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Abstract
1.	 In this review, we relate theoretical work on the importance of surprise in cogni-

tion to empirical research relevant to surprise in predator–prey interactions.
2.	 There have been multiple proposals as to how surprise should be defined and 

quantified in the context of animal cognition, including contributions from associ-
ative learning, information theory, Bayesian inference and the recent framework 
of active inference.

3.	 We argue that active inference provides a novel and powerful approach to quan-
tifying surprise and advances the field by revealing how proactive behaviour on 
the part of predators relates to reducing surprise.

4.	 The active inference framework encompasses both proximate (e.g. neurobiologi-
cal) and ultimate (evolutionary) aspects of surprise and brings new insights into 
key aspects of prey defences that exploit predator surprise.

5.	 We focus on surprise in defences that involve a sudden change in prey appear-
ance (such as deimatic displays), and in defences that increase prey unpredict-
ability (such as variation in chemical defences). We review literature that have 
investigated these phenomena and connect them to active inference. We also 
consider how multiple prey defences impact surprise in predators.

6.	 Finally, we consider the implications of active inference for future studies of pred-
ator–prey interactions, illustrate how this approach can be used to quantify sur-
prise in prey defences and predict predator behaviour, and outline key questions 
that can be addressed within this framework.
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1  |  INTRODUC TION

The evolution of camouflage, aposematism, mimicry and other forms 
of antipredator defence is a core research interest of evolutionary 
biologists (Ruxton et al., 2018). As argued in a recent review focused 
on interactions between prey defences and predator cognitive 
mechanisms, understanding the selective forces driving the evolu-
tion of prey defensive strategies requires an integrative approach 
that considers their coevolution with predator perception, cognition 
and behaviour (Kikuchi et al., 2023).

Many antipredator defences exploit the effects on predator 
cognition generated by surprise, which can influence the preda-
tor's behaviour. Here, we define surprise as a mismatch between 
an animal's expectation and what it observes or experiences (Barto 
et al., 2013). From the perspective of antipredator defence, surprise 
therefore refers to the extent to which the current observation 
or outcome of the encounter with a prey differs from predator's 
expectations. These expectations are based on previous expe-
riences, both throughout the lifespan of the individual and those 
shaped over evolutionary time-scales (McNamara et  al.,  2006). 
Surprise has been at the centre of the theory of learning for several 
decades, from the Rescorla–Wagner model of associative learn-
ing (Rescorla & Wagner,  1972) and subsequent related concepts 
(Pearce & Hall, 1980), to theoretical frameworks based on Bayesian 
inference (Courville et al., 2006; Itti & Baldi, 2009). Recently, the 
concept of surprise has been extended to the active inference 
framework, which considers action alongside perception to ex-
plain how organisms interact with their environment (Clark, 2013; 
Friston, 2010; Parr et al., 2022).

As defined above, surprise relates to the unexpectedness of an 
outcome or observation. Almost by definition, unexpected prey de-
fences may result in rapid change in a predator's beliefs. Surprise may 
therefore be a common, yet overlooked, aspect of antipredator de-
fences. Surprise can be brought about by a sudden change in prey ap-
pearance, as in deimatic displays (Drinkwater et al., 2022), or it can be 
generated by variation in prey profitability (toxicity or other defence) 
even though the prey share the same appearance (Balogh et al., 2008). 
Despite the importance of surprise in theoretical concepts of cogni-
tion, its potential role in prey defences, and subsequent effects on 
predator cognition and behaviour, have never been systematically 
addressed. We propose that incorporating surprise-related theory 
into predator–prey interactions offers insight into how prey defences 
influence predator cognition and drive decisions and behaviours. This 
allows for the formulation of novel predictions and hypotheses.

Here, we compare approaches to the formal quantification of 
surprise used in cognitive sciences, evaluate the evidence for the po-
tential role of surprise across several types of antipredator defence 

and elucidate the effects that surprising defences might have on 
predator cognition and behaviour. We propose that the principle of 
Bayesian learning and the theory of active inference may contribute 
to our understanding of the surprise-related aspects of predator–
prey interactions.

2  |  SURPRISE IN COGNITION

Animals use their senses adaptively, to reduce uncertainty (italicised 
names are defined in the glossary, Appendix S4) about their envi-
ronment. Uncertainty corresponds to incomplete knowledge of the 
true value of a relevant aspect of the environment, for example of 
the probability that a potential prey item is profitable to eat or not 
(e.g. because it contains toxins). Surprise relates to uncertainty: there 
is no surprise in a world in which all is known with certainty. The 
concept of surprise has a long intellectual history that can be traced 
back to Aristotle, Hume and Darwin (see Reisenzein et  al.,  2019). 
Darwin was a devoted parent to his many children, but also observed 
them closely from a scientific perspective. He was particularly inter-
ested in their emotional expressions, how they compared to those of 
other animals, and whether they were innate or learned. At times he 
would try to surprise his children (by making sudden, loud noises for 
example), to observe their subsequent reactions and expressions. 
His observations contributed to his third major book (Darwin, 1872).

From studies on human cognition (Reisenzein et al., 2019), through 
visual science (Itti & Baldi, 2009), and studies on learning and animal 
cognition (Rescorla & Wagner, 1972), surprise has been consistently 
defined as a departure from expectation. Surprise is therefore under-
pinned by a mechanism for comparing expectation, or prediction, with 
the organism's current observation or experience (Barto et al., 2013). 
Here, we consider solely the information aspects of surprise, without 
any reference to emotional states (Ekman & Davidson, 1994). Despite 
qualitative agreement on the basic definition, surprise has not always 
been defined formally in a quantifiable way. Here we focus on three 
examples of how surprise has been formally quantified.

2.1  |  Surprise in associative learning

In their seminal work, Rescorla and Wagner  (1972) considered a 
classical conditioning paradigm. They proposed that the greater 
the uncertainty in an association between conditioned stimulus 
(CS; a biologically neutral stimulus, e.g. sound) and unconditioned 
stimulus (US; a biologically significant stimulus, e.g. food) the 
more can be learned from an observation/experience. Rescorla 
and Wagner  (1972) chose to model the change in associative 

K E Y W O R D S
active inference, antipredator defence, associative learning, Bayesian inference, information 
theory, predation sequence, predator cognition, surprise
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strength V (i.e. the degree to which the animal expects the US 
in the presence of CS) between an unconditioned stimulus and 
a compound-conditioned stimulus AX after the exposition of an 
unconditioned stimulus as:

and

where VAX = VA + VX, � is the asymptotic level of associative strength 
the US can support, and �A, �X and � are coefficients between 0 and 1 
that, respectively, represent the ‘salience’ of the CS and the ‘associa-
tive value’ of the US. The changes in associative strength between CS 
and US are therefore proportional to the ‘surprisingness’ of this asso-
ciation, defined as the difference between the asymptotic level of as-
sociative strength � and the current associative strength VAX (Pearce & 
Hall, 1980; Rescorla & Wagner, 1972). This formalisation of associative 
learning has been used to better understand the role of predator learn-
ing in mimicry (Balogh et al., 2008; Speed & Turner, 1999), where prey 
appearance is treated as the CS, prey unpalatability as the US and the 
strength of attack inhibition towards the prey appearance corresponds 
to the associative strength (V).

