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Abstract

Feline chronic enteropathy is a poorly defined condition of older cats that encompasses chronic enteritis to low-grade
intestinal lymphoma. The histological evaluation of lymphocyte numbers and distribution in small intestinal biopsies is crucial
for classification and grading. However, conventional histological methods for lymphocyte quantification have low interobserver
agreement, resulting in low diagnostic reliability. This study aimed to develop and validate an artificial intelligence (Al) model
to detect intraepithelial and lamina propria lymphocytes in hematoxylin and eosin-stained small intestinal biopsies from cats.
The median sensitivity, positive predictive value, and Fl score of the Al model compared with the majority opinion of ||
veterinary anatomic pathologists, were 100% (interquartile range [IQR] 67%—100%), 57% (IQR 38%-83%), and 67% (IQR
43%—80%) for intraepithelial lymphocytes, and 89% (IQR 71%—100%), 67% (IQR 50%—82%), and 70% (IQR 43%—80%) for lamina
propria lymphocytes, respectively. Errors included false negatives in whole-slide images with faded stain and false positives in
misidentifying enterocyte nuclei. Semiquantitative grading at the whole-slide level showed low interobserver agreement among
pathologists, underscoring the need for a reproducible quantitative approach. While semiquantitative grade and Al-derived
lymphocyte counts correlated positively, the Al-derived lymphocyte counts overlapped between different grades. Our Al model,
when supervised by a pathologist, offers a reproducible, objective, and quantitative assessment of feline intestinal lymphocytes
at the whole-slide level, and has the potential to enhance diagnostic accuracy and consistency for feline chronic enteropathy.
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Feline chronic enteropathy (FCE) is a common cause of mor-
bidity and mortality in old cats.'* Histologic quantification and
localization of lymphocyte infiltrates in small intestinal biop-
sies is an integral part of distinguishing chronic enteritis from
low-grade intestinal lymphoma and to assess the severity of the
condition.'* However, healthy cats and cats with FCE can have
similar histologic characteristics, and criteria for separating
inflammation from low-grade intestinal lymphoma are conten-
tious.!* In addition, multiple studies have demonstrated low
interobserver agreement for pathologists grading of lympho-
cyte infiltrates in cats, despite the use of standardized semi-
quantitative grading schemes.? The inherent low reproducibility
of histologic grading undermines the statistical power of
research studies and contributes to skepticism among clinicians
regarding the utility of biopsies for the diagnosis of FCE.
Recent advancements in whole-slide imaging and artificial
intelligence (Al) have facilitated the development of Al models
for histopathology.> Convolutional neural networks, the most
common type of Al algorithm for advanced image analysis,
have shown promise in improving the reproducibility of histologic

evaluations in diagnostic practice.> AI models for histopathol-
ogy can be employed at the image level to predict a diagnosis
(image classification tasks), at the object level to identify
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Figure |. Model design. Two distinct artificial intelligence models
were iteratively trained. Between training rounds, intermediate
versions underwent tuning using a separate set of slides. If tuning
results were unsatisfactory, training sizes were increased or
hyperparameters were adjusted. Once tuning set performances
were deemed satisfactory, the models were finalized and applied to
manually outlined sections of small intestine in the test set slides.
Analysis results were merged during postprocessing. Performance
was validated at the lymphocyte level and concordance with
pathologist grades was assessed at the whole-slide image (WSI) level.

WSl-level
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Lymphocyte-level
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specific image elements (object detection tasks), or at the pixel
level to predict a label for each pixel (segmentation tasks).!* In
contrast to image level Al models and semiquantitative grading
by a pathologist, object detection models and semantic seg-
mentation models enable the extraction of quantitative features
from histology slides. This allows the identification of histo-
logic patterns and facilitates the integration of histology results
into multimodal analyses.

The objective of this study was to develop and validate an
Al model to quantify intraepithelial and lamina propria lym-
phocytes in hematoxylin and eosin (H&E)-stained small intes-
tinal biopsies from cats. The ultimate purpose of the model is to
enhance the diagnostic accuracy and consistency of histologic
diagnoses for FCE by providing a reproducible, objective, and
quantitative assessment of feline intestinal lymphocytes at the
whole-slide level.

Materials and Methods
Model Design

To quantify intraepithelial and lamina propria lymphocytes, we
developed 2 separate models and merged the model outputs
(Fig. 1): a “cell detection” model that utilized object detection
with instance segmentation to detect lymphocytes and identify
lymphocyte nucleus boundaries, and a “mucosal compartment”
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Figure 2. Case material. Randomly selected slides were, after
excluding inadmissible slides, partitioned into training, tuning, and
test sets.

model that used semantic segmentation to classify pixels into
epithelium, lamina propria, intestinal lumen, or other. In a post-
analysis step, lymphocytes were then classified as intraepithe-
lial or lamina propria lymphocytes depending on whether the
center of a lymphocyte was located within the epithelium or
lamina propria. Both models were strongly supervised convo-
lutional neural networks, developed using Aiforia create
(Helsinki, Finland). Settings and versions are detailed in
Supplemental Table S1.

