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tion to empirical research relevant to surprise in predator-prey interactions.

2. There have been multiple proposals as to how surprise should be defined and
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ative learning, information theory, Bayesian inference and the recent framework

of active inference.

. We argue that active inference provides a novel and powerful approach to quan-

tifying surprise and advances the field by revealing how proactive behaviour on
the part of predators relates to reducing surprise.

The active inference framework encompasses both proximate (e.g. neurobiologi-
cal) and ultimate (evolutionary) aspects of surprise and brings new insights into
key aspects of prey defences that exploit predator surprise.

We focus on surprise in defences that involve a sudden change in prey appear-
ance (such as deimatic displays), and in defences that increase prey unpredict-
ability (such as variation in chemical defences). We review literature that have
investigated these phenomena and connect them to active inference. We also

consider how multiple prey defences impact surprise in predators.

. Finally, we consider the implications of active inference for future studies of pred-

ator-prey interactions, illustrate how this approach can be used to quantify sur-
prise in prey defences and predict predator behaviour, and outline key questions
that can be addressed within this framework.
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1 | INTRODUCTION

The evolution of camouflage, aposematism, mimicry and other forms
of antipredator defence is a core research interest of evolutionary
biologists (Ruxton et al., 2018). As argued in a recent review focused
on interactions between prey defences and predator cognitive
mechanisms, understanding the selective forces driving the evolu-
tion of prey defensive strategies requires an integrative approach
that considers their coevolution with predator perception, cognition
and behaviour (Kikuchi et al., 2023).

Many antipredator defences exploit the effects on predator
cognition generated by surprise, which can influence the preda-
tor's behaviour. Here, we define surprise as a mismatch between
an animal's expectation and what it observes or experiences (Barto
et al., 2013). From the perspective of antipredator defence, surprise
therefore refers to the extent to which the current observation
or outcome of the encounter with a prey differs from predator's
expectations. These expectations are based on previous expe-
riences, both throughout the lifespan of the individual and those
shaped over evolutionary time-scales (McNamara et al., 2006).
Surprise has been at the centre of the theory of learning for several
decades, from the Rescorla-Wagner model of associative learn-
ing (Rescorla & Wagner, 1972) and subsequent related concepts
(Pearce & Hall, 1980), to theoretical frameworks based on Bayesian
inference (Courville et al., 2006; Itti & Baldi, 2009). Recently, the
concept of surprise has been extended to the active inference
framework, which considers action alongside perception to ex-
plain how organisms interact with their environment (Clark, 2013;
Friston, 2010; Parr et al., 2022).

As defined above, surprise relates to the unexpectedness of an
outcome or observation. Almost by definition, unexpected prey de-
fences may result in rapid change in a predator's beliefs. Surprise may
therefore be a common, yet overlooked, aspect of antipredator de-
fences. Surprise can be brought about by a sudden change in prey ap-
pearance, as in deimatic displays (Drinkwater et al., 2022), or it can be
generated by variation in prey profitability (toxicity or other defence)
even though the prey share the same appearance (Balogh et al., 2008).
Despite the importance of surprise in theoretical concepts of cogni-
tion, its potential role in prey defences, and subsequent effects on
predator cognition and behaviour, have never been systematically
addressed. We propose that incorporating surprise-related theory
into predator-prey interactions offers insight into how prey defences
influence predator cognition and drive decisions and behaviours. This
allows for the formulation of novel predictions and hypotheses.

Here, we compare approaches to the formal quantification of
surprise used in cognitive sciences, evaluate the evidence for the po-

tential role of surprise across several types of antipredator defence

and elucidate the effects that surprising defences might have on
predator cognition and behaviour. We propose that the principle of
Bayesian learning and the theory of active inference may contribute
to our understanding of the surprise-related aspects of predator-

prey interactions.

2 | SURPRISE IN COGNITION

Animals use their senses adaptively, to reduce uncertainty (italicised
names are defined in the glossary, Appendix S4) about their envi-
ronment. Uncertainty corresponds to incomplete knowledge of the
true value of a relevant aspect of the environment, for example of
the probability that a potential prey item is profitable to eat or not
(e.g. because it contains toxins). Surprise relates to uncertainty: there
is no surprise in a world in which all is known with certainty. The
concept of surprise has a long intellectual history that can be traced
back to Aristotle, Hume and Darwin (see Reisenzein et al., 2019).
Darwin was a devoted parent to his many children, but also observed
them closely from a scientific perspective. He was particularly inter-
ested in their emotional expressions, how they compared to those of
other animals, and whether they were innate or learned. At times he
would try to surprise his children (by making sudden, loud noises for
example), to observe their subsequent reactions and expressions.
His observations contributed to his third major book (Darwin, 1872).

From studies on human cognition (Reisenzein et al., 2019), through
visual science (Itti & Baldi, 2009), and studies on learning and animal
cognition (Rescorla & Wagner, 1972), surprise has been consistently
defined as a departure from expectation. Surprise is therefore under-
pinned by a mechanism for comparing expectation, or prediction, with
the organism's current observation or experience (Barto et al., 2013).
Here, we consider solely the information aspects of surprise, without
any reference to emotional states (Ekman & Davidson, 1994). Despite
qualitative agreement on the basic definition, surprise has not always
been defined formally in a quantifiable way. Here we focus on three
examples of how surprise has been formally quantified.

2.1 | Surprise in associative learning

In their seminal work, Rescorla and Wagner (1972) considered a
classical conditioning paradigm. They proposed that the greater
the uncertainty in an association between conditioned stimulus
(CS; a biologically neutral stimulus, e.g. sound) and unconditioned
stimulus (US; a biologically significant stimulus, e.g. food) the
more can be learned from an observation/experience. Rescorla
and Wagner (1972) chose to model the change in associative

A ‘€ STOT ‘SEPTSIET

q//:sdny woxy papeoy

:sdny) suontpuoy) pue swa [, 3y 238 [§Z0Z/g0/71] o AeiqrT SUTUQ AS[IAN “USIAN JEHSIOATUN) SYISIUTZIPIUMPULIA KQ 0SLYT"SEPT-SIET/1T11°01/10p/wi0d K1

PUE-SUWLIAY/WOD K[ 1M" KTRIq]

3SUBOIT suOWWO)) dANELAI) d[qeorjdde ayy £q pauIaA0S a1k Sa[AIIE YO SN JO SN 10J AIRIqIT UI[UQ A3[IA UO (SUOTIP



PENACCHIO ET AL.