2.2  |  Surprise in information theory

A natural way to express expectation for a set of alternative events is 
to associate a probability distribution (see Appendix S1) to this set of 
outcomes. Surprise, called ‘surprisal’ (or ‘self-information’), is a syno-
nym of information in the sense of Shannon's information theory 
(Shannon, 1948). It is expressed as the log of the inverse probability 
of an event y, which can, for example, correspond to an observation:

Accordingly, the occurrence of an event with low probability is 
more surprising (i.e. more informative) than the occurrence of an 
event with higher probability. For example, if a predator encoun-
tering a prey expects the prey to display a conspicuous red colour 
with probability 0.09, its surprisal when seeing the red colour will be 
log

(
1

0.09

)
= 2.42 nats, where a nat is the unit of information based on 

natural logarithms (or, equivalently, measured in bits when consid-
ering the logarithm in base 2, log2

(
1

0.09

)
= 3.47 bits). Conversely, it 

will be log
(

1

1− 0.09

)
= 0.09 nats if the predator does not see the red 

colour. In the extreme, a certain event, p(y) = 1, brings no surprise 
(see Figure 1).

2.3  |  Bayesian surprise

In Bayesian inference, the distribution of probability P(x), called the 
prior, corresponds to an organism's prior beliefs about the state x of 

an aspect of the world it does not have direct knowledge of. Such 
states are called hidden states. Hidden states can be represented 
by continuous variables, for example when they represent the es-
timated size of an object, or discrete variables, when only a finite 
set of values is considered. For example, a predator approaching 
a prey may associate a probability p (a number between 0 and 1) 
to the belief that the newly encountered prey is profitable to eat 
(where x refers to its hidden state, i.e. its profitability) such that 
p = P(x = profitable). The predator's belief that the prey is unprofit-
able is therefore 1 − p = P(x = unprofitable), as the probabilities of 
all states (‘profitable’ and ‘unprofitable’) must sum (or integrate) to 
one (Appendix S1). This probability p reflects the uncertainty of the 
predator about the environment, here about the true profitability of 
the prey. To perform Bayesian inference and update its prior belief 
in the light of new observations y gathered through its senses, the 
organism needs a generative model, that is a way to generate predic-
tions about the hidden states of the world x given observations y. 
Such a generative model is implemented through a likelihood P(y| x) , 
which provides a (probabilistic) mapping between hidden states (x) 
and observations (y). For example, a new observation y may arise 
from seeing the red colour displayed by a potential prey, which may 
decrease the predator's belief that the prey is profitable if the preda-
tor's generative model associates red coloration with unprofitability 
(Figure 2).

The crucial point in Bayesian inference is to capture a change 
of belief using a general updating rule provided by Bayes' theorem 
(Appendix S1). For each event x in the space of hidden states,

where P(x) is the probability distribution of beliefs before any new data 
(prior), P(y| x) is the likelihood, which quantifies how likely any incoming 

(1.1)ΔVA = �A�
(
� − VAX

)

(1.2)ΔVX = �X�
(
� − VAX

)
,

(2)h(y) = log

(
1

p(y)

)
.

(3)P(x| y) = P(y| x)P(x)
P(y)

,

F I G U R E  1  Surprisal of an event in function of its probability.
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data are under the hypothesis associated to the value x, and P(y) is 
the marginal likelihood, the probability of the observation. Bayes' theo-
rem therefore provides P(x| y), which represents the organism's beliefs 
after having observed data y and is called the posterior.

Itti and Baldi (2009) defined Bayesian surprise ‘as a measure of 
how an organism's belief is modified by new observations. They rea-
soned that new observations do not bring any surprise if the belief of 
the observer is unaltered, that is its prior belief equals its posterior 
belief P(x| y) = P(x).

By contrast, new observations are surprising if the prior and pos-
terior differ. To measure the mismatch between prior and posterior 
they used a measure of divergence between probability distribu-
tions from information theory, the Kullback–Leibler divergence (also 
called relative entropy, Appendix S1):

where the sum is taken over all hidden states. In this formalism, the 
Bayesian surprise brought by new observations is therefore quantified 
by a principled measure of disparity between two probability distri-
butions, the prior and the posterior. Accordingly, Bayesian surprise 

(Equation  4) measures the overall amount of belief updating after 
making a specific observation whereas surprisal (Equation 2) measures 
how unlikely that observation was given a distribution of probabilities 
over all observations. Bayesian surprise is measured in ‘wows’ (Itti & 
Baldi, 2009), where a ‘wow’ corresponds to a factor 2 between P(x| y) 
and P(x), that is to log2

(
p(x|y)
p(x)

)
= 1 with log taken in base 2. We provide 

an illustration of the computation of Bayesian surprise in predator's 
response to a prey defensive display in Section 3.

In the example provided in Figure  2, a predator has a 
prior belief that a newly encountered prey is unprofitable of 
P(x = unprofitable) = 0.1. After having seen the red colour displayed 
by the prey, its belief is updated to P(x = unprofitable) = 0.9, and this 
change between prior and posterior corresponds to a Bayesian sur-
prise DKL(p(x� y = red colour) ‖ p(x)) = 1.5 nats (see Appendices  S2 
and S3 for a derivation).