Case Material

The Al models were developed and tested using retrospectively
obtained feline small intestinal biopsies that were submitted for
clonality testing to the Leukocyte Antigen Biology Laboratory
at the School of Veterinary Medicine, University of California
Davis between 2010 and 2020. A total of 383 cases from 11
different laboratories were sampled and 1 H&E-stained slide
per case was randomly selected for digitization (Fig. 2). Cases
were included regardless of diagnosis, biopsy type, or slide
quality. Table 1 contains a summary of the original diagnoses
(based on histology, immunohistochemistry, and clonality
assessments) for slides included in the training, tuning, and test
sets. Supplemental Table S2 contains signalments and original
diagnoses for all cases in the study. Cases where slides were
missing, lacked small intestinal tissue, or failed scanning were
excluded (n = 50). The remaining slides (n = 333) were divided
into training (124 slides), tuning (104 slides), and testing (105
slides) sets. The optimal tuning and test set sizes were deter-
mined based on a small pilot study that evaluated performance
variability across slides (data not shown). The number of train-
ing slides were chosen based on the model performance in the
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Table I. Original diagnosis by histology, immunohistochemistry, and clonality.

Training

Tuning Test

T-cell lymphoma, small®
T-cell lymphoma, intermediate/large®

79/124 (64%)
3/124 (2%)

741104 (71%)
3/104 (3%)

75/105 (71%)
3/105 (3%)

Enteritis 40/124 (32%) 27/104 (26%) 26/105 (25%)
Normal - - 17105 (1%)
Nondiagnostic 2/124 (2%) - -
?Includes presumed and emerging T-cell lymphomas.
®Includes large granular lymphocyte lymphomas.
100 100 - 100
Quality
Laboratories B Adequate quality
- 1 B Faded stain
754 ) 75+ 75+ B Out of focus
o} 3 g Q B Crushed tissue
3 B 8 Biopsy type 8 I Faded stain &
c 50 - 5 S 50 Full thick S 50 out of focus
S m6 3 Full thickness & | Facedsiain &
@ 7 @ Inc @ crushed tissue
o ) o o I Crushed tissue &
25 - 9 25 - 25 - out of focus
- B 10 Faded stain &
11 crushed tissue &
— out of focus
a °1 b 01 c 0-

Figure 3. Composition of the test set (n = 105). (a) Submitting laboratory. Randomly selected slides were stratified by submitting laboratory
resulting in a test set diverse in terms of origin. (b) Biopsy type. Slides were included in the study regardless of biopsy type. (c) Quality. Slides
were included in the study regardless of quality, and rescanning of whole-slide images were purposefully not attempted.

tuning sets. In each training and tuning set slide, a single region
of interest (ROI) per model was annotated. The ROIs were
selected by evaluating the small intestinal fragments for the
most complete wall layers, and if multiple fragments met this
criterion, one was randomly chosen. Detailed methodology for
set size calculation, ROI selection, and annotations are avail-
able in the Supplemental Materials. Examples of training anno-
tations and test set analysis results are provided in Supplemental
Figure S1. The test set whole-slide images (WSIs) were catego-
rized by a board-certified veterinary anatomic pathologist
(J.M.W.) based on stain quality (adequate vs faded), tissue
quality (adequate vs crushed), and image focus (adequate vs
out of focus). Submitting laboratory, biopsy types, and quality
features of the test set are presented in Fig. 3. Detailed criteria
for assessing the quality of the test set slides are provided in the
Supplemental Materials. Information regarding the number
and size of training and tuning set annotations for each model
is available in Supplemental Table S3.

Digitization

WSIs were generated at the Virtual Slide Scanning Facility,
School of Veterinary Medicine, University of California Davis
using an Olympus VS120 virtual slide microscope and a 40X
objective (0.17 um?/pixel). WSIs with suboptimal focus were
purposefully not rescanned. Raw WSIs in the Olympus VSI

format were deidentified and uploaded to Aiforia create
(Helsinki, Finland).