ﬂ EEE&‘Eﬁ'ém F ti 1 Ecol
SOCETY unctional £cology

strength V (i.e. the degree to which the animal expects the US
in the presence of CS) between an unconditioned stimulus and
a compound-conditioned stimulus AX after the exposition of an

unconditioned stimulus as:

AV = apf(4 = Vax) (1.1)

and

AVy = ay (A = Vax), (1.2)

where Vpy = Vj + Vy, 4 is the asymptotic level of associative strength
the US can support, and a,, ax and g are coefficients between O and 1
that, respectively, represent the ‘salience’ of the CS and the ‘associa-
tive value’ of the US. The changes in associative strength between CS
and US are therefore proportional to the ‘surprisingness’ of this asso-
ciation, defined as the difference between the asymptotic level of as-
sociative strength 1 and the current associative strength V,ay (Pearce &
Hall, 1980; Rescorla & Wagner, 1972). This formalisation of associative
learning has been used to better understand the role of predator learn-
ing in mimicry (Balogh et al., 2008; Speed & Turner, 1999), where prey
appearance is treated as the CS, prey unpalatability as the US and the
strength of attack inhibition towards the prey appearance corresponds

to the associative strength (V).

2.2 | Surprise in information theory

A natural way to express expectation for a set of alternative events is
to associate a probability distribution (see Appendix S1) to this set of
outcomes. Surprise, called ‘surprisal’ (or ‘self-information’), is a syno-
nym of information in the sense of Shannon's information theory
(Shannon, 1948). It is expressed as the log of the inverse probability

of an eventy, which can, for example, correspond to an observation:

1
h = — ).
(y) = log < o) ) (2)

Accordingly, the occurrence of an event with low probability is
more surprising (i.e. more informative) than the occurrence of an
event with higher probability. For example, if a predator encoun-
tering a prey expects the prey to display a conspicuous red colour
with probability 0.09, its surprisal when seeing the red colour will be
Iog(%) = 2.42 nats, where a nat is the unit of information based on
natural logarithms (or, equivalently, measured in bits when consid-
ering the logarithm in base 2, Iog2<$) = 3.47 bits). Conversely, it
1_;09) = 0.09 nats if the predator does not see the red

colour. In the extreme, a certain event, p(y) = 1, brings no surprise

will be Iog(

(see Figure 1).

2.3 | Bayesian surprise

In Bayesian inference, the distribution of probability P(x), called the
prior, corresponds to an organism's prior beliefs about the state x of
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FIGURE 1 Surprisal of an event in function of its probability.

an aspect of the world it does not have direct knowledge of. Such
states are called hidden states. Hidden states can be represented
by continuous variables, for example when they represent the es-
timated size of an object, or discrete variables, when only a finite
set of values is considered. For example, a predator approaching
a prey may associate a probability p (a number between 0 and 1)
to the belief that the newly encountered prey is profitable to eat
(where x refers to its hidden state, i.e. its profitability) such that
p = P(x = profitable). The predator's belief that the prey is unprofit-
able is therefore 1 — p = P(x = unprofitable), as the probabilities of
all states (‘profitable’ and ‘unprofitable’) must sum (or integrate) to
one (Appendix S1). This probability p reflects the uncertainty of the
predator about the environment, here about the true profitability of
the prey. To perform Bayesian inference and update its prior belief
in the light of new observations y gathered through its senses, the
organism needs a generative model, that is a way to generate predic-
tions about the hidden states of the world x given observations y.
Such a generative model is implemented through a likelihood P(y| x),
which provides a (probabilistic) mapping between hidden states (x)
and observations (y). For example, a new observation y may arise
from seeing the red colour displayed by a potential prey, which may
decrease the predator's belief that the prey is profitable if the preda-
tor's generative model associates red coloration with unprofitability
(Figure 2).

The crucial point in Bayesian inference is to capture a change
of belief using a general updating rule provided by Bayes' theorem
(Appendix S1). For each event x in the space of hidden states,

P(y| )P(x)

Pixly) = Py

@)

where P(x) is the probability distribution of beliefs before any new data
(prior), P(y| x) is the likelihood, which quantifies how likely any incoming
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FIGURE 2 A simple generative model for Bayesian inference and active inference. Here we consider a space with two possible hidden
states, x € {‘unproﬁtable‘, 'proﬁtable'} and two possible observationsy € {‘red colour’, ‘no red coIour'}. The prior distribution gives the
predator's prior belief about the possible state of an incoming prey, while the likelihood expresses how the predator probabilistically predicts
what observation should be linked to what state (bar lengths not to scale). In Bayesian inference, once the predator sees the red colour

(y = ‘red colour’) it can update its prior belief into its posterior belief. In active inference, the prior has a deeper meaning as it provides the
organism's preferred states, which include its conditions for survival. In addition, active inference allows the organism to act so that its
percepts match its preferences. Accordingly, when seeing the red colour, the predator may change its belief, by modifying its prior, or change
its percepts, by moving away until encountering a prey that does not display the red colour (see Appendices S2 and S3 for the computation

of surprisal and Bayesian surprise).

data are under the hypothesis associated to the value x, and P(y) is
the marginal likelihood, the probability of the observation. Bayes' theo-
rem therefore provides P(x| y), which represents the organism's beliefs
after having observed data y and is called the posterior.

Itti and Baldi (2009) defined Bayesian surprise ‘as a measure of
how an organism's belief is modified by new observations. They rea-
soned that new observations do not bring any surprise if the belief of
the observer is unaltered, that is its prior belief equals its posterior
belief P(x| y) = P(x).

By contrast, new observations are surprising if the prior and pos-
terior differ. To measure the mismatch between prior and posterior
they used a measure of divergence between probability distribu-
tions from information theory, the Kullback-Leibler divergence (also
called relative entropy, Appendix S1):

D (Xl y) 1l PO) = Y pixly) log, (”%Oy)) @

x
where the sum is taken over all hidden states. In this formalism, the
Bayesian surprise brought by new observations is therefore quantified
by a principled measure of disparity between two probability distri-
butions, the prior and the posterior. Accordingly, Bayesian surprise

(Equation 4) measures the overall amount of belief updating after
making a specific observation whereas surprisal (Equation 2) measures
how unlikely that observation was given a distribution of probabilities
over all observations. Bayesian surprise is measured in ‘wows’ (Itti &
Baldi, 2009), where a ‘wow’ corresponds to a factor 2 between P(x| y)
and P(x), that is tolog, ( % ) = 1 with log taken in base 2. We provide
an illustration of the computation of Bayesian surprise in predator's
response to a prey defensive display in Section 3.