It is worth noting that the predator's change in belief is possi-
ble because its generative model strongly associates red coloration 
with prey unprofitability (the association created through learned 
experience or over evolutionary time-scales). If instead the predator 
had no specific belief about profitability when seeing the red colour 
(P(y = red colour| x = unprofitable) = P(y = red colour| x = profitable) = 0.5) , 

(4)DKL(p(x� y) ‖ p(x)) =
�

x

p(x� y) log2
�
p(x� y)
p(x)

�
,

F I G U R E  2  A simple generative model for Bayesian inference and active inference. Here we consider a space with two possible hidden 
states, x ∈

{
‘ unprofitable’, ‘ profitable’

}
 and two possible observations y ∈

{
‘ red colour’, ‘ no red colour’

}
. The prior distribution gives the 

predator's prior belief about the possible state of an incoming prey, while the likelihood expresses how the predator probabilistically predicts 
what observation should be linked to what state (bar lengths not to scale). In Bayesian inference, once the predator sees the red colour 
(y = ‘ red colour’) it can update its prior belief into its posterior belief. In active inference, the prior has a deeper meaning as it provides the 
organism's preferred states, which include its conditions for survival. In addition, active inference allows the organism to act so that its 
percepts match its preferences. Accordingly, when seeing the red colour, the predator may change its belief, by modifying its prior, or change 
its percepts, by moving away until encountering a prey that does not display the red colour (see Appendices S2 and S3 for the computation 
of surprisal and Bayesian surprise).
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it would not have changed its belief, and the same observation 
would have led to no surprise, DKL(p(x� y = red colour) ‖ p(x)) = 0. 
This shows the importance of the generative model to convey the 
relevant part of the true process at play in the world, called the gen-
erative process. Here, the generative process, to which the organism 
has no access, corresponds to the real mechanisms x∗ underlying 
the occurrence of red coloration in the potential prey (see Figure 3). 
The information provided by Bayesian surprise is meaningful if the 
organism's generative model reflects knowledge which is import-
ant for survival, for example the general association between red 
coloration and unprofitability. The theory that brain functions im-
plement inference about the state of the environment through a 
constant updating of its internal model is called predictive coding 
and has received empirical support (Friston & Kiebel, 2009; Rao & 
Ballard, 1999).

In Itti and Baldi  (2009), an eye-tracking experimental paradigm 
was used to explore the links between Bayesian surprise and visual 
attention. The locations more likely to be associated with a greater 
surprise in videos—for example where strong changes in colour con-
tent or motion happen—were derived using a computational neural 
model of image processing. The authors found a good correlation 
between these locations and the locations where human observ-
ers directed their gaze, concluding that uncertainty, as captured by 
Bayesian surprise, attracts attention.

2.4  |  Surprise in active inference

Active inference proposes a unifying principle to understand be-
haviour in which surprise plays the central role. This principle states 
that an organism's behaviour results from a close coordination of 
perception and action with the imperative of minimising surprise 
(Friston, 2010; Parr et al., 2022). In this framework, the concept of 
surprise is expanded beyond that of a mismatch with expectations. 
Surprise is defined in reference to preferred sensory inputs (referred 

to as preferred states) expressed as a probability distribution over a 
range of possible sensory inputs, of which the preferred states are 
associated with a higher probability. This distribution encapsulates 
the essence of priors in adaptive behaviour: a prior corresponds to 
the states favoured by the organism, which are adaptive and there-
fore include its conditions for survival. Surprising states, which differ 
too much from the prior, are less likely to be pursued because they 
pose a threat on the organism's integrity. For example, the distribu-
tion of preferences over temperatures for endotherms will peak at 
an optimal temperature. Temperatures below or above that refer-
ence temperature will be associated with a lower ‘preference’ (prob-
ability) and hence a higher surprisal (Figure 1). Of central importance 
for understanding behaviour, active inference expands the Bayesian 
perspective of perception as inference by also including action to 
minimise the surprise generated from inference. For example, when 
sensing threatening temperatures, endotherms will act to return to 
less surprising states (e.g. by physiological or behavioural changes). 
By giving perception and action the aim to fulfil the same objective 
of avoiding surprise instead of working in isolation (Friston, 2010), 
active inference has the potential to offer a novel, more dynamic 
perspective on predator–prey interactions. Active inference pre-
dicts that, when facing surprising states, organisms can change their 
belief about the environment (perception) or/and act to sample the 
environment until their perceptual input matches their expectations, 
for example by orienting their gaze towards the surprising event to 
gather more information on its nature or by simply moving away to 
avoid a potential threat (action). In the above example of a preda-
tor seeing the red colour displayed by the prey, the predator faces 
two options to minimise surprise: (1) changing its beliefs (preference) 
about red coloration, which will decrease its surprise when next see-
ing the red colour to S(y = red colour) = 0.33 nats; (2) ‘acting on the 
world’ by going away until sampling a prey that does not display the 
red colour (action }u = go away’ in Figure 3), with associated surprise 
S(y = no red colour) = 0.05 nats. This action will correspond to the 
imperative of minimising surprise, which will maintain the predator 

F I G U R E  3  Generative model and generative process. Schematics of the framework used in active inference. An organism's generative 
model describes the way sensory data (observations) y could be caused by a physical process in the world, called a generative process. 
The organism has no direct access to the real cause x∗ of its observations. It uses its observations to draw inferences about the possible 
causes among a range of hypotheses x in its generative model. Ideally, the generative model captures the aspects of the generative process 
relevant to the survival of the organism. Inference then leads the organism to act upon the world through actions u, which causes changes 
in the world and, subsequently, novel observations. Perception and action are tied together in an inferential loop driven by the reduction of 
surprise (technically, free energy).
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in its preferred state of not having ingested a possibly harmful prey. 
In any case, prey defences that elicit surprise have the potential to 
change the behaviour of the predator.

When the probability distributions in the generative model are 
more complex than in the example shown in Figure 2, the compu-
tations required to minimise surprise may become intractable. To 
address this, active inference uses a more tractable proxy called free 
energy, which is always greater than and approximates surprise (see 
Appendix S6). Active inference thus involves minimising free energy 
through action and belief updating. Free energy can be decomposed 
into key components relevant to cognition, such as pragmatic value 
(exploitation) and information gain (exploration) (Friston et al., 2015; 
Schwartenbeck et al., 2019).

2.5  |  Adaptation and learning in active inference

The overarching principle guiding action and perception in active 
inference, specifically the imperative to minimise surprise, extends 
directly to learning. More explicitly, all the parameters of the gen-
erative models involved in active inference can be modified through 
incremental changes as an organism acquires experience of its en-
vironment. These changes enable free energy to decrease after 
repeated experiences with the environment (Friston et  al.,  2016). 
Accordingly, the two central constructs of active inference, the 
prior and the likelihood, can change through evolution and develop-
ment for inference through perception and behaviour to be adaptive 
(Constant et al., 2018). The prior or distribution of preferred states, 
P(x), should adapt to reflect the survival conditions of an organism 
within its niche. On an ecological time-scale, some aspects should 
not change upon encountering new experiences, for example the 
narrow preference for a precise body temperature for endotherms. 
However, other aspects might change to facilitate adaptive deci-
sions. For example, P(x) may include a broader acceptance of toxic 
prey by predators when their energetic reserves are low, or alterna-
tive prey is scarce (Sherratt, 2003; Skelhorn, Halpin, & Rowe, 2016). 
Similarly, the likelihood P(y| x) which maps the states of the world 
to their predicted percepts should inform the organisms about how 
percepts are likely to be linked to preferred or nonpreferred states 
of the world. In the case of warning signals, for example, selec-
tion should favour likelihood functions that clearly express a link 
between prey phenotypic traits (e.g. conspicuous coloration) and 
unprofitability.