Statistical Software

All postanalysis processing, statistical validation, and visual-
izations were conducted using R programming language within
the RStudio integrated development environment.?** The cus-
tom R scripts were supported by a range of open-source pack-
ages for data science,’®?” data import and export,'*2%2® spatial
analysis,>*?! statistics,'® and visualization.*!!'822 All custom R
scripts used in this study are available at GitHub (https://github.
com/ucdavis/AlFeBx supplemental). An online random num-
ber generator was used for ROI selection during model devel-
opment (Supplemental Materials).®

Postanalysis Processing

To classify the lymphocytes as either “intraepithelial” or “lam-
ina propria,” output coordinates of both models were exported
and merged. Each lymphocyte was mapped to a mucosal com-
partment based on the location of the lymphocyte centroid. The
confidence score of lymphocytes mapped to a mucosal com-
partment was determined as follows. In addition to output coor-
dinates for Al-predictions, both models provided a confidence
score for every pixel/object that reflects the probability of the
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Figure 4. Workflow for reference lymphocyte identification. (a) Lymphocyte nuclei were annotated by | | pathologists (grey dots). (b) Individual
pathologist annotations were clustered into candidate lymphocytes (circles) based on a minimum distance threshold (see Supplemental Materials).
Clusters with six or more annotations consistent with the majority opinion were considered “reference lymphocytes” (solid circles). Clusters
with less than six annotations consistent with the minority opinion were considered “equivocal lymphocytes” (dashed circles). (c) For every
artificial intelligence (Al)-generated lymphocyte prediction, the distance to the nearest candidate lymphocyte centroid (x) was calculated (orange
arrows). If the closest candidate lymphocyte was a reference lymphocyte, and the distance was below a certain distance threshold, the Al-
generated lymphocyte prediction was considered a true positive (TP, green dot); the Al-generated prediction was considered a false positive (FP)
if the closest candidate lymphocyte was not a reference lymphocyte (FP1), or the distance was above the threshold (FP2). Reference lymphocytes
without an Al-annotation below the distance threshold from the centroid were considered false negatives (FN, red solid circle). Equivocal
lymphocytes (candidate lymphocytes with less than six contributing pathologists) without an Al-annotation below the distance threshold from
the centroid were considered true negatives (TN, green dashed circle). Note that true negatives in the data set only encompassed objects that

at least | pathologist annotated. Coordinates for objects that no pathologists annotated, were not available for documentation.

pixel/object belonging to a specific class. The confidence score
for a lymphocyte mapped to a mucosal compartment was cal-
culated by multiplying the confidence scores of the lymphocyte
with that of the respective mucosal compartment. This resulted
in a theoretical confidence score range between 0.25 and 1 for
each Al-generated lymphocyte prediction.

Model Validation at the Lymphocyte Level

The model was validated by comparing Al-derived lymphocyte
annotations with pathologist-generated lymphocyte annota-
tions. Eleven board-certified veterinary anatomic pathologists
were tasked with annotating lamina propria and intraepithelial
lymphocytes in one 5000 um?, randomly generated, validation
region per WSI of the test set (Supplemental Materials). The
pathologists, who had a median of 1 year of experience (range
<1 year to 18 years since board-certification), were from dif-
ferent diagnostic laboratories, contract research organizations,
or academic departments; had not participated in the develop-
ment of the AI model; and were blinded to case details, each
other’s annotations, and the AI results. Since the outline of
lymphocytes was unknown, lymphocytes were inferred by
aggregating the annotations from individual pathologists based
on spatial proximity (Fig. 4, Supplemental Figure S2).

Any cell that at least 1 pathologist had annotated was con-
sidered a candidate lymphocyte. Candidate lymphocytes were
considered “reference lymphocytes” if the majority of patholo-
gists (n > 6) agreed. Candidate lymphocytes were considered
“equivocal lymphocytes” if five or fewer pathologists agreed.
A true positive was defined as an Al-generated lymphocyte

prediction that was supported by a reference lymphocyte. A
false positive was defined as an Al-generated lymphocyte pre-
diction that was not supported by a reference lymphocyte. A
false positive was considered “unequivocal” if it was not iden-
tified by any pathologist. A false negative was defined as a ref-
erence lymphocyte that was not detected by the model. A false
negative was deemed “unequivocal” if all pathologists identi-
fied the reference lymphocyte. Equivocal lymphocytes that
were not detected by the model were classified as true nega-
tives (Fig. 4). Sensitivity (also known as recall), positive pre-
dictive value (PPV, also known as precision), and F1 scores
(harmonic mean of sensitivity and PPV) were calculated indi-
vidually for each validation region, averaged across the test set,
and reported as median and interquartile range (IQR) values.

To understand causes of error, unequivocal false negative
and false positive lymphocytes were classified by a board-cer-
tified veterinary anatomic pathologist (JMW) as caused by cell
detection model errors, mucosal compartment model errors, or
technical validation errors (mispredictions of cells located on
the boundary of the validation region or cases where precise
reference lymphocyte localization failed).

Interobserver Agreement Between
Pathologists at the WSI Level

Eleven pathologists semiquantitatively graded intraepithelial
lymphocytes as well as lamina propria lymphocytes and plasma
cells according to the 2008 World Small Animal Veterinary
Association guidelines.* The pathologists evaluated all sections
available in the WSI and provided a grade for intraepithelial
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Figure 5. Candidate lymphocytes categorized by number of contributing pathologists. Only candidate lymphocytes with six or more

contributing pathologists were used as reference lymphocytes.