In the example provided in Figure 2, a predator has a
prior belief that a newly encountered prey is unprofitable of
P(x = unprofitable) = 0.1. After having seen the red colour displayed
by the prey, its belief is updated to P(x = unprofitable) = 0.9, and this
change between prior and posterior corresponds to a Bayesian sur-
prise Dy, (p(x| y = red colour) || p(x)) = 1.5 nats (see Appendices S2
and S3 for a derivation).

It is worth noting that the predator's change in belief is possi-
ble because its generative model strongly associates red coloration
with prey unprofitability (the association created through learned
experience or over evolutionary time-scales). If instead the predator
had no specific belief about profitability when seeing the red colour
(P(y = red colour| x = unprofitable) = P(y = red colour| x = profitable) = 0.5),
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Action
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FIGURE 3 Generative model and generative process. Schematics of the framework used in active inference. An organism's generative
model describes the way sensory data (observations) y could be caused by a physical process in the world, called a generative process.

The organism has no direct access to the real cause x* of its observations. It uses its observations to draw inferences about the possible
causes among a range of hypotheses x in its generative model. Ideally, the generative model captures the aspects of the generative process
relevant to the survival of the organism. Inference then leads the organism to act upon the world through actions u, which causes changes
in the world and, subsequently, novel observations. Perception and action are tied together in an inferential loop driven by the reduction of

surprise (technically, free energy).

it would not have changed its belief, and the same observation
would have led to no surprise, Dy (p(x] y = red colour) || p(x)) = 0.
This shows the importance of the generative model to convey the
relevant part of the true process at play in the world, called the gen-
erative process. Here, the generative process, to which the organism
has no access, corresponds to the real mechanisms x* underlying
the occurrence of red coloration in the potential prey (see Figure 3).
The information provided by Bayesian surprise is meaningful if the
organism's generative model reflects knowledge which is import-
ant for survival, for example the general association between red
coloration and unprofitability. The theory that brain functions im-
plement inference about the state of the environment through a
constant updating of its internal model is called predictive coding
and has received empirical support (Friston & Kiebel, 2009; Rao &
Ballard, 1999).

In Itti and Baldi (2009), an eye-tracking experimental paradigm
was used to explore the links between Bayesian surprise and visual
attention. The locations more likely to be associated with a greater
surprise in videos—for example where strong changes in colour con-
tent or motion happen—were derived using a computational neural
model of image processing. The authors found a good correlation
between these locations and the locations where human observ-
ers directed their gaze, concluding that uncertainty, as captured by
Bayesian surprise, attracts attention.

2.4 | Surprise in active inference

Active inference proposes a unifying principle to understand be-
haviour in which surprise plays the central role. This principle states
that an organism's behaviour results from a close coordination of
perception and action with the imperative of minimising surprise
(Friston, 2010; Parr et al., 2022). In this framework, the concept of
surprise is expanded beyond that of a mismatch with expectations.
Surprise is defined in reference to preferred sensory inputs (referred

to as preferred states) expressed as a probability distribution over a
range of possible sensory inputs, of which the preferred states are
associated with a higher probability. This distribution encapsulates
the essence of priors in adaptive behaviour: a prior corresponds to
the states favoured by the organism, which are adaptive and there-
fore include its conditions for survival. Surprising states, which differ
too much from the prior, are less likely to be pursued because they
pose a threat on the organism's integrity. For example, the distribu-
tion of preferences over temperatures for endotherms will peak at
an optimal temperature. Temperatures below or above that refer-
ence temperature will be associated with a lower ‘preference’ (prob-
ability) and hence a higher surprisal (Figure 1). Of central importance
for understanding behaviour, active inference expands the Bayesian
perspective of perception as inference by also including action to
minimise the surprise generated from inference. For example, when
sensing threatening temperatures, endotherms will act to return to
less surprising states (e.g. by physiological or behavioural changes).
By giving perception and action the aim to fulfil the same objective
of avoiding surprise instead of working in isolation (Friston, 2010),
active inference has the potential to offer a novel, more dynamic
perspective on predator-prey interactions. Active inference pre-
dicts that, when facing surprising states, organisms can change their
belief about the environment (perception) or/and act to sample the
environment until their perceptual input matches their expectations,
for example by orienting their gaze towards the surprising event to
gather more information on its nature or by simply moving away to
avoid a potential threat (action). In the above example of a preda-
tor seeing the red colour displayed by the prey, the predator faces
two options to minimise surprise: (1) changing its beliefs (preference)
about red coloration, which will decrease its surprise when next see-
ing the red colour to S(y = red colour) = 0.33 nats; (2) ‘acting on the
world’ by going away until sampling a prey that does not display the
red colour (action } u = go away in Figure 3), with associated surprise
S(y = no red colour) = 0.05 nats. This action will correspond to the
imperative of minimising surprise, which will maintain the predator
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in its preferred state of not having ingested a possibly harmful prey.
In any case, prey defences that elicit surprise have the potential to
change the behaviour of the predator.

When the probability distributions in the generative model are
more complex than in the example shown in Figure 2, the compu-
tations required to minimise surprise may become intractable. To
address this, active inference uses a more tractable proxy called free
energy, which is always greater than and approximates surprise (see
Appendix Sé). Active inference thus involves minimising free energy
through action and belief updating. Free energy can be decomposed
into key components relevant to cognition, such as pragmatic value
(exploitation) and information gain (exploration) (Friston et al., 2015;
Schwartenbeck et al., 2019).