2.6  |  Active inference, ultimate and proximate 
explanations for surprise

Tinbergen's framework, and the dichotomy between ultimate and 
proximate explanations, have been central for understanding animal 
behaviour (Bateson & Laland,  2013; Tinbergen,  1963). Because it 
allows modelling at different time-scales, from evolutionary to in-
dividual real-time, active inference proposes a biologically plausible 

theory that applies to both ultimate (the imperative of avoiding sur-
prise for an organism to stay within its living requirements—optimal 
body temperature, energy level, avoiding toxins, etc.) and proximate 
(e.g. neural activity to encode surprise and implement changes in 
beliefs, updates of synaptic connections underlying learning) pro-
cesses (Ramstead et  al.,  2018). The prior expectations and likeli-
hoods involved in inference are optimised at different time-scales, 
the shorter time-scale for somatic changes (learning), and the longer, 
evolutionary time-scale. Heritable priors are under selection pres-
sure to engender adaptive behaviour (Friston,  2010). We refer 
to Ramstead et  al.  (2018) for a detailed correspondence between 
Tinbergen's four levels of explanation (mechanism, ontogeny, adap-
tation and phylogeny) and the constructs in active inference. In the 
next section, we will argue that both ultimate and proximate causes 
have the potential to further our understanding of the role of sur-
prise in predator–prey interactions.

3  |  ROLE OF SURPRISE IN ANTIPREDATOR 
DEFENCE

In this section, we identify known types of antipredator defences 
that match definitions of surprise and map those defences on the 
predation sequence (Endler, 1991). Surprise-related aspects may be 
found across the predation sequence including: (1) encounter, (2) de-
tection, (3) identification, (4) approach (attack), (5) subjugation and 
(6) consumption (Endler, 1991). Defences that have the potential to 
benefit from predator surprise take place mostly at the approach 
and subjugation stages (Figure 4). Here, we focus on two categories 
of such defences, which differ in the mechanism generating surprise: 
(a) defences that involve a sudden change in prey appearance and 
affect immediate predator responses and (b) defences that increase 
prey unpredictability over repeated encounters and affect predator 
learning and decision-making strategies. We explore the ways they 
can affect predator behaviour and increase prey survival, specifically 
illustrating how Bayesian surprise can be estimated in a prey defen-
sive display, and discuss how surprise can be understood within 
the framework of active inference, with an illustrative simulation 
of avoidance learning. See Table S1 for a detailed overview of anti-
predator defences that have the potential to elicit predator surprise, 
and examples of how these defences are used by prey species.

3.1  |  Defences that involve a sudden change in 
prey appearance

Many surprise-related antipredator defences involve a sudden 
change in prey appearance or behaviour, which often elicits im-
mediate predator responses. Deimatic displays are a classic ex-
ample where prey respond to the approaching or attacking 
predator with specific displays, which trigger an unlearned preda-
tor response causing it to slow or stop the attack (Drinkwater 
et  al.,  2022). Prey using deimatic displays are commonly cryptic 
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670  |    PENACCHIO et al.

at rest and the displays include revealing previously hidden bright 
colour markings, accompanied by specific movements and postures 
(Drinkwater et al., 2022; Figure 4c,f,g).

Surprise could also play a role in hidden warning signals where 
conspicuous colours are combined with camouflage and re-
vealed only upon predator approach (Loeffler-Henry et al., 2023; 

F I G U R E  4  Examples of surprise-related prey defences along the predation sequence. (a) camouflage (background matching) in the frog 
Pristimantis zeuctotylus (©Bibiana Rojas); (b) flash coloration in the blue-winged grasshopper Oedipoda caerulescens; (c) deimatic display and/
or hidden warning signal showing conspicuous coloration under an otherwise cryptic phenotype in the mountain katydid Acripeza reticulata 
(©Kate Umbers); Müllerian mimicry involving (d) viceroy Limenitis archippus and (h) monarch Danaus plexippus butterflies, which possess 
different types of chemical defences; (e) iridescent coloration in the tansy beetle Chrysolina graminis; (f) deimatic display in the underwing 
moth Catocala nupta; (g) putative deimatic display in the Colombian four-eyed frog Pleurodema brachyops (©Giovanni Chávez-Portilla), 
involving eyespots and body inflation; (i) deflection markings in the Magdalena River tegu Tretioscincus bifasciatus (©Luis Alberto Rueda); 
(j) false head in the red-banded hairstreak butterfly Calycopis cecrops; (k) distance-dependent pattern blending in the cinnabar moth Tyria 
jacobaeae caterpillar: Cryptic when seen from afar, conspicuous at close range. Photographs with the blue frame denote cases of defences 
whose relationship with surprise at a particular stage of the predation sequence is ambiguous (see Section 3.3 for further clarification). All 
photographs obtained from Wikimedia Commons unless otherwise stated.

 13652435, 2025, 3, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2435.14750 by V

eterinärm
edizinische U

niversität W
ien, W

iley O
nline Library on [14/03/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



    |  671PENACCHIO et al.

Figure 4c), in iridescent coloration where the hue and intensity of 
colours change depending on the viewing angle of the approach-
ing predator (Kjernsmo et  al.,  2022; Figure  4e), and in distance-
dependent pattern blending where the prey appear cryptic from 
a distance and conspicuous at close range (Barnett et  al.,  2017, 
2018; Figure  4k). All these defences include sudden changes in 
sensory input and conspicuous components, which are atypical in 
natural environments and evoke surprise (Penacchio et al., 2024).

