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Herbicide glyphosate efficiently inhibits growth of pathogenic 
Prototheca algae species, suggesting the presence of novel 
pathways for the development of anti-algal drugs
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ABSTRACT Prototheca are ubiquitous algae and occasional pathogens of humans and 
animals. While rare, the infection is often fatal and treatment options are limited to 
antifungals with low efficiency. Here, using growth curve assays, we demonstrate that 
five pathogenic species of Prototheca (P. blaschkeae, P. wickerhamii, P. cutis, P. ciferrii, P. 
bovis) were fully inhibited by 50–100 μg/mL of herbicide glyphosate, suggesting novel 
pathways that can be considered for anti-algal drug development.

IMPORTANCE Prototheca are algae frequently found in the environment that occasion­
ally cause infections in humans and animals. Although these infections are rare, they 
are often deadly for immunocompromised patients. Considering the rising ambient 
temperatures that promote algal bloom and a growing number of immunocompromised 
patients globally, such cases are likely to increase and will require efficient medica­
tions. Currently, the treatment is limited to antifungals that affect algal and animal 
membranes alike at concentrations close to toxic. Here, we hypothesized that targeting 
a pathway that is present in plants but not animals may be a new approach to the 
development of novel anti-algal compounds with high efficiency and lower toxicity. 
In this proof-of-principle study, we found that herbicide glyphosate, which targets the 
shikimate pathway found in plants but not in animals, efficiently inhibits all five tested 
pathogenic Prototheca, suggesting that the shikimate pathway may be a promising 
target for anti-algal drug development.

KEYWORDS Prototheca species, protothecosis, fungal-like pathogens, anti-algal, 
glyphosate, shikimate pathway

P rototheca species are achlorophyllic algae from the family Chlorellaceae, closely 
related to green algae of the Chlorella genus (1). They are frequent colonizers of 

soil and aqueous environments, as well as animal intestines (2), and have been isolated 
from farms, pasture soils, and human sewage (1 and references therein). Several species 
have been described as opportunistic pathogens of humans and animals: P. wickerhamii, 
P. cutis, P. bovis (formerly P. zopfii genotype 2), P. ciferrii (formerly P. zopfii genotype 1), and 
P. blaschkeae (3–6). Although the infection in humans is considered to be rare and about 
the half of all cases have a cutaneous presentation, disseminated infection in immuno­
compromised patients is associated with a particularly poor outcome with over 50% 
death rate (7), and the cases have been increasing globally (8). Initially assumed to be 
yeasts, Prototheca infections are still treated with antifungals amphotericin B and azole 
drugs, which are often used at concentrations close to toxic (2). Therefore, more effective 
drugs are urgently needed. Indeed, several novel therapeutic options for protothecosis 
have been proposed, such as development of less toxic derivatives or formulations of 
amphotericin B (9, 10), re-purposing of existing antibiotics (11) and antifungals (12), 
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nanoparticles (13), essential oils (14, 15), as well as a fungicide (16). Glyphosate is a 
popular herbicide that targets the shikimate pathway present in plants, unicellular 
parasites, fungi, and bacteria (17) and was also patented as an antimalarial compound 
(18). Notably, this biochemical pathway is absent in vertebrates, including humans, 

FIG 1 Growth curves of the five Prototheca species tested against glyphosate (A) and amphotericin B 

(B). POS, positive control (0 µg/mL glyphosate); NEG, negative control; OD628, optical density at 628 nm. 

Bars are ±SD of the mean. Inhibitory concentrations (determined as the lowest concentration at which 

OD628 values at the final 72 h time point were equal to or below those at time 0) are in bold.

TABLE 1 Minimum inhibitory concentration for glyphosate and amphotericin B derived from the growth 
curves and determined as the lowest concentration at which optical density values at the 72 h time point 
were equal to or below those at time 0