2.5 | Adaptation and learning in active inference

The overarching principle guiding action and perception in active
inference, specifically the imperative to minimise surprise, extends
directly to learning. More explicitly, all the parameters of the gen-
erative models involved in active inference can be modified through
incremental changes as an organism acquires experience of its en-
vironment. These changes enable free energy to decrease after
repeated experiences with the environment (Friston et al., 2016).
Accordingly, the two central constructs of active inference, the
prior and the likelihood, can change through evolution and develop-
ment for inference through perception and behaviour to be adaptive
(Constant et al., 2018). The prior or distribution of preferred states,
P(x), should adapt to reflect the survival conditions of an organism
within its niche. On an ecological time-scale, some aspects should
not change upon encountering new experiences, for example the
narrow preference for a precise body temperature for endotherms.
However, other aspects might change to facilitate adaptive deci-
sions. For example, P(x) may include a broader acceptance of toxic
prey by predators when their energetic reserves are low, or alterna-
tive prey is scarce (Sherratt, 2003; Skelhorn, Halpin, & Rowe, 2016).
Similarly, the likelihood P(y| x) which maps the states of the world
to their predicted percepts should inform the organisms about how
percepts are likely to be linked to preferred or nonpreferred states
of the world. In the case of warning signals, for example, selec-
tion should favour likelihood functions that clearly express a link
between prey phenotypic traits (e.g. conspicuous coloration) and
unprofitability.

2.6 | Activeinference, ultimate and proximate
explanations for surprise

Tinbergen's framework, and the dichotomy between ultimate and
proximate explanations, have been central for understanding animal
behaviour (Bateson & Laland, 2013; Tinbergen, 1963). Because it
allows modelling at different time-scales, from evolutionary to in-
dividual real-time, active inference proposes a biologically plausible

: 669
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theory that applies to both ultimate (the imperative of avoiding sur-
prise for an organism to stay within its living requirements—optimal
body temperature, energy level, avoiding toxins, etc.) and proximate
(e.g. neural activity to encode surprise and implement changes in
beliefs, updates of synaptic connections underlying learning) pro-
cesses (Ramstead et al., 2018). The prior expectations and likeli-
hoods involved in inference are optimised at different time-scales,
the shorter time-scale for somatic changes (learning), and the longer,
evolutionary time-scale. Heritable priors are under selection pres-
sure to engender adaptive behaviour (Friston, 2010). We refer
to Ramstead et al. (2018) for a detailed correspondence between
Tinbergen's four levels of explanation (mechanism, ontogeny, adap-
tation and phylogeny) and the constructs in active inference. In the
next section, we will argue that both ultimate and proximate causes
have the potential to further our understanding of the role of sur-

prise in predator-prey interactions.

3 | ROLE OF SURPRISE IN ANTIPREDATOR
DEFENCE

In this section, we identify known types of antipredator defences
that match definitions of surprise and map those defences on the
predation sequence (Endler, 1991). Surprise-related aspects may be
found across the predation sequence including: (1) encounter, (2) de-
tection, (3) identification, (4) approach (attack), (5) subjugation and
(6) consumption (Endler, 1991). Defences that have the potential to
benefit from predator surprise take place mostly at the approach
and subjugation stages (Figure 4). Here, we focus on two categories
of such defences, which differ in the mechanism generating surprise:
(a) defences that involve a sudden change in prey appearance and
affect immediate predator responses and (b) defences that increase
prey unpredictability over repeated encounters and affect predator
learning and decision-making strategies. We explore the ways they
can affect predator behaviour and increase prey survival, specifically
illustrating how Bayesian surprise can be estimated in a prey defen-
sive display, and discuss how surprise can be understood within
the framework of active inference, with an illustrative simulation
of avoidance learning. See Table S1 for a detailed overview of anti-
predator defences that have the potential to elicit predator surprise,
and examples of how these defences are used by prey species.

3.1 | Defences thatinvolve a sudden change in
prey appearance

Many surprise-related antipredator defences involve a sudden
change in prey appearance or behaviour, which often elicits im-
mediate predator responses. Deimatic displays are a classic ex-
ample where prey respond to the approaching or attacking
predator with specific displays, which trigger an unlearned preda-
tor response causing it to slow or stop the attack (Drinkwater
et al.,, 2022). Prey using deimatic displays are commonly cryptic
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FIGURE 4 Examples of surprise-related prey defences along the predation sequence. (a) camouflage (background matching) in the frog
Pristimantis zeuctotylus (©Bibiana Rojas); (b) flash coloration in the blue-winged grasshopper Oedipoda caerulescens; (c) deimatic display and/
or hidden warning signal showing conspicuous coloration under an otherwise cryptic phenotype in the mountain katydid Acripeza reticulata
(©Kate Umbers); Millerian mimicry involving (d) viceroy Limenitis archippus and (h) monarch Danaus plexippus butterflies, which possess
different types of chemical defences; (e) iridescent coloration in the tansy beetle Chrysolina graminis; (f) deimatic display in the underwing
moth Catocala nupta; (g) putative deimatic display in the Colombian four-eyed frog Pleurodema brachyops (©Giovanni Chavez-Portilla),
involving eyespots and body inflation; (i) deflection markings in the Magdalena River tegu Tretioscincus bifasciatus (©Luis Alberto Rueda);

(j) false head in the red-banded hairstreak butterfly Calycopis cecrops; (k) distance-dependent pattern blending in the cinnabar moth Tyria
jacobaeae caterpillar: Cryptic when seen from afar, conspicuous at close range. Photographs with the blue frame denote cases of defences
whose relationship with surprise at a particular stage of the predation sequence is ambiguous (see Section 3.3 for further clarification). All
photographs obtained from Wikimedia Commons unless otherwise stated.

at rest and the displays include revealing previously hidden bright Surprise could also play a role in hidden warning signals where
colour markings, accompanied by specific movements and postures conspicuous colours are combined with camouflage and re-
(Drinkwater et al., 2022; Figure 4c,f,g). vealed only upon predator approach (Loeffler-Henry et al., 2023;
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Figure 4c), in iridescent coloration where the hue and intensity of
colours change depending on the viewing angle of the approach-
ing predator (Kjernsmo et al., 2022; Figure 4e), and in distance-
dependent pattern blending where the prey appear cryptic from
a distance and conspicuous at close range (Barnett et al., 2017,
2018; Figure 4k). All these defences include sudden changes in
sensory input and conspicuous components, which are atypical in
natural environments and evoke surprise (Penacchio et al., 2024).