The unexpected change in prey appearance may trigger a 
predator's startle response. The startle response is defined as 
an animal's reaction to the sudden appearance of a salient stim-
ulus and characterised by rapid onset and by causing an immedi-
ate interruption of any ongoing activity (Drinkwater et al., 2022; 
Forrester & Broom,  1980; Koch,  1999). Behavioural patterns 
associated with startle response include muscle contractions, 
limb flexion and crouching, followed by a short period of immo-
bility, which makes it possible to distinguish the startle response 
from the escape response, even though the two are often linked 
(Forrester & Broom,  1980; Koch,  1999). Behaviours consistent 
with the description of the startle response have been observed 
in various predators in reaction to defences involving a sudden 
change in prey appearance, though evidence is mostly limited to 
avian species (Holmes et al., 2018; Ingalls, 1993; Kang et al., 2017; 
Kim et  al.,  2020; Umbers et  al.,  2019). Investigating startle re-
sponses in other predator taxa therefore provides a promising 
area for future research.

The adaptive significance of the predator's startle response 
is to protect it from a potential threat, as the response is likely 
to prevent injury and facilitate an escape (Koch,  1999). Startle 
response may force predators to focus on a surprising stimulus 
because it interrupts predator activity and is often followed by 
the orienting response, a behavioural and cognitive response used 
to gather information (Sokolov et al., 2002). The strength of the 
orienting response is contingent on the amount of cognitive pro-
cessing dedicated to a stimulus (Kaye & Pearce, 1984). Since the 
response strength can be measured as a frequency or duration 
of specific behaviours (Kaye & Pearce, 1984), it could serve as a 
proxy for quantifying surprise.

Although the startle response is innate and cannot be eliminated 
(Koch,  1999), its intensity usually decreases through habituation 
(Davis, 1970; Shettleworth, 2010), which can make the display less 
effective across repeated encounters (Ingalls, 1993; Schlenoff, 1985). 
How quickly the predators habituate to surprising displays, how well 
and long displays are remembered, and how broadly they are gener-
alised may depend on several factors including prey abundance, dis-
play components, and the age, personality and previous experience 
of the predators (Umbers et al., 2019).

Defences that involve a sudden change in prey appearance may 
also trigger predators' escape responses (Drinkwater et al., 2022). 
This is particularly the case for deimatic displays, which may cause 
the predator to misclassify the prey as a potential threat (Skelhorn, 
Holmes, & Rowe, 2016). For example, eyespots may resemble the 
eyes of a larger predator (Cott, 1940; De Bona et al., 2015). A sudden 

display of eyespots by cryptic prey frequently results in predators' 
recoiling, jumping back and moving away (Drinkwater et al., 2022). 
This behavioural response has been observed in various pred-
ators, including birds (De Bona et al., 2015; Olofsson et al., 2013) 
and mammals (Olofsson et  al.,  2013). Predator escape responses 
can be also triggered by prey displays in nonvisual modalities, such 
as sounds, which can be quantified in terms of Bayesian surprise 
(Itti & Baldi, 2009).

The stimulus misclassification by a predator is particularly likely 
when the display is highly surprising and requires a fast response 
even though potentially incorrect given the signaller's true nature 
(Trimmer et al., 2008). This might explain why some deimatic displays 
are only deployed upon close contact with the predator (Umbers & 
Mappes, 2015; Vallin et al., 2005; Figure 4) when there is maximal 
surprise, and the perceived imminent threat is likely to elicit predator 
escape response. Furthermore, some components of deimatic dis-
plays (such as sounds) are stronger at a closer distance (Drinkwater 
et al., 2022). The initial escape response may be followed by subse-
quent prey inspection (Kang et al., 2017; Vallin et al., 2007). The lon-
ger the predator observes a potentially harmful prey without being 
attacked, the less likely the display corresponds to a real danger 
(Sherratt et al., 2023). The optimal latency to approach a potentially 
dangerous prey decreases over repeated encounters in which the 
prey proves to be harmless, as the predator's expectation changes 
according to new observations (Sherratt et  al.,  2023), making the 
display less effective. If deimatic displays involve a rapid increase 
in apparent prey size, they may also trigger predator looming reflex, 
that is evasive response to rapidly approaching large and potentially 
dangerous objects (Drinkwater et al., 2022; Yamawaki, 2011). In this 
case, the displays may also be most effective at a closer distance, 
where the perceived increase in the stimulus size and the corre-
sponding predator surprise is maximised.

These defences may confer benefits to prey by reducing the 
speed, or likelihood of an attack, giving the prey time to escape. Most 
of our knowledge about the effects of surprise in prey defences on 
predator behaviour, however, comes from experiments under labo-
ratory settings with artificial prey (Drinkwater et al., 2022). Only a 
few studies have shown that surprising predators through defence 
strategies such as deimatic displays can increase the survival of real 
prey in encounters with avian (Umbers et al., 2019; Vallin et al., 2005) 
and mammalian predators (Olofsson et al., 2012).

Figure  5 illustrates how the mathematical tools of Section  2 
can be used for the empirical investigation of deimatism. It shows 
how to estimate Bayesian surprise from a video of an artificial moth 
that simulates a deimatic display. The computation is based on how 
changes in luminance in the visual stimulus elicit changes in neuronal 
activity in the visual system of an avian predator. This computation 
can be generalised in different ways, for example, by considering the 
colour content of the stimulus in addition to its luminance content. 
As acknowledged in Itti and Baldi (2009), it is also possible to com-
pute Bayesian surprise for other modalities than vision, for example 
acoustic stimuli. These measures of surprise are of direct interest as 
they can be contrasted to and regressed against typical measures 
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672  |    PENACCHIO et al.

of predators' behaviour when facing prey defence such as rejection 
rate, reaction time and latency to attack.

3.2  |  Defences that increase prey unpredictability 
across encounters

Surprise can also play a role in defences that may not involve sud-
den changes in prey appearance, but where prey profitability is dif-
ficult to predict across encounters. In this case, surprise is generated 
by variation in prey defences at the subjugation and consumption 
stages, which leads to changing contingencies between prey appear-
ance (e.g. warning signals) and unprofitability. In automimicry, the 
intraspecific variation in unprofitability occurs, with individuals var-
ying in the presence, strength and/or type of their chemical defence 
(Guilford,  1994; Speed et  al.,  2012; Svennungsen & Holen,  2007). 
Variation in chemical defences is also observed across species that 
share similar warning signals. This includes parasitic relations, such as 
Batesian mimicry, where an undefended mimic resembles a defended 
model species and increases predation on the model (Bates, 1862; 
Lindström et al., 1997), and quasi-Batesian mimicry, where both spe-
cies are chemically defended but the less defended species acts in 

a Batesian manner (Rowland et al., 2010; Speed, 1993). Variation in 
defences also occurs in mutualistic Müllerian mimicry if the mim-
ics that share similar warning signals are equally defended against 
predators but possess different defensive chemicals (Chouteau 
et al., 2019; Figure 4d,h). Surprise may affect predator behaviour in a 
way that could potentially change the mimetic relations of unequally 
defended species from parasitic to mutualistic, leading to quasi-
Müllerian mimicry, where the presence of an undefended mimic 
is beneficial to the model, or super-Müllerian mimicry, where the 
model benefits more from a less defended mimic than from equally 
defended one (Balogh et al., 2008; Speed & Turner, 1999).

