 188, 197–199]. In the 
current era, even limited sequences from taxonomic type 
specimens are of unparalleled importance, especially for 
species identification using genetic data, by those apply-
ing methods like eDNA and metagenomics [200].

Other noteworthy challenges, that are not necessarily 
unique to amphibians, include securing collection and 
research permits, maintaining ultracold storage and an 
uninterrupted cold chain during transport, and adhering 
to regulations for the international movement of biologi-
cal samples across political borders [201, 202]. Amphib-
ian-specific challenges, however, can arise due to their 
biological, ecological, and conservation characteristics. 
Centers of amphibian diversity and endemism include 
remote, highly specialized habitats, such as tropical mon-
tane forests, cave systems or isolated wetlands. Moreover, 
many amphibians have specialized aquatic, subterranean 
or arboreal ecologies, are mostly nocturnal and highly 
seasonal. These factors make fieldwork and sample trans-
portation challenging, especially in regions with poor 
infrastructure, inadequate storage facilities, socio-politi-
cal conflicts, and limited funding for research, conserva-
tion, and public awareness.

While eliminating some of these practical and political 
challenges in amphibian fieldwork is beyond the scope 
of individual researchers, the growing accessibility of 
genomic data calls for increased awareness of the prin-
ciples of fair and equitable access to genetic resources, 
as outlined by the Convention on Biological Diversity 
(CBD) and further elaborated by the Nagoya Proto-
col https://​www.​cbd.​int/​abs/​defau​lt.​shtml). Indigenous 
peoples and local communities (IPLC) are often custo-
dians of genetic resources (physical material) sought by 
researchers, requiring that all parties enter into collabo-
rative and equitable agreements on access and benefit-
sharing (ABS) before embarking on a genomics project 
[203–207].

https://www.vertebrategenomelab.org/resources/guidelines
https://www.vertebrategenomelab.org/resources/guidelines
https://www.cbd.int/abs/default.shtml
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Aims, priorities, and structure of the Amphibian 
Genomics Consortium (AGC)
The AGC (https://​mvs.​unime​lb.​edu.​au/​amphi​bian-​genom​
ics-​conso​rtium) was launched in March 2023 to address 
the aforementioned knowledge gaps through technologi-
cal advances and international cooperation. The mission 
of the AGC is to enhance international and interdiscipli-
nary collaboration among amphibian researchers, expand 
amphibian genomic resources, and effectively utilize 
genomic data and functional resources to close the gap 
between genome biologists, scientists, and conservation 
practitioners. The leadership structure of the AGC con-
sists of a director, two co-directors, and a 10-member 
board. The board was carefully chosen to ensure gender 
equality, diversity of scientific disciplines, career stages, 
and representation from various geographic regions.

The first actions of the AGC include hosting monthly 
regular meetings that showcase advances in amphibian 
genomics research, developing technical resources and 
best practices guidelines (through discussions facilitated 
in a Discord channel), improving amphibian genome 
annotation, supporting travel for students and early 
career researchers, hosting networking events at confer-
ences, and conducting virtual and in-person computa-
tional workshops. Details of these activities can be found 

in the AGC website. The AGC plans to secure funding 
to sequence high-priority amphibian species (see The 
AGC’s genome sequencing targets section and Table 1). 
Additionally, the AGC aims to facilitate amphibian sam-
ple collection for broader taxonomic consortia. The AGC 
is already affiliated with the Earth BioGenome Project 
(EBP; [208]) and AmphibiaWeb (https://​amphi​biaweb.​
org), reinforcing its commitment to advancing amphibian 
genomics and conservation efforts.

AGC membership
At the time of the submission of this work, the AGC 
had 282 members from 41 countries (6 in Africa, 131 
in the Americas, 27 in Asia, 29 in Australasia, and 89 
in Europe), with membership continuing to increase 
(Fig.  4). Although the membership is geographically 
diverse, disparity persists across regions. The recruit-
ment of members from underrepresented countries will 
be a key focus of the AGC, with a particular emphasis on 
regions known for high amphibian diversity and/or ende-
mism such as Central and South America, and Southeast 
Asia. We promote equity between members by provid-
ing additional support and opportunities to those from 
developing countries and underrepresented groups. This 
includes eliminating membership fees, scheduling online 

Fig. 4  Amphibian Genomics Consortium (AGC) membership by country. Inset map showing the size of each country scaled by number 
of members in the AGC​

https://mvs.unimelb.edu.au/amphibian-genomics-consortium
https://mvs.unimelb.edu.au/amphibian-genomics-consortium
https://amphibiaweb.org
https://amphibiaweb.org
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meetings at alternating times to accommodate global 
time zones, facilitating discussion groups on the cloud-
based collaboration platform Discord, and translating 
AGC correspondence into multiple languages. Further-
more, we are also committed to fostering knowledge and 
skills transfer to all emerging scientists worldwide, and 
we actively encourage early career researchers to join the 
initiative and participate in governance.