The unexpected change in prey appearance may trigger a
predator's startle response. The startle response is defined as
an animal's reaction to the sudden appearance of a salient stim-
ulus and characterised by rapid onset and by causing an immedi-
ate interruption of any ongoing activity (Drinkwater et al., 2022;
Forrester & Broom, 1980; Koch, 1999). Behavioural patterns
associated with startle response include muscle contractions,
limb flexion and crouching, followed by a short period of immo-
bility, which makes it possible to distinguish the startle response
from the escape response, even though the two are often linked
(Forrester & Broom, 1980; Koch, 1999). Behaviours consistent
with the description of the startle response have been observed
in various predators in reaction to defences involving a sudden
change in prey appearance, though evidence is mostly limited to
avian species (Holmes et al., 2018; Ingalls, 1993; Kang et al., 2017;
Kim et al., 2020; Umbers et al., 2019). Investigating startle re-
sponses in other predator taxa therefore provides a promising
area for future research.

The adaptive significance of the predator's startle response
is to protect it from a potential threat, as the response is likely
to prevent injury and facilitate an escape (Koch, 1999). Startle
response may force predators to focus on a surprising stimulus
because it interrupts predator activity and is often followed by
the orienting response, a behavioural and cognitive response used
to gather information (Sokolov et al., 2002). The strength of the
orienting response is contingent on the amount of cognitive pro-
cessing dedicated to a stimulus (Kaye & Pearce, 1984). Since the
response strength can be measured as a frequency or duration
of specific behaviours (Kaye & Pearce, 1984), it could serve as a
proxy for quantifying surprise.

Although the startle response is innate and cannot be eliminated
(Koch, 1999), its intensity usually decreases through habituation
(Davis, 1970; Shettleworth, 2010), which can make the display less
effective across repeated encounters (Ingalls, 1993; Schlenoff, 1985).
How quickly the predators habituate to surprising displays, how well
and long displays are remembered, and how broadly they are gener-
alised may depend on several factors including prey abundance, dis-
play components, and the age, personality and previous experience
of the predators (Umbers et al., 2019).

Defences that involve a sudden change in prey appearance may
also trigger predators' escape responses (Drinkwater et al., 2022).
This is particularly the case for deimatic displays, which may cause
the predator to misclassify the prey as a potential threat (Skelhorn,
Holmes, & Rowe, 2016). For example, eyespots may resemble the
eyes of a larger predator (Cott, 1940; De Bona et al., 2015). A sudden
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display of eyespots by cryptic prey frequently results in predators'
recoiling, jumping back and moving away (Drinkwater et al., 2022).
This behavioural response has been observed in various pred-
ators, including birds (De Bona et al., 2015; Olofsson et al., 2013)
and mammals (Olofsson et al., 2013). Predator escape responses
can be also triggered by prey displays in nonvisual modalities, such
as sounds, which can be quantified in terms of Bayesian surprise
(Itti & Baldi, 2009).

The stimulus misclassification by a predator is particularly likely
when the display is highly surprising and requires a fast response
even though potentially incorrect given the signaller's true nature
(Trimmer et al., 2008). This might explain why some deimatic displays
are only deployed upon close contact with the predator (Umbers &
Mappes, 2015; Vallin et al., 2005; Figure 4) when there is maximal
surprise, and the perceived imminent threat is likely to elicit predator
escape response. Furthermore, some components of deimatic dis-
plays (such as sounds) are stronger at a closer distance (Drinkwater
et al., 2022). The initial escape response may be followed by subse-
quent prey inspection (Kang et al., 2017; Vallin et al., 2007). The lon-
ger the predator observes a potentially harmful prey without being
attacked, the less likely the display corresponds to a real danger
(Sherratt et al., 2023). The optimal latency to approach a potentially
dangerous prey decreases over repeated encounters in which the
prey proves to be harmless, as the predator's expectation changes
according to new observations (Sherratt et al., 2023), making the
display less effective. If deimatic displays involve a rapid increase
in apparent prey size, they may also trigger predator looming reflex,
that is evasive response to rapidly approaching large and potentially
dangerous objects (Drinkwater et al., 2022; Yamawaki, 2011). In this
case, the displays may also be most effective at a closer distance,
where the perceived increase in the stimulus size and the corre-
sponding predator surprise is maximised.

These defences may confer benefits to prey by reducing the
speed, or likelihood of an attack, giving the prey time to escape. Most
of our knowledge about the effects of surprise in prey defences on
predator behaviour, however, comes from experiments under labo-
ratory settings with artificial prey (Drinkwater et al., 2022). Only a
few studies have shown that surprising predators through defence
strategies such as deimatic displays can increase the survival of real
prey in encounters with avian (Umbers et al., 2019; Vallin et al., 2005)
and mammalian predators (Olofsson et al., 2012).

Figure 5 illustrates how the mathematical tools of Section 2
can be used for the empirical investigation of deimatism. It shows
how to estimate Bayesian surprise from a video of an artificial moth
that simulates a deimatic display. The computation is based on how
changes in luminance in the visual stimulus elicit changes in neuronal
activity in the visual system of an avian predator. This computation
can be generalised in different ways, for example, by considering the
colour content of the stimulus in addition to its luminance content.
As acknowledged in Itti and Baldi (2009), it is also possible to com-
pute Bayesian surprise for other modalities than vision, for example
acoustic stimuli. These measures of surprise are of direct interest as
they can be contrasted to and regressed against typical measures
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(d) Behavioural response
observation

+84 ms +126 ms

(b) Visual stimulus

still display onset

© Bayesian surprise
still disila‘ onset
+84 ms

FIGURE 5 Quantification of (Bayesian) surprise in an empirical experiment on deimatism. (a) Setting of the behavioural experiment using
a remote-controlled robotic moth model to test the responses of black-capped chickadees Poecile atricapillus towards the deimatic display of
Catocala moths (see Kang et al., 2017 for details). (b) Close-up of the artificial prey for the video frames before, at, and 42, 84 ms after display
onset. (c) Corresponding Bayesian surprise for the frames in (b) (after Itti & Baldi, 2009). Here Bayesian surprise is computed by considering
abstracted neural units that encode the likelihood of incoming data at each pixel location (reminiscent of retinotopic locations in the visual
system of the predator). The lighter the colour of a pixel, the greater surprise, as measured in ‘wows’ (see Appendix S5 for details). While
surprise is computed locally (at each retinotopic location), its effect on a predator (e.g. attracting its attention) is likely to reflect the average
surprise within specific areas of the scene. (d) Predator's behavioural response. Original video (see Video S1) courtesy of Changku Kang.

of predators' behaviour when facing prey defence such as rejection

rate, reaction time and latency to attack.