Surprise generated by the mismatch between predator's prior 
expectations and actual prey defences can increase predator un-
certainty about prey profitability and make the previous experience 
less relevant, enhancing the rate of subsequent learning (Balogh 
et al., 2008; Courville et al., 2006). Therefore, predators may learn 
to avoid aposematic prey faster if prey individuals possess different 
rather than identical chemical defences (Skelhorn & Rowe,  2005). 
Using a modification of the Rescorla–Wagner model of associative 
learning, Balogh et  al.  (2008) confirmed that variation in prey un-
palatability leads to a faster increase in predator attack inhibition 
compared to a constant level of unpalatability. Fast learning to avoid 

F I G U R E  5  Quantification of (Bayesian) surprise in an empirical experiment on deimatism. (a) Setting of the behavioural experiment using 
a remote-controlled robotic moth model to test the responses of black-capped chickadees Poecile atricapillus towards the deimatic display of 
Catocala moths (see Kang et al., 2017 for details). (b) Close-up of the artificial prey for the video frames before, at, and 42, 84 ms after display 
onset. (c) Corresponding Bayesian surprise for the frames in (b) (after Itti & Baldi, 2009). Here Bayesian surprise is computed by considering 
abstracted neural units that encode the likelihood of incoming data at each pixel location (reminiscent of retinotopic locations in the visual 
system of the predator). The lighter the colour of a pixel, the greater surprise, as measured in ‘wows’ (see Appendix S5 for details). While 
surprise is computed locally (at each retinotopic location), its effect on a predator (e.g. attracting its attention) is likely to reflect the average 
surprise within specific areas of the scene. (d) Predator's behavioural response. Original video (see Video S1) courtesy of Changku Kang.
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prey with variable chemical defences may protect the predators 
from ingesting a high dose of toxins in a situation when it is difficult 
to predict the prey's toxin content (Skelhorn & Rowe, 2005). If the 
predators learn to avoid the prey with similar appearance but vari-
able defence faster than the prey with the uniform defence, then 
the Müllerian mimics that differ in their defensive chemicals may be 
better protected than those that share the same chemical (Sherratt 
et  al.,  2004; Skelhorn & Rowe,  2005). Likewise, faster avoidance 
learning by predators may allow for the maintenance of intraspecific 
variation in defence when individuals differ in their chemical profiles 
(Speed et al., 2012).

Following the experience with defence unpredictability, pred-
ators may decide to avoid particular prey even if some individu-
als are undefended and prefer to consume moderately toxic prey 
rather than prey which could vary from non-toxic to highly toxic 
(Barnett et  al.,  2014). Again, this behaviour may help the preda-
tors to better control their toxin load, and minimising surprise over 
successive encounters may represent the cognitive mechanism 
that underpins this strategy. Active inference predicts that an in-
creased randomness in reward leads to a more conservative sam-
pling behaviour (Schwartenbeck et  al.,  2019). Predator avoidance 
of prey with variable defences would allow for the persistence of 
less defended and undefended individuals among defended prey 
(Svennungsen & Holen, 2007) and benefit unequally defended mim-
ics (Balogh et al., 2008; Barnett et al., 2014).

Another way in which predators may respond to the unpredict-
ability of prey defences is the go-slow strategy (Guilford,  1994; 
Holen,  2013). Instead of learning to avoid the prey with unpre-
dictable defences, predators may learn to approach and handle 
such prey cautiously to avoid being harmed and to get more ac-
curate information about prey defences (Brower & Fink, 1985; He 
et al., 2022; Skelhorn & Rowe, 2006). The proportion of prey sam-
pled and rejected by avian predators was highest at the moderate 
frequencies of the defended prey, supporting the hypothesis that 
this behaviour is linked to predator uncertainty (He et al., 2022). 
Because the go-slow strategy allows predators to sample and re-
ject defended prey individuals, it may lead to selection against 
less defended or undefended mimics (Guilford, 1994; Skelhorn & 
Rowe, 2006).

3.3  |  Other defences that may have the potential 
to generate surprise

In camouflage, behaving in unexpected ways can enhance survivor-
ship. For example, when a prey has a choice of two patches to hide 
in, it should not always hide in the patch where it is best concealed 
because otherwise a rational predator will only search there. Instead, 
the optimal solution for the prey is to reduce its predictability by oc-
casionally choosing the patch where it is less well concealed (Gal & 
Casas, 2014; Nahin, 2007; Figure 4a).

Some of the defences that are typically deployed at early stages 
of the predation sequence and affect prey detection, such as 

iridescent coloration (Kjernsmo et al., 2020; Figure 4e) and flash dis-
plays (Sherratt & Loeffler-Henry, 2022; Figure 4b) involve a sudden 
change in predator's visual input. These defences therefore include 
a component of surprise (e.g. that can be quantified using Itti and 
Baldi's  (2009) framework to compute Bayesian surprise). How this 
surprise-related component underwrites the effect of the defence 
is not clear, however. One possibility is that the change in prey ap-
pearance may lead to predator confusion (Drinkwater et al., 2022). 
Iridescent coloration makes prey detection more difficult, as it pro-
duces inconsistent shape cues and may thus work as dynamic disrup-
tive camouflage (Kjernsmo et al., 2020). In flash displays, otherwise 
cryptic prey reveal conspicuous colour markings when fleeing from 
predators, which gives an impression of the prey being conspicu-
ous (Sherratt & Loeffler-Henry, 2022) and makes the prey difficult 
to find once it has settled (Loeffler-Henry et  al.,  2018). Here, the 
effect of surprise may be linked to the prey seemingly disappearing 
when it resumes its cryptic coloration. In contrast to deimatic dis-
plays, which are usually deployed at a closer distance (Drinkwater 
et  al.,  2022), flash signals are more effective at longer distances, 
when the predator is unaware of the prey's cryptic resting appear-
ance (Loeffler-Henry et al., 2021; Sherratt & Loeffler-Henry, 2022).