Species Glyphosate, µg/mL Amphotericin B, µg/mL

P. blaschkeae 100 >32
P. cutis 50 32
P. wickerhamii 100 32
P. ciferrii 50 >32
P. bovis 100 32
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which results in low overall toxicity of glyphosate (19). Considering that protothecans 
are algae, we hypothesized that herbicide glyphosate may be efficient at supressing 
their growth. To test this, we performed growth curves of five Prototheca species in a 
range of glyphosate and amphotericin B concentrations. Briefly, strains were streaked 
from cryostocks on Sabouraud dextrose agar (SDA) (Oxoid, UK) and grown aerobically 
for 48–72 h. Throughout all experiments, P. blaschkeae P30, P. wickerhamii P4, and P. 
cutis DSM 22,084 P31 were incubated at 28°C, while P. bovis SAG 2021 P26 and P. ciferrii 
SAG2063 P23 were grown at 37°C. Individual single colonies were inoculated into 10 mL 
Sabouraud medium (Oxoid, UK) (three replicates per strain) and cultured for 48–72 h 
with shaking. When the cultures reached the optical density of 0.8 at 628 nm (OD628), 
they were diluted twofold with fresh Sabouraud medium, and 100 µL was used to 
inoculate 96-well polystyrene F-bottom plates (Sarstedt GmbH, Germany) containing 
100 µL of the drug to achieve the final inoculum concentration of approximately 1–5 
× 105 CFU/mL. Additionally, cultures were serially diluted (101–104) and plated (100 µL) 
on SDA, incubated for 72 h and had their CFU/mL counted. Glyphosate, 40% aqueous 
solution (Sigma-Aldrich Chemie GmbH, Germany) was twofold diluted in Sabouraud 
medium in the range of 12.5–1,600 µg/mL. As glyphosate is known to acidify media at 
high concentrations, pH was controlled with pH indicator strips (Merck KGaA, Germany) 
and adjusted with 5 M NaOH to neutral, when necessary. Amphotericin B (E434-100 
mg, Amresco Inc, USA) was diluted twofold in Sabouraud medium in the range of 1–
32 µg/mL. Plates were incubated in a plate reader (Synergy HTX; BioTech Instruments, 
Germany), where the growth was followed at OD628 at 5 h intervals for 72 h. The 
OD628 values of six replicates for each time point were averaged and plotted using 
GraphPad Prism 8. GRcalculator (20) was used to calculate glyphosate’s half maximal 
inhibitory concentration (IC50), the concentration of drug when it produces its maximal 
effect (Einf) and area under the curve (AUC) values using the traditional sigmoid normal 
methodology. The growth curves revealed efficient inhibition of all tested Prototheca 
strains by glyphosate at the 50–100 µg/mL concentration range (determined as the 
lowest concentration at which OD628 values at the final 72 h time point was equal to 
or below those at time 0) (Fig. 1A; Table 1), which is consistent with the lethal concen­
trations of glyphosate (50–100 µg/mL) for several freshwater phytoplankton species, 
including Chlorella (21), and minimum inhibitory concentration (MIC) (97.5 µg/mL) for 
the unicellular green chlorophyte Chlamydomonas reinhardtii (22), and considerably 
lower than MIC for Enterobacteriaceae (10–80 mg/mL) (23, 24). The inhibitory concentra­
tions of glyphosate were in the similar range of those for the antifungal amphotericin B 
(32 µg/mL) (Fig. 1B; Table 1), which is used for the treatment of protothecosis but showed 
more consistent inhibition among the tested Prototheca species and a lower tendency for 
regrowth than amphotericin B (Fig. 1 and 2). Drug efficacy parameters at the 72 h time 
point also showed a potent inhibition by glyphosate, with P. blaschkeae, P. bovis, and P. 
ciferrii displaying particularly low IC50 values (18.9, 19.4, and 20.7 µg/mL, respectively), 
while P. cutis and P. wickerhamii were somewhat less sensitive (35.2 and 60.8 µg/mL, 
respectively) (Table 2). Nonetheless, all tested species had an order of magnitude lower 
IC50 than those of Chlorella spp. (25). The inhibitory effects of glyphosate on Prototheca 
spp. may be explained by the presence of the shikimate pathway, the target of glypho­
sate (26, 27). Low acute toxicity of glyphosate (no observed adverse effect level [NOAEL] 
in dogs is 53 mg/kg bw per day) (28) is credited to the absence of this metabolic pathway 
in animals. Conversely, the toxicity of amphotericin B, the front-line drug for treatment of 
human protothecosis, is attributed to its effects on mammalian membranes that contain 
sterols (the therapeutic target for amphotericin B), which limits the administration dose 
to 0.7–1 mg/kg/day (29). Our proof-of-principle study is the first to our knowledge 
to investigate the effects of a herbicide on pathogenic Prototheca spp. and suggests 
the presence of biochemical pathways that may be a promising target for the develop­
ment of anti-algal drugs with low toxicity in animal cells. Future studies are needed 
to determine the exact mechanism of action to facilitate the design of target-specific 
molecules.
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FIG 2 Growth curves of the five Prototheca species in the presence of glyphosate at inhibitory 

concentrations and amphotericin B at inhibitory concentrations (P. cutis, P. wickerhamii, and P. bovis) or the 

highest tested concentrations (P. blaschkeae, P. ciferrii). POS, positive control (0 µg/mL glyphosate); NEG, 

negative control; OD628, optical density at 628 nm. Bars are ±SD of the mean. Inhibitory concentrations 

were determined as the lowest concentration at which OD628 values at the final 72 h time point were 

equal to or below those at time 0.
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