Table 2. Lymphocytes per validation region.

Intraepithelial median (IQR)

Lamina propria median (IQR)

Annotations per pathologist®
Candidate lymphocytes®

Reference lymphocytes®
Al-generated lymphocyte predictions

2 (1-6) 1 (6-17)
7 (3-13) 22 (16-32)
2 (1-5) 10 (6-16)
4(2-8) 13 (7-20)

Abbreviations: Al, artificial intelligence; IQR, Interquartile range.
*Average number of lymphocyte annotations per pathologist.

®ldentified by aggregating individual pathologist annotations based on center distances.
‘ldentified as candidate lymphocytes to which a majority of the pathologists (6 or more out of | |) had contributed.

lymphocytes and a grade for lamina propria lymphocytes and
plasma cells, ranging from normal, mildly increased, moder-
ately increased, or markedly increased. Interobserver agree-
ment was examined across WSIs for each pair of pathologists
using weighted kappa with linear weights and 95% confidence
intervals (Cls) and Cohen’s kappa (with 95% CI).

Concordance of Al Model Quantification
and Pathologist Grades at the WSI Level

Concordance between the median pathologists’ grade and the
Al-model generated count was assessed descriptively.
Al-model generated counts for intraepithelial and lamina pro-
pria lymphocytes per 1000 um? were calculated individually
for each tissue fragment and aggregated for each WSI using the
median value.

Availability of Supporting Research Data

All supporting data, including WSIs and annotations, are avail-
able at Biolmage Archive (https://www.ebi.ac.uk/biostudies/
Biolmages/studies), accession number S-BIAD1129, DOI:
10.6019/S-BIAD1129.

Results

Model Validation at the Lymphocyte Level

To characterize model performance, we compared Al-generated
lymphocyte predictions against reference lymphocytes that
were identified based on a majority vote of eleven pathologists

(Fig. 4). Out of 3830 total candidate lymphocytes, less than
half (1659, 43%) were identified by the majority of patholo-
gists (n > 6) and used as reference lymphocytes (Fig. 5). The
proportion of lymphocytes identified by the majority of pathol-
ogists was similar for the lamina propria (1194/2735, 44%) and
the epithelium (465/1095, 43%). Of note, the median number
of reference lymphocytes per validation region was similar or
identical to the average number of annotations per pathologist
(Table 2), supporting the majority vote as a suitable method for
identifying reference lymphocytes.

The Al model identified more lymphocytes than there were
reference lymphocytes (Table 2). This was particularly true for
intraepithelial lymphocytes, where the average number of lym-
phocytes per ROI identified by the model was twice the num-
ber of reference lymphocytes. When ranked based on the
number of lymphocyte annotations per validation region, the
Al model performed similarly to the most annotation-generous
pathologists (Fig. 6). The frequency distributions of candidate
lymphocytes, reference lymphocytes, Al-lymphocyte predic-
tions, and pathologist annotations per validation region are
depicted in Supplemental Figure S3.

The Al model identified a higher proportion of reference
lymphocytes in the epithelium (median sensitivity 100%, IQR
67%—-100%) than the lamina propria (median sensitivity 89%,
IQR 71%—-100%) but also identified a higher proportion of
equivocal lymphocytes or nonlymphoid cells in the epithelium
(median PPV 57%, IQR 38%—-83%) than the lamina propria
(median PPV 67%, IQR 50%-82%) (Fig. 7a—c). The higher
sensitivity for intraepithelial lymphocytes was counterbalanced
by the higher PPV for lamina propria lymphocytes, resulting in
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Figure 6. Pathologists were ranked by how generously they annotated lymphocytes. A higher value indicates fewer lymphocytes per
validation region consistent with a cautious annotator, while a lower value indicates more lymphocytes per validation region consistent with a
generous annotator. The box represents the interquartile range (IQR) and the line inside the box indicates the median. The whiskers extend
to the smallest and largest value within 1.5 times the IQR from the first and third quartiles. The artificial intelligence model ranked among the
most annotation-generous pathologists for most validation regions. Al, artificial intelligence model; pOl—p| I, pathologists || I; Ref, reference

lymphocytes.

a similar Fl-score for intraepithelial lymphocytes (median
67%, IQR 43%—-80%) and lamina propria lymphocytes (median
70%, IQR 43%—-80%).

To explore the relationship between sensitivity and PPV at
different confidence thresholds, we calculated both parameters
across the range of encountered AI model confidence values
(Fig. 8). The increase in PPV observed with higher confidence
thresholds was modest compared with the decrease in sensitiv-
ity, indicating that raising the confidence threshold to improve
PPV comes at a high cost in sensitivity. Sensitivity and PPV of
the Al model for intraepithelial and lamina propria lympho-
cytes, calculated per validation regions grouped by slide stain
quality, tissue quality, image focus, and submitting laboratory,
are detailed in Supplemental Figure S4.