3.2 | Defences that increase prey unpredictability
across encounters

Surprise can also play a role in defences that may not involve sud-
den changes in prey appearance, but where prey profitability is dif-
ficult to predict across encounters. In this case, surprise is generated
by variation in prey defences at the subjugation and consumption
stages, which leads to changing contingencies between prey appear-
ance (e.g. warning signals) and unprofitability. In automimicry, the
intraspecific variation in unprofitability occurs, with individuals var-
ying in the presence, strength and/or type of their chemical defence
(Guilford, 1994; Speed et al., 2012; Svennungsen & Holen, 2007).
Variation in chemical defences is also observed across species that
share similar warning signals. This includes parasitic relations, such as
Batesian mimicry, where an undefended mimic resembles a defended
model species and increases predation on the model (Bates, 1862;
Lindstrom et al., 1997), and quasi-Batesian mimicry, where both spe-
cies are chemically defended but the less defended species acts in

a Batesian manner (Rowland et al., 2010; Speed, 1993). Variation in
defences also occurs in mutualistic Mullerian mimicry if the mim-
ics that share similar warning signals are equally defended against
predators but possess different defensive chemicals (Chouteau
etal., 2019; Figure 4d,h). Surprise may affect predator behaviourin a
way that could potentially change the mimetic relations of unequally
defended species from parasitic to mutualistic, leading to quasi-
Miillerian mimicry, where the presence of an undefended mimic
is beneficial to the model, or super-Midillerian mimicry, where the
model benefits more from a less defended mimic than from equally
defended one (Balogh et al., 2008; Speed & Turner, 1999).

Surprise generated by the mismatch between predator's prior
expectations and actual prey defences can increase predator un-
certainty about prey profitability and make the previous experience
less relevant, enhancing the rate of subsequent learning (Balogh
et al., 2008; Courville et al., 2006). Therefore, predators may learn
to avoid aposematic prey faster if prey individuals possess different
rather than identical chemical defences (Skelhorn & Rowe, 2005).
Using a modification of the Rescorla-Wagner model of associative
learning, Balogh et al. (2008) confirmed that variation in prey un-
palatability leads to a faster increase in predator attack inhibition
compared to a constant level of unpalatability. Fast learning to avoid
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prey with variable chemical defences may protect the predators
from ingesting a high dose of toxins in a situation when it is difficult
to predict the prey's toxin content (Skelhorn & Rowe, 2005). If the
predators learn to avoid the prey with similar appearance but vari-
able defence faster than the prey with the uniform defence, then
the Mullerian mimics that differ in their defensive chemicals may be
better protected than those that share the same chemical (Sherratt
et al., 2004; Skelhorn & Rowe, 2005). Likewise, faster avoidance
learning by predators may allow for the maintenance of intraspecific
variation in defence when individuals differ in their chemical profiles
(Speed et al., 2012).

Following the experience with defence unpredictability, pred-
ators may decide to avoid particular prey even if some individu-
als are undefended and prefer to consume moderately toxic prey
rather than prey which could vary from non-toxic to highly toxic
(Barnett et al., 2014). Again, this behaviour may help the preda-
tors to better control their toxin load, and minimising surprise over
successive encounters may represent the cognitive mechanism
that underpins this strategy. Active inference predicts that an in-
creased randomness in reward leads to a more conservative sam-
pling behaviour (Schwartenbeck et al., 2019). Predator avoidance
of prey with variable defences would allow for the persistence of
less defended and undefended individuals among defended prey
(Svennungsen & Holen, 2007) and benefit unequally defended mim-
ics (Balogh et al., 2008; Barnett et al., 2014).

Another way in which predators may respond to the unpredict-
ability of prey defences is the go-slow strategy (Guilford, 1994;
Holen, 2013). Instead of learning to avoid the prey with unpre-
dictable defences, predators may learn to approach and handle
such prey cautiously to avoid being harmed and to get more ac-
curate information about prey defences (Brower & Fink, 1985; He
et al., 2022; Skelhorn & Rowe, 2006). The proportion of prey sam-
pled and rejected by avian predators was highest at the moderate
frequencies of the defended prey, supporting the hypothesis that
this behaviour is linked to predator uncertainty (He et al., 2022).
Because the go-slow strategy allows predators to sample and re-
ject defended prey individuals, it may lead to selection against
less defended or undefended mimics (Guilford, 1994; Skelhorn &
Rowe, 2006).

3.3 | Other defences that may have the potential
to generate surprise

In camouflage, behaving in unexpected ways can enhance survivor-
ship. For example, when a prey has a choice of two patches to hide
in, it should not always hide in the patch where it is best concealed
because otherwise a rational predator will only search there. Instead,
the optimal solution for the prey is to reduce its predictability by oc-
casionally choosing the patch where it is less well concealed (Gal &
Casas, 2014; Nahin, 2007; Figure 4a).

Some of the defences that are typically deployed at early stages
of the predation sequence and affect prey detection, such as
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Eggé?ﬁfs;w Functional Ecology J—

iridescent coloration (Kjernsmo et al., 2020; Figure 4e) and flash dis-
plays (Sherratt & Loeffler-Henry, 2022; Figure 4b) involve a sudden
change in predator's visual input. These defences therefore include
a component of surprise (e.g. that can be quantified using Itti and
Baldi's (2009) framework to compute Bayesian surprise). How this
surprise-related component underwrites the effect of the defence
is not clear, however. One possibility is that the change in prey ap-
pearance may lead to predator confusion (Drinkwater et al., 2022).
Iridescent coloration makes prey detection more difficult, as it pro-
duces inconsistent shape cues and may thus work as dynamic disrup-
tive camouflage (Kjernsmo et al., 2020). In flash displays, otherwise
cryptic prey reveal conspicuous colour markings when fleeing from
predators, which gives an impression of the prey being conspicu-
ous (Sherratt & Loeffler-Henry, 2022) and makes the prey difficult
to find once it has settled (Loeffler-Henry et al., 2018). Here, the
effect of surprise may be linked to the prey seemingly disappearing
when it resumes its cryptic coloration. In contrast to deimatic dis-
plays, which are usually deployed at a closer distance (Drinkwater
et al., 2022), flash signals are more effective at longer distances,
when the predator is unaware of the prey's cryptic resting appear-
ance (Loeffler-Henry et al., 2021; Sherratt & Loeffler-Henry, 2022).