Current use and perception of genomics technologies 
by members of the AGC​
The AGC leadership designed a 23-question survey to 
investigate consortium members’ experiences in amphib-
ian genomics (questions can be found in Supplementary 
Table S1). The survey was distributed using the Qualtrics 
XM platform and remained active from the 4th of March 
to the 27th of December 2023. We collected responses 
from a total of 133 AGC members from 32 countries 
with different expertise in sequencing approaches and 
bioinformatics techniques, who primarily work on the 
ecology and evolution of anurans. Overall, respond-
ents emphasized the urgency of filling knowledge gaps 
in amphibian genomics due to the current conservation 
crisis, pinpointing the necessity to expand the number 
of high-quality chromosome-level amphibian genomes. 
Additionally, there was strong agreement among sur-
vey respondents that the generation of new genomic 
resources needs to be coupled with the improvement 
and accessibility of annotation processes. A better 

development of sharing computational expertise among 
members and resources internationally was also under-
scored. More than half of the survey participants said 
they use sequencing technologies for their studies (70 of 
the 133). About half of the respondents said their main 
work activities were “genomics lab work” or “computa-
tional analyses” (48% and 57%, respectively).

To evaluate consortium members’ experience in 
amphibian genomics, we applied a principal compo-
nents analysis to the quantitative responses. Bioinfor-
matic competencies and perceived challenges of the AGC 
respondents were grouped in two dimensions, respec-
tively (Fig. 5A and Fig. S2; see Supplementary Material for 
methodological information). To explain the variation of 
these two new variables, we used the scientific expertise 
of AGC members, the funding success, and two variables 
related to the country of main affiliation of the respond-
ent: the number of amphibian species and gross domestic 
expenditure on R&D (GERD) per capita, as explanatory 
variables. Amphibian genomics expertise and identified 
challenges varied substantially among respondents. The 
number of amphibian species and GERD per capita of the 
respondent’s main affiliation country did not capture this 
variation (Fig. 5B and Fig. S3; see Supplementary Mate-
rial for methodological information). Instead, genomics 
funding success and years of scientific expertise were, as 
expected, positively correlated and both variables were 
associated with a reduction in the perceived challenges 
associated with amphibian genomics.

Fig. 5  Sequencing competencies and identified challenges of the members of the Amphibian Genomics Consortium (AGC). A Representation 
of the contribution of the AGC survey quantitative questions to the first dimensions after computing a principal component analysis (PCA). 
Bioinformatic competencies and perceived challenges were grouped into dimensions one and two, respectively. B Scatter plot showing PCA scores 
for each AGC survey respondent. Respondent answers are coded by the qualitative question about funding success for amphibian genomics 
projects using shape; number of amphibian species of the respondent main affiliation country by size, and gross domestic expenditure on R&D 
(GERD) per capita of the respondent main affiliation country by gray-scale color coded. Information about the number of amphibian species 
per country was obtained from AmphibiaWeb. GERD per capita was calculated using information from the UNESCO and World Bank websites 
from the information about the most recent year for each country
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The AGC’s genome sequencing targets
Following the efforts of genomics consortia for other 
tetrapod groups (e.g., [209]), and previous research [23], 
we identified 48 amphibian families for which no repre-
sentative genomes had been sequenced and selected one 
representative species from each family for our sequenc-
ing priority list (Fig. 2B and Table 1). We propose 48 can-
didate species based on their IUCN Red List category, 
ecological and evolutionary distinctiveness, and the 
availability of other genomics records, especially tran-
scriptomics. This list includes 38 anurans, four urodeles, 
and six caecilians.