False positives were more frequent than false negatives for
both intraepithelial and lamina propria lymphocytes (Fig. 9).
False positives represented Al model predictions that were sup-
ported by no pathologist or a minority of pathologists (n < 6).
Conversely, false negatives represented lymphocytes that were
identified by most pathologists (# > 6) but not the model. Out
of 1118 false predictions, 223 (20%) were “unequivocally”
false meaning that either a model prediction was not supported
by any pathologist (unequivocally false positive) or a reference
lymphocyte that was identified by all pathologists was not pre-
dicted by the model (unequivocally false negative).

Unequivocal errors caused by the cell detection model were
more common than errors caused by the mucosal compartment
model (135/223, 61% vs 30/223, 14%) (Supplemental Figure

S5). In addition, some unequivocal errors were caused by nei-
ther model but were inherent to the validation strategy (57/223,
26%,; explained in more detail below). Most of the unequivocal
cell detection model errors were false positives (116/135,
86%), but the cell type that was identified as a lymphocyte by
the model could not be confidently determined in almost half
of the cases (56/116, 48%, Supplemental Figure S6). False
labeling of enterocyte nuclei (51/116, 44%) was a more com-
mon source of unequivocal errors than false labeling of goblet
cell nuclei (4/116, 3%) or plasma cells (2/116, 2%) (Fig. 10a,
Supplemental Figure S6). Only 19/135 (14%) unequivocal cell
detection model errors constituted false negatives (Fig. 10b).
Unequivocal false positives stemming from mucosal compart-
ment model errors represented instances where the epithelial/
lamina propria border was identified imprecisely by the model.
This resulted in intraepithelial lymphocyte being classified as
lamina propria lymphocyte or vice versa (Fig. 10c). For both
cell detection model errors and mucosal compartment model
errors, most unequivocal errors occurred in WSIs of subopti-
mal quality (Supplemental Figure S7). Suboptimal focus was
the most common quality issue for unequivocal mucosal com-
partment model errors, while faded staining was the most com-
mon quality issue for unequivocal cell detection model errors.
Validation errors comprised instances where lymphocytes were
positioned on the border of the validation region resulting in
disagreement about whether a lymphocyte was part of the vali-
dation region (Supplemental Figure S8a). These errors also
included instances where abutting or overlapping lymphocytes
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Figure 7. Performance metrics for the artificial intelligence (Al) model, calculated per validation region in the test set. Al-generated
lymphocyte predictions were compared with reference lymphocytes composed of the majority opinion (six or more) of eleven pathologists.
The box represents the interquartile range (IQR) and the line inside the box indicates the medians. The whiskers extend to the smallest and
largest values within 1.5 times the IQR from the first and third quartiles. (a) Sensitivity. The median sensitivity of the Al model, compared
with the reference lymphocytes, was higher for intraepithelial lymphocytes than for lamina propria lymphocytes in the validation regions of
the test set. (b) Positive predictive value (PPV). The median PPV of the Al model, compared with the reference lymphocytes, was lower for
intraepithelial lymphocytes than lamina propria lymphocytes in the validation regions of the test set. (c) Fl score (the harmonic mean of
sensitivity and PPV). The median F| score of the Al model, compared with the reference lymphocytes for the intraepithelial lymphocytes
and lamina propria lymphocytes were similar in the validation regions of the test set, reflecting a higher sensitivity for the intraepithelial
lymphocytes than the lamina propria lymphocytes, counterbalanced by a higher PPV for the lamina propria lymphocytes than the intraepithelial

lymphocytes.
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Figure 8. Positive predictive value (PPV) by sensitivity at different confidence thresholds. Median PPV and sensitivity for the artificial
intelligence (Al) model compared with the reference lymphocytes was calculated using the range of encountered Al model confidence values.
The increase in median PPV observed with higher Al model confidence thresholds was modest compared with the decrease in median

sensitivity.

precluded the unambiguous aggregation of pathologist annota-
tions into reference lymphocytes (Supplemental Figure S8b).
In addition, technical validation errors encompassed situations
where the distance between a model prediction and the nearest
pathologist annotation was marginally higher than the maxi-
mum threshold required for colocalization (Supplemental
Figure S8c). Notably, these technical validation errors are
inherent to the specific validation strategy we used, are not
reflective of the true Al model performance, and are not rele-
vant for scenarios outside of validation.