Some surprise-related defences may increase prey survival by
confusing the predator such that it does not know exactly where to
strike during an attack. For example, Murali (2018) found that human
‘predators’ were not able to catch the stimuli with dynamic flash col-
oration as frequently and accurately as stimuli whose colour did not
change or matched the background, suggesting that such colour
change may confuse the predator about the location of the prey. The
finding that the magnitude of this benefit depends on the unpre-
dictability of the prey movement (Murali & Kodandaramaiah, 2020)
suggests that this defence may include surprise. In erratic, ‘protean’
escape behaviour, unexpected rapid changes in prey escape tra-
jectory make it hard for a predator to predict prey movement and
follow the escaping prey (Humphries & Driver, 1970; Richardson
et al., 2018). The unpredictability of escape behaviour can be quan-
tified using surprisal (Moore et al., 2017). In addition, false heads
(Figure 4j) and deflective markings (Figure 4i) can make predators
misdirect their attacks and lead to failure to capture the prey that

is moving in an unexpected direction (Humphreys & Ruxton, 2018).

3.4 | Surprise and multiple defences

Finally, many prey species possess multiple defences that may be
deployed either simultaneously or sequentially (Caro et al., 2016;
Ruxton et al., 2018). One of the most intriguing questions about
multiple prey defences is what determines their co-occurrence in
particular prey and their timing relative to predator attack (Kikuchi
et al., 2023; Wang et al., 2019). Multiple defences seem inherently
surprising because in many cases predators cannot predict which
combinations of defences prey are likely to use. Each defence com-
ponent, for example a bright colour, leads to surprise because it elic-
its a percept that deviates from those typical in natural environments
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(low probability leading to high surprisal), and because it suddenly
modifies the distribution of probability over hidden states (Bayesian
surprise) in a way that does not match the predator's preferences
(higher free energy). Each defence component is therefore associ-
ated with neural activity signalling surprise, as prediction error and
belief updating (Friston & Kiebel, 2009). Surprise is likely to be en-
hanced by the co-occurrence of the defensive components, as is
often the case with multimodal percepts (Stein & Meredith, 1993;
Stein & Stanford, 2008). This can increase the time required for
information processing, and potentially result in sensory overload,
where the predator's perception system is overwhelmed by receiv-
ing more information than can be processed at one time (Hebets
& Papaj, 2004). The enhanced ability of multimodal or multicompo-
nent signals to surprise predators may have been a key factor in the
selection pressure leading to the evolution of this type of complex

signalling.

3.5 | Understanding surprise in predator-prey
interactions through active inference

Active inference offers a unifying perspective on all the aspects of
surprise in antipredator defences introduced so far. To understand
this, let us recall that in active inference: (1) surprise corresponds to
a deviation from preferred (expected) observations, and (2) behav-
iour follows the imperative of minimising surprise (or free energy).
In this framework, prey with traits that elicit unpreferred observa-
tions in predators are likely to be avoided. This concept is illustrated
in Figure 6, which presents a simulation of avoidance learning in
a bird encountering profitable and unprofitable prey with distinct
phenotypes. Here, the bird acts as an active inference agent, mean-
ing its behaviour follows the imperative of minimising free energy.
This corresponds to the need to secure food while avoiding toxins. In
this context, minimising free energy equates to minimising surprise,
where surprise arises from encountering unpreferred outcomes,
here hunger or sampling an unprofitable prey. See Appendix Sé
for general methods, and Figures S4 and S5 for two variants of this
simulation that illustrate modelling of dietary conservatism (Marples
et al., 1998) and the effect of the predator's learning rate in learning
the association between prey phenotype and profitability.

In terms of proximate mechanisms, active inference predicts ac-
curately the interruption of ongoing activity observed in the star-

tle response, followed by the orienting response (see Section 3.1).

In active inference, surprise triggers an update of beliefs about
the world, involving neural message passing between sensory-
processing units (‘bottom-up’) and higher-order neural areas encod-
ing beliefs about the world (‘top-down’) until a coherent state with
no prediction error is achieved (Friston & Kiebel, 2009). The stronger
the surprise, or mismatch with expectation, the more neural activity
and time are required for this update (Schwartenbeck et al., 2015).
The orienting response towards salient stimuli reflects the need to
gather information about the source of surprise. Multimodal signal-
ling further enhances surprise, increasing the cognitive load of the
updating process (see Section 3.4). In active inference, all these phe-
nomena lead to learning, where surprise drives belief updating, as in
the Rescorla-Wagner model. Active inference incorporates the lat-
ter model by showing how surprise triggers neural updates, minimis-
ing prediction errors and facilitating learning (Anokhin et al., 2024).

Active inference also effectively predicts predator behaviour
when facing prey unpredictability (see Section 3.2). For example,
when an organism encounters greater uncertainty about the like-
lihood of receiving a reward from an action, it tends to prioritise
sampling cues before directly pursuing the action (Schwartenbeck
et al., 2019). Similarly, the theory suggests that after an initial period
of sampling, called active learning, an organism will favour unam-
biguous states even if the average reward is similar (Schwartenbeck
etal., 2019). More broadly, active inference provides a computational
framework for exploring how environmental uncertainty and an or-
ganism's tendency to sample uncertain options influence the trade-
off between exploration and exploitation. This framework is similar
to those used in reinforcement learning (Sutton & Barto, 2018) but is
linked to the neurophysiology of cognition. The organism's genera-
tive model, which shapes its representation of the world and guides
behaviour, balances two components: one that drives information-
seeking and uncertainty reduction (exploration), and another that
favours the realisation of preferences (exploitation) (Schwartenbeck
etal., 2019).