We recommend this priority list as a starting point. If 
suitable sample material from other species within the 
targeted families becomes available, those species could 
replace the ones currently proposed. Additionally, we 
aim to build upon the efforts of existing genomics con-
sortia such as the Vertebrate Genomes Project (VGP), 
hence, we included two species with draft genomes in 
the GenomeArk (https://​www.​genom​eark.​org/) in our 
sequencing target list.

The AGC’s stance on resource and benefits sharing
With increasingly easy access to genomic data, research-
ers and industry need to be aware of the principles of fair 
and equitable access to genetic resources, as stipulated by 
Convention on Biological Diversity (CBD) and expanded 
upon by the Nagoya Protocol (https://​www.​cbd.​int/​abs/​
defau​lt.​shtml). As a negative example from amphibians, 
Phyllomedusa bicolor skin secretions traditionally used 
by Amazonian Indigenous peoples were patented by 
actors in the US, Japan, Russia and elsewhere, promoting 
the ‘legal’ but unfair appropriation of genetic resources 
and potentially the traditional knowledge itself from the 
Matses and other Indigenous tribes [210].

To promote better practices, researchers should allo-
cate the necessary time and funds for prior consulta-
tion during fieldwork planning and seek guidance from 
their National Focal Points on ABS. How the concept of 
ABS may be applied to the downstream use of the digi-
tal sequence information (DSI) generated has yet to be 
resolved. However, there are currently developments 
underway that may provide a solution (https://​www.​cbd.​
int/​dsi-​gr). It is imperative that this issue be considered 
going forward (see for example [211]). Moreover, voucher 
specimens and duplicate tissue samples should be depos-
ited in local natural history collections or preferred part-
ners of the local communities [212, 213].

The global genomics community should strive to 
ensure that sequencing projects occur within the coun-
try of origin of the samples and discourage ‘parachute’ 
or ‘helicopter science’ [214, 215]. Oxford Nanopore 

Technology (ONT) may be promising solution, provid-
ing comparatively affordable access to equipment and 
reagents for ultra-long read sequencing that can even be 
done directly in the field [216]. However, optimization for 
non-model organisms, along with the startup costs for 
this infrastructure remain prohibitive for many scientists 
from low-income countries. Moving forward, the goal 
should be to apply these technologies in collaboration 
with local researchers. Programs like the In  Situ Labo-
ratories Initiative (https://​insit​ulabs.​org/​hubs/) aim to 
overcome these challenges by providing affordable access 
to high-tech laboratories in remote biodiverse areas. 
Such collaborative projects should proceed from finding 
shared interests, developing ideas, realizing the shared 
benefits from research outputs, and focusing on capacity-
building efforts [217].

Conclusion and call to action
Moving forward, the AGC is committed to support-
ing amphibian sequencing initiatives worldwide, with 
a particular emphasis on taxonomic groups lacking 
representation, and species from biodiverse coun-
tries within a conservation framework (Table 1). Local 
sequencing initiatives will be given priority whenever 
feasible to promote the development of in situ research 
efforts and facilities. We will achieve this goal build-
ing strong networks between researchers and conser-
vation practitioners and by providing an open list of 
members and their expertise. Additionally, we aim to 
provide funding and training opportunities to facilitate 
collaboration among underrepresented groups, molec-
ular and organismal biologists, bioinformaticians, and 
conservation practitioners. We will also support the 
development of a concept of Access and Benefit Shar-
ing policies that can be applied to the downstream use 
of the digital sequence information (DSI), including 
long-term storage and access. Further, the AGC aspires 
to stimulate public and scientific interest in amphibian 
research and, ultimately, to enhance conservation out-
comes for this intriguing and highly endangered group 
of vertebrates.

We hope that the recent advancements in technology, 
a focus on equitable research, and the integration of the 
research community to form the AGC will ignite research 
to revolutionize amphibian conservation and our under-
standing of their fascinating biology, ecology and evolu-
tion. By addressing the challenges outlined, supporting 
and promoting amphibian genomics research and unit-
ing amphibian researchers worldwide, the AGC aims to 
fill the huge gap in genomic data for this diverse group 
of tetrapods and in doing so, propel amphibian genomics 
research into the future.

https://www.genomeark.org/
https://www.cbd.int/abs/default.shtml
https://www.cbd.int/abs/default.shtml
https://www.cbd.int/dsi-gr
https://www.cbd.int/dsi-gr
https://insitulabs.org/hubs/
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