Interobserver Agreement Between Pathologists
at the WSI Level

Interobserver agreement at the WSI level revealed frequent and
marked disagreement in semiquantitative grades, with only
four instances of complete agreement amongst all 11 patholo-
gists (Fig. 11, Supplemental Figure S9). Two instances involved
a “normal” grade (both for intraepithelial lymphocytes), and
the other two pertained to a “marked” grade (1 each for intraep-
ithelial lymphocytes and lamina propria lymphocytes and
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Figure 9. Number of false negative (FN), false positive (FP), true negative (TN), and true positive (TP) artificial intelligence (Al)-generated
lymphocyte predictions when compared with reference lymphocytes. A small portion of false negative predictions consisted of reference
lymphocytes to which all pathologists (11/11) contributed (dark blue/orange). These are considered unequivocally false negatives. Similarly,
false positive predictions consisting of Al-generated lymphocyte predictions that did not align with any candidate lymphocyte, have zero
contributing pathologists, and are considered unequivocally false positives (gray).

plasma cells). These WSIs were characterized by a relatively
homogenous lymphocyte distribution across and within tissue
fragments. Conversely, 12 WSIs received all 4 grades for at
least 1 compartment. Most of these WSIs (10/12, 83%) were
characterized by heterogeneous lymphocyte distributions
within or across tissue fragments. Of the remaining 2 WSIs, 1
was a large cell lymphoma, and 1 was a small pinch biopsy
with villi in cross-section, presumably limiting diagnostic
interpretation. The interobserver agreement varied among indi-
vidual pairs of pathologists, often surpassing what would be
expected by random chance. When comparing agreement
between pathologist pairs across all WSIs to random chance,
the weighted kappa values ranged from no agreement (0.11,
95% CI [0.04, 0.17]) to moderate agreement (0.64, 95% CI
[0.53, 0.75]) (Supplemental Figure S10).

Concordance of Al Model Quantification
and Pathologist Grade at the WSI Level

The Al model-derived lymphocyte counts increased with higher
median semiquantitative grade but there was a substantial over-
lap of lymphocyte counts between WSIs with different grades
(Fig. 12).

Discussion

This study aimed to improve the accuracy and reproducibility
of quantifying lymphocytes in intestinal biopsies of cats with
FCE using Al. Histopathologic assessment of lymphocyte infil-
trates in small intestinal biopsies is used to classify cases as
chronic enteritis or low-grade intestinal lymphoma, and to
grade the severity of the disease.'* Given that the definition of
and histomorphologic criteria for chronic enteritis and low-
grade intestinal lymphoma in cats are controversial, we delib-
erately did not attempt to diagnose these conditions as a model
endpoint. Instead, we focused on improving the quantification

of lymphocytes, an important part of the histopathological
assessment that suffers from low interobserver agreement and
poor reproducibility.?’ This is the first study that utilizes Al to
quantify lymphocytes in intestinal biopsies from cats with
FCE.

We believe that supporting the pathologist with Al-based
detection tools and quantitative data is a more rewarding and
transparent strategy than replacing the pathologist with a black-
box model. Previous studies have utilized Al to diagnose FCE,
either based on histologic assessment on a WSI level,'® or com-
plete blood counts and biochemistry values.! However, safe
implementation of Al models into clinical practice requires
verification of model output by human experts, who are ulti-
mately responsible for diagnostic decisions.?* The accuracy of
our model output can be gauged by assessing the Al-predictions
superimposed as an image mask onto an H&E-stained slide. If
the performance of the model is deemed inadequate, the pro-
vided quantitative data can be ignored. A recent study applied a
similar approach for the diagnostic grading of ulcerative colitis
in humans.!"” The model-derived data correlated well with
human semiquantitative grades and illustrates the potential
benefit of Al-based cell quantification.'”