Some surprise-related defences may increase prey survival by 
confusing the predator such that it does not know exactly where to 
strike during an attack. For example, Murali (2018) found that human 
‘predators’ were not able to catch the stimuli with dynamic flash col-
oration as frequently and accurately as stimuli whose colour did not 
change or matched the background, suggesting that such colour 
change may confuse the predator about the location of the prey. The 
finding that the magnitude of this benefit depends on the unpre-
dictability of the prey movement (Murali & Kodandaramaiah, 2020) 
suggests that this defence may include surprise. In erratic, ‘protean’ 
escape behaviour, unexpected rapid changes in prey escape tra-
jectory make it hard for a predator to predict prey movement and 
follow the escaping prey (Humphries & Driver,  1970; Richardson 
et al., 2018). The unpredictability of escape behaviour can be quan-
tified using surprisal (Moore et  al.,  2017). In addition, false heads 
(Figure  4j) and deflective markings (Figure  4i) can make predators 
misdirect their attacks and lead to failure to capture the prey that 
is moving in an unexpected direction (Humphreys & Ruxton, 2018).

3.4  |  Surprise and multiple defences

Finally, many prey species possess multiple defences that may be 
deployed either simultaneously or sequentially (Caro et  al.,  2016; 
Ruxton et  al.,  2018). One of the most intriguing questions about 
multiple prey defences is what determines their co-occurrence in 
particular prey and their timing relative to predator attack (Kikuchi 
et al., 2023; Wang et al., 2019). Multiple defences seem inherently 
surprising because in many cases predators cannot predict which 
combinations of defences prey are likely to use. Each defence com-
ponent, for example a bright colour, leads to surprise because it elic-
its a percept that deviates from those typical in natural environments 
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(low probability leading to high surprisal), and because it suddenly 
modifies the distribution of probability over hidden states (Bayesian 
surprise) in a way that does not match the predator's preferences 
(higher free energy). Each defence component is therefore associ-
ated with neural activity signalling surprise, as prediction error and 
belief updating (Friston & Kiebel, 2009). Surprise is likely to be en-
hanced by the co-occurrence of the defensive components, as is 
often the case with multimodal percepts (Stein & Meredith, 1993; 
Stein & Stanford,  2008). This can increase the time required for 
information processing, and potentially result in sensory overload, 
where the predator's perception system is overwhelmed by receiv-
ing more information than can be processed at one time (Hebets 
& Papaj, 2004). The enhanced ability of multimodal or multicompo-
nent signals to surprise predators may have been a key factor in the 
selection pressure leading to the evolution of this type of complex 
signalling.

3.5  |  Understanding surprise in predator–prey 
interactions through active inference

Active inference offers a unifying perspective on all the aspects of 
surprise in antipredator defences introduced so far. To understand 
this, let us recall that in active inference: (1) surprise corresponds to 
a deviation from preferred (expected) observations, and (2) behav-
iour follows the imperative of minimising surprise (or free energy). 
In this framework, prey with traits that elicit unpreferred observa-
tions in predators are likely to be avoided. This concept is illustrated 
in Figure  6, which presents a simulation of avoidance learning in 
a bird encountering profitable and unprofitable prey with distinct 
phenotypes. Here, the bird acts as an active inference agent, mean-
ing its behaviour follows the imperative of minimising free energy. 
This corresponds to the need to secure food while avoiding toxins. In 
this context, minimising free energy equates to minimising surprise, 
where surprise arises from encountering unpreferred outcomes, 
here hunger or sampling an unprofitable prey. See Appendix  S6 
for general methods, and Figures S4 and S5 for two variants of this 
simulation that illustrate modelling of dietary conservatism (Marples 
et al., 1998) and the effect of the predator's learning rate in learning 
the association between prey phenotype and profitability.

In terms of proximate mechanisms, active inference predicts ac-
curately the interruption of ongoing activity observed in the star-
tle response, followed by the orienting response (see Section 3.1). 

In active inference, surprise triggers an update of beliefs about 
the world, involving neural message passing between sensory-
processing units (‘bottom-up’) and higher-order neural areas encod-
ing beliefs about the world (‘top-down’) until a coherent state with 
no prediction error is achieved (Friston & Kiebel, 2009). The stronger 
the surprise, or mismatch with expectation, the more neural activity 
and time are required for this update (Schwartenbeck et al., 2015). 
The orienting response towards salient stimuli reflects the need to 
gather information about the source of surprise. Multimodal signal-
ling further enhances surprise, increasing the cognitive load of the 
updating process (see Section 3.4). In active inference, all these phe-
nomena lead to learning, where surprise drives belief updating, as in 
the Rescorla–Wagner model. Active inference incorporates the lat-
ter model by showing how surprise triggers neural updates, minimis-
ing prediction errors and facilitating learning (Anokhin et al., 2024).

Active inference also effectively predicts predator behaviour 
when facing prey unpredictability (see Section  3.2). For example, 
when an organism encounters greater uncertainty about the like-
lihood of receiving a reward from an action, it tends to prioritise 
sampling cues before directly pursuing the action (Schwartenbeck 
et al., 2019). Similarly, the theory suggests that after an initial period 
of sampling, called active learning, an organism will favour unam-
biguous states even if the average reward is similar (Schwartenbeck 
et al., 2019). More broadly, active inference provides a computational 
framework for exploring how environmental uncertainty and an or-
ganism's tendency to sample uncertain options influence the trade-
off between exploration and exploitation. This framework is similar 
to those used in reinforcement learning (Sutton & Barto, 2018) but is 
linked to the neurophysiology of cognition. The organism's genera-
tive model, which shapes its representation of the world and guides 
behaviour, balances two components: one that drives information-
seeking and uncertainty reduction (exploration), and another that 
favours the realisation of preferences (exploitation) (Schwartenbeck 
et al., 2019).