The key concept for understanding how active inference can
address empirical questions in predator-prey interactions is com-
putational phenotyping. The behaviour simulated in Figure 6 is de-
termined by a set of parameters that define the generative model
guiding the predator's actions. Computational phenotyping involves
inverting the mapping from parameters to behaviour (see Parr
et al., 2022). In practice, this means we can extract these param-
eters from observed behaviours in empirical experiments, both at
individual and group levels (Schwartenbeck & Friston, 2016)—for

FIGURE 6 Active inference modelling of avoidance learning in a naive predator. A bird is trained to attack artificial prey items (paper
moths with pinned mealworms; Halpin et al., 2020). It then must repeatedly choose between two different prey types, ‘Prey Type A’ printed
with a conspicuous but not typical warning coloration and with a non-modified (profitable) mealworm, and ‘Prey Type B’, showing a typical
warning coloration and with a mealworm treated with quinine (unprofitable). We use the active inference framework to model avoidance
learning (see Appendix S6 for details). (a) Schematics of the experimental setting. (b-d) Example simulation of an active inference bird over
30 trials with, in (b), the action chosen by the bird among the three possible actions (‘Stay’, ‘Attack prey Type A’, ‘Attack prey Type B’; blue
dots) and probability beliefs for actions (darker shades indicate higher probability); (c) surprise at the end of each trial; (d) Bird's belief about
the profitability of Type A and B over time. The simulation is drawn from a generative model. Crucially, the process can be inverted to
recover a generative model from empirical behaviour—computational phenotyping, see text—which allows assessment of the role of surprise
in antipredator defence from the perspective of active inference (see Appendix S7 for details).
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instance, from the behaviour of each bird in an experiment like the
one simulated in Figure 6. When applied to preferences, this method
provides a numerical description of what each bird seeks or avoids
(see Appendices S6 and S7 for details). Computational phenotyp-
ing can be applied to any component that defines active inference
agents, including learning (Figure 6d) and the exploration-exploita-
tion trade-off (Schwartenbeck et al., 2019). Although so far used to
study human behaviour (see Parr et al., 2022), model-based data
analysis in active inference holds significant potential for deepening
our understanding of predator-prey interactions, particularly when

surprise is involved.

4 | CONCLUSIONS AND FUTURE
DIRECTIONS

The mismatch between predator expectations and the information
presented by a prey can generate surprise, which can influence pred-
ator decisions and behaviours and ultimately affect prey survival.
We have shown numerous ways in which prey defences can elicit
surprise, introduced metrics by which to measure surprise in preda-
tors, and explained why and how considering the concept of surprise
is essential in interpreting predator responses to prey defences, al-
though the field remains ripe for continued research.

Metrics to quantify surprise are not well resolved among differ-
ent sensory modalities and across divergent predator species. The
field would benefit greatly from a more thorough understanding of
both the predator and prey perspectives related to surprise and its
influence on decisions and behaviour. For example, how prey decide
to deploy surprising defences, how predators process novel infor-
mation and under what conditions predators take risks to continue
a predation attempt even if their expectations are not met versus
when they reject a potential prey. Similarly, we need a better under-
standing of whether surprising defences can elicit the same reaction
in different taxa of predators, or if reactions and behaviours differ
and are predator taxon specific. Another question is whether preda-
tor individual traits (such as personality) play a role in their reactions
to surprise in prey defences.

Understanding the timing of surprise in the predation se-
quence would further clarify when and under what conditions
prey choose to deploy defences which change predator expecta-
tions, and how this affects the strength of predator response to
surprise. Likewise, we lack a clear understanding of the relation-
ship between surprise and multiple defences. Further research is
needed to understand which sequentially deployed defences pre-
cede and follow the surprise-generating defences, and which com-
binations of simultaneous defences are most effective in eliciting
predator surprise.

Habituation may attenuate the effects of surprise in two
ways. First, in terms of when surprising displays are triggered in
prey over repeated interactions with predators. Second, in the ef-

fect of surprising prey displays on experienced predators whose

expectations may have altered to include what were previously
surprising prey displays. Unfortunately, we still know relatively
little about predator habituation to surprising elements in prey
defences, especially under field conditions, mainly because of
the difficulties of observing surprise-involving interactions and
subsequently following individual predators to collect additional
observations.

Active inference offers a general, principled framework to un-
derstand cognition and behaviour, which links together perception

and action with the objective for an animal to minimise surprise,

BOX 1 Outstanding questions on the role of
surprise in predator-prey interactions

e Q1. Do the defences that involve a sudden change in
prey appearance elicit stronger predator surprise if they
are timed just before or when the predator makes con-
tact with the prey compared to being deployed earlier in
the encounter?

e Q2. Do predators habituate at a similar rate to surpris-
ing defences in different modalities (e.g. visual versus
acoustic)? Can multimodality of display components
protect surprising defences from habituation?

e Q3. How broadly do predators generalise over surpris-
ing defences? Can polymorphism in a salient defence
component prevent habituation? Can imperfect mimetic
species similarly take advantage of this to prevent ha-
bituation which could explain their persistence?

e Q4. What types of defence unpredictability (such as var-
iation in quality versus quantity of defence chemicals)
can enhance predator avoidance learning and/or lead to
an ‘unpredictability aversion’?

e Q5. Since the distribution of preferences used in active in-
ference is shaped by a general preference for what is typi-
calin natural environments, the stimuli that create surprise
are likely to differ from the typical stimuli in the environ-
ment. Would it be possible to predict the characteristics of
prey defences that would elicit maximum surprise relative
to predator environment and perception? Can we find a
common underlying principle for the design of surprising
prey defences in terms of degree of difference from the
most common stimuli in natural environments?

e Q6. Can the effects on predators of the different types
of surprise elicited by prey defences be unified under
the imperative of minimising surprise from observations

in active inference?

We discuss in Appendix S7 how the frameworks proposed
in this study, in particular active inference, may be ap-

plied to tackle these questions.
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that is the mismatch between current observations and those cor-
responding to its preferred states, which reflect evolutionary ad-
aptation. When confronted with surprising observations an animal
faces two possibilities: altering its beliefs such that they agree with
current observations, or modifying its behaviour until updated infor-
mation is in line with prior beliefs or preferences. Both these pillars
of active inference can benefit prey because they would entail an
interruption of predator attack and/or a change in the predator sam-
pling strategy. As such active inference provides a promising avenue
for better understanding the role of surprise in predator-prey inter-
actions. Because it applies to different time-scales—from real-time
encounters throughout ontogeny, to evolutionary time-scales—and
is associated with clearly defined plausible neural mechanisms, ac-
tive inference can address each of Tinbergen's four levels of inquiry
for understanding animal behaviour. Analysing data from empirical
experiments using active inference models and computational phe-
notyping could provide a unified account for the cognitive ecology
of surprise, from fundamental aspects in adaptive behaviour such
as the trade-off between exploitation and exploration, to the tim-
ing of defence deployment in predator-prey interactions, to predic-
tions about the neurophysiology of startle and escape responses. In
Box 1, we outline what we see as key questions concerning the role
of surprise in antipredator defences.
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