Validation of our model by comparing Al-generated lym-
phocyte predictions to pathologist annotations in small valida-
tion regions revealed a low interobserver agreement for
lymphocyte annotations between pathologists. Only 12% of all
candidate lymphocytes were identified by all 11 pathologists
and only 43% were annotated by the majority of annotators,
suggesting that distinguishing lymphocytes from other cell
types is not straightforward. The inconsistent identification of
lymphocytes has been recognized as a source of interobserver
variability for grading of tumor-infiltrating lymphocytes in
human breast cancer but not for grading of feline intestinal
biopsies.!> Given the high variability of annotations across
pathologists in this study, determining the level of agreement
required for identifying reference lymphocytes presented an
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Figure 10. Examples of unequivocal errors in validation regions of test set. Small intestine, cat. Hematoxylin and eosin-stained validation
regions (left). Artificial intelligence (Al)-predictions and candidate lymphocytes (right). Solid fills represent Al-predictions (yellow, epithelium;
light blue, lamina propria; orange; intraepithelial lymphocytes; dark blue, lamina propria lymphocytes). Circles represent candidate lymphocytes,
with color intensities representing number of contributing pathologists (orange circles, candidate intraepithelial lymphocytes; blue circles,
candidate lamina propria lymphocytes). Black points represent center coordinates for individual pathologist annotations. (a) Examples of
unequivocal false positives. The validation region contains 12 unequivocally false positives (Al-predictions not annotated by any pathologists)
targeting epithelial nuclei (arrows). These are categorized as cell detection model errors. (b) Examples of unequivocal false negatives.
The validation region contains two unequivocal false negatives (candidate lymphocytes annotated by all pathologists, arrows). These are
categorized as cell detection model errors. The stain quality in this whole-slide image was categorized as faded. (c) Examples of unequivocal
errors categorized as mucosal compartment model errors. The validation regions contain two candidate lymphocytes that all pathologists
annotated as lamina propria lymphocytes, but the Al model predicted as intraepithelial lymphocytes (arrows). Note that the validation region
also contains || candidate lymphocytes where pathologists disagreed on classification as intraepithelial lymphocytes and lamina propria
lymphocytes (asterisks). This slide was categorized as having suboptimal focus quality.
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Figure 11. Interobserver agreement between pathologists at the whole-slide image (WSI) level. 105 test slides were graded by |1
pathologists for intraepithelial lymphocyte infiltration (normal, mild, moderate, or marked) and lamina propria lymphocyte and plasma cell
infiltration (normal, mild, moderate, or marked). The “set size” scale depicts how many WSIs received at least | grade of the categories
depicted. The “intersection size” scale depicts how many WSils in total received combinations of the grades indicated by the interconnected
dots. (a) Intraepithelial lymphocytes. All pathologists agreed on the grade for three WSils. Six WSls received all four grades. (b) Lamina propria
lymphocytes and plasma cells. All pathologists agreed on the grade for | slide. Six WSIs received all four grades.

Intraepithelial lymphocytes Lamina propria lymphocytes and plasma cells
i :
7.5
< ¢ 154
>
o
o ¥
g 5.0 ( .
3 3 101
> ®
(&) )
o
< : } S
® o
§, 2.5 Y ) | 1
et @ - 5
: f :
T !
0.0 A T

Normal Mild Moderate  Marked Normal Mild Moderate  Marked
Semiquantitative grade

Figure 12. Concordance of artificial intelligence (Al) model quantification and pathologist grade at the whole-slide image (WSI) level. Al-
derived lymphocyte counts, calculated per tissue fragment and averaged across the WSI correlated positively with, but displayed a substantial
overlap between, the median pathologists’ grades.
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important question. The higher the required level of annotator
agreement, the fewer the identified reference lymphocytes, the
higher the model sensitivity but the lower the PPV. Requiring
complete annotator agreement for reference lymphocyte deter-
mination yielded a high sensitivity but low PPV and likely
underestimated the true number of lymphocytes. Instead, we
used a majority decision for reference lymphocyte determina-
tion, which balanced sensitivity and PPV and represents a well-
established method for resolving rater discrepancies.® An
alternative approach could have been to use immunohisto-
chemistry-labeled lymphocytes as the reference standard, but
this was deemed infeasible for a study of this size. In addition,
this strategy might have resulted in greater discrepancies
between the number of reference lymphocytes on one hand and
the number of Al-predicted or human-annotated lymphocytes
on the other hand as, in the authors’ opinion, humans tend to
underestimate the number of CD3-positive cells based on H&E
slides.

Most false positives observed in our study stemmed from the
model detecting equivocal lymphocytes, that is, lymphocytes
that were identified by fewer than six pathologists. A less con-
servative validation approach might have classified these as true
positives. Of greater concern were unequivocal false positives,
that is, Al-predicted lymphocytes that were not annotated by
any pathologist. Enterocyte nuclei, plasma cells and goblet cell
nuclei were identified as sources of confusion within this cate-
gory. A comprehensive evaluation of the Al model’s ability to
differentiate between different cell types would require the
annotation of various cell types, a task beyond the study’s scope.

Instances of unequivocal false negatives were infrequent in
our study and primarily occurred in WSIs with faded stain or
suboptimal focus. Our model development strategy leveraged a
data set comprised of slides from several diagnostic laborato-
ries, deliberately incorporating variations in image quality and
refraining from rescanning WSIs with suboptimal focus. In
contrast to the common practice of developing Al models on
extensively filtered and cleaned data sets,?* our approach aimed
to maintain diversity. This decision potentially resulted in a
lower test performance but will likely mitigate the expected
performance drop when transitioning the model into clinical
use. With that said, faded stain, while common in archived case
material, is not expected in routine diagnostic practice, and out
of focus WSIs would have triggered rescanning in a diagnostic
laboratory. Limiting the use of the Al model to biopsies of ade-
quate stain quality and image focus is expected to reduce the
frequency of false-negative predictions and improve sensitivity
without the need for further model improvement.