The key concept for understanding how active inference can 
address empirical questions in predator–prey interactions is com-
putational phenotyping. The behaviour simulated in Figure  6 is de-
termined by a set of parameters that define the generative model 
guiding the predator's actions. Computational phenotyping involves 
inverting the mapping from parameters to behaviour (see Parr 
et  al.,  2022). In practice, this means we can extract these param-
eters from observed behaviours in empirical experiments, both at 
individual and group levels (Schwartenbeck & Friston,  2016)—for 

F I G U R E  6  Active inference modelling of avoidance learning in a naïve predator. A bird is trained to attack artificial prey items (paper 
moths with pinned mealworms; Halpin et al., 2020). It then must repeatedly choose between two different prey types, ‘Prey Type A’ printed 
with a conspicuous but not typical warning coloration and with a non-modified (profitable) mealworm, and ‘Prey Type B’, showing a typical 
warning coloration and with a mealworm treated with quinine (unprofitable). We use the active inference framework to model avoidance 
learning (see Appendix S6 for details). (a) Schematics of the experimental setting. (b–d) Example simulation of an active inference bird over 
30 trials with, in (b), the action chosen by the bird among the three possible actions (‘Stay’, ‘Attack prey Type A’, ‘Attack prey Type B’; blue 
dots) and probability beliefs for actions (darker shades indicate higher probability); (c) surprise at the end of each trial; (d) Bird's belief about 
the profitability of Type A and B over time. The simulation is drawn from a generative model. Crucially, the process can be inverted to 
recover a generative model from empirical behaviour—computational phenotyping, see text—which allows assessment of the role of surprise 
in antipredator defence from the perspective of active inference (see Appendix S7 for details).
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instance, from the behaviour of each bird in an experiment like the 
one simulated in Figure 6. When applied to preferences, this method 
provides a numerical description of what each bird seeks or avoids 
(see Appendices  S6 and S7 for details). Computational phenotyp-
ing can be applied to any component that defines active inference 
agents, including learning (Figure 6d) and the exploration–exploita-
tion trade-off (Schwartenbeck et al., 2019). Although so far used to 
study human behaviour (see Parr et  al.,  2022), model-based data 
analysis in active inference holds significant potential for deepening 
our understanding of predator–prey interactions, particularly when 
surprise is involved.

4  |  CONCLUSIONS AND FUTURE 
DIREC TIONS

The mismatch between predator expectations and the information 
presented by a prey can generate surprise, which can influence pred-
ator decisions and behaviours and ultimately affect prey survival. 
We have shown numerous ways in which prey defences can elicit 
surprise, introduced metrics by which to measure surprise in preda-
tors, and explained why and how considering the concept of surprise 
is essential in interpreting predator responses to prey defences, al-
though the field remains ripe for continued research.

Metrics to quantify surprise are not well resolved among differ-
ent sensory modalities and across divergent predator species. The 
field would benefit greatly from a more thorough understanding of 
both the predator and prey perspectives related to surprise and its 
influence on decisions and behaviour. For example, how prey decide 
to deploy surprising defences, how predators process novel infor-
mation and under what conditions predators take risks to continue 
a predation attempt even if their expectations are not met versus 
when they reject a potential prey. Similarly, we need a better under-
standing of whether surprising defences can elicit the same reaction 
in different taxa of predators, or if reactions and behaviours differ 
and are predator taxon specific. Another question is whether preda-
tor individual traits (such as personality) play a role in their reactions 
to surprise in prey defences.

Understanding the timing of surprise in the predation se-
quence would further clarify when and under what conditions 
prey choose to deploy defences which change predator expecta-
tions, and how this affects the strength of predator response to 
surprise. Likewise, we lack a clear understanding of the relation-
ship between surprise and multiple defences. Further research is 
needed to understand which sequentially deployed defences pre-
cede and follow the surprise-generating defences, and which com-
binations of simultaneous defences are most effective in eliciting 
predator surprise.

Habituation may attenuate the effects of surprise in two 
ways. First, in terms of when surprising displays are triggered in 
prey over repeated interactions with predators. Second, in the ef-
fect of surprising prey displays on experienced predators whose 

expectations may have altered to include what were previously 
surprising prey displays. Unfortunately, we still know relatively 
little about predator habituation to surprising elements in prey 
defences, especially under field conditions, mainly because of 
the difficulties of observing surprise-involving interactions and 
subsequently following individual predators to collect additional 
observations.

Active inference offers a general, principled framework to un-
derstand cognition and behaviour, which links together perception 
and action with the objective for an animal to minimise surprise, 

BOX 1 Outstanding questions on the role of 
surprise in predator-prey interactions

•	 Q1. Do the defences that involve a sudden change in 
prey appearance elicit stronger predator surprise if they 
are timed just before or when the predator makes con-
tact with the prey compared to being deployed earlier in 
the encounter?

•	 Q2. Do predators habituate at a similar rate to surpris-
ing defences in different modalities (e.g. visual versus 
acoustic)? Can multimodality of display components 
protect surprising defences from habituation?

•	 Q3. How broadly do predators generalise over surpris-
ing defences? Can polymorphism in a salient defence 
component prevent habituation? Can imperfect mimetic 
species similarly take advantage of this to prevent ha-
bituation which could explain their persistence?

•	 Q4. What types of defence unpredictability (such as var-
iation in quality versus quantity of defence chemicals) 
can enhance predator avoidance learning and/or lead to 
an ‘unpredictability aversion’?

•	 Q5. Since the distribution of preferences used in active in-
ference is shaped by a general preference for what is typi-
cal in natural environments, the stimuli that create surprise 
are likely to differ from the typical stimuli in the environ-
ment. Would it be possible to predict the characteristics of 
prey defences that would elicit maximum surprise relative 
to predator environment and perception? Can we find a 
common underlying principle for the design of surprising 
prey defences in terms of degree of difference from the 
most common stimuli in natural environments?

•	 Q6. Can the effects on predators of the different types 
of surprise elicited by prey defences be unified under 
the imperative of minimising surprise from observations 
in active inference?

We discuss in Appendix S7 how the frameworks proposed 
in this study, in particular active inference, may be ap-
plied to tackle these questions.
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that is the mismatch between current observations and those cor-
responding to its preferred states, which reflect evolutionary ad-
aptation. When confronted with surprising observations an animal 
faces two possibilities: altering its beliefs such that they agree with 
current observations, or modifying its behaviour until updated infor-
mation is in line with prior beliefs or preferences. Both these pillars 
of active inference can benefit prey because they would entail an 
interruption of predator attack and/or a change in the predator sam-
pling strategy. As such active inference provides a promising avenue 
for better understanding the role of surprise in predator–prey inter-
actions. Because it applies to different time-scales—from real-time 
encounters throughout ontogeny, to evolutionary time-scales—and 
is associated with clearly defined plausible neural mechanisms, ac-
tive inference can address each of Tinbergen's four levels of inquiry 
for understanding animal behaviour. Analysing data from empirical 
experiments using active inference models and computational phe-
notyping could provide a unified account for the cognitive ecology 
of surprise, from fundamental aspects in adaptive behaviour such 
as the trade-off between exploitation and exploration, to the tim-
ing of defence deployment in predator–prey interactions, to predic-
tions about the neurophysiology of startle and escape responses. In 
Box 1, we outline what we see as key questions concerning the role 
of surprise in antipredator defences.
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