For this study, we calculated performance metrics separately
for each validation region and averaged the results across the
test set. In contrast to pooling of results from all validation
regions and calculating a single value for each performance
metric, our strategy allows for the assessment of performance
variability between different WSIs. Choosing smaller validation
regions and more slides rather than bigger regions and fewer
slides was motivated by providing a sufficiently small area for
manual annotation while maximizing the diversity of the tissue

assessed. However, this strategy likely contributed to the vari-
ability in performance observed between different WSIs.

When comparing semiquantitative grades between patholo-
gists for WSIs, we observed a low interobserver agreement. The
current World Small Animal Veterinary Association guidelines
for histopathologic grading of intestinal biopsies do not account
for variation between different tissue fragments or within a sin-
gle tissue fragment.* Therefore, pathologists may either choose
to base their grade on the most severely affected region of a
slide or provide an average grade across all tissue fragments.
Our findings are in line with a previous study that utilized the
same grading scheme and found comparable interobserver
agreement.”® In our study, WSIs with low interobserver agree-
ment often exhibited heterogeneous lymphocyte distributions
while WSIs with high interobserver agreement, exhibited rela-
tively uniform lymphocyte distribution. These findings parallel
a study on factors influencing interobserver agreement for
tumor-infiltrating lymphocytes in human breast cancer, which
highlights the heterogeneity in lymphocyte distribution as an
important contributing factor.'> Although our model provides
lymphocyte counts per tissue fragment, this resolution is likely
insufficient to detect small foci of increased lymphocyte densi-
ties. Consequently, future iterations of this model should aim to
provide lymphocyte densities in a more granular fashion.

Comparison of semiquantitative grades to Al-derived lym-
phocyte counts on a whole-slide level revealed substantial
overlap of lymphocyte counts between different semiquantita-
tive grades. The current World Small Animal Veterinary
Association guidelines are widely used as a gold-standard for
assessing the severity of lymphocyte infiltrates in feline small
intestinal biopsies, but their application for this study came
with several major limitations. First, existing grading schemes
are semiquantitative, while our Al model provides quantitative
output with no established rules for translation. Second, these
grading schemes were established for duodenal biopsies only,
whereas our Al model was trained on various small intestinal
segments. Third, the lamina propria grading scheme combines
lymphocytes and plasma cells whereas our model is intended
for quantifying lymphocytes only. In addition to these limita-
tions inherent to the grading scheme, shortfalls of our model
likely contributed to the overlap of lymphocyte counts between
different semiquantitative grades. First, the Al-generated lym-
phocyte counts were inaccurate for some WSIs. Second,
Al-generated lymphocyte counts represented an average across
a tissue fragment while pathologists may have considered
regional differences in density of lymphocyte distribution.
However, the fact that pathologists provided divergent grades
for the same slide in the great majority of cases suggests that
the limitations of semiquantitative grading, and a human’s abil-
ity to accurately and reproducibly estimate cell numbers might
be a bigger source of error than the shortfalls of our model.

The most recent American College of Veterinary Internal
Medicine guidelines for diagnosing and distinguishing low-
grade intestinal lymphoma from lymphoplasmacytic enteritis in
FCE, expands on previous recommendations for grading small
intestinal biopsies in cats."® The guidelines emphasize the
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importance of evaluating apical to basal gradients, heterogene-
ity of lymphocyte distribution, and formation of intraepithelial
clusters, features that cannot be assessed by our current model. '3
Future work should focus on improving the consistency of the
Al model performance across different WSIs and the spatial
resolution of the model. While Al-based identification of spatial
histological patterns might not resolve the conundrum of dif-
ferentiating lymphoma from enteritis, it may enable the discov-
ery of associations between histological features and molecular
alterations, clinical signs, response to treatment, or outcome.

This model is only intended for use in specific scenarios and
requires output verification by the user. This model was trained
and validated using archived cases that were submitted for
clonality testing, which affected the composition of our data
set. To maximize generalizability, we included cases regardless
of the original diagnosis. Specimens primarily consisted of
small intestine with infiltrates of small lymphocytes, variable
numbers of plasma cells, and no or mild architectural distor-
tion. Cases with large or atypical lymphocytes, nonlymphoid
inflammation, or necrosis were markedly underrepresented in
the study material. In addition, B-cell lymphomas and nonlym-
phoid neoplasms were lacking, and no cases exhibited autoly-
sis. Given the underrepresentation of cases with large or
atypical lymphocytes, the model is not expected to perform
well in cases of nonsmall cell lymphoma. Adequate perfor-
mance for detecting large or atypical lymphocytes would
require additional training. Consequently, the model is expected
to perform best on biopsies that are compatible with a diagno-
sis of lymphoplasmacytic enteritis or small cell lymphoma.
Caution should be exercised when applying the model to other
conditions and technical confounders such as faded stain or out
of focus areas need to be considered. In addition, convolutional
neural networks are sensitive to variations in image properties,
and we anticipate that the performance of the Al model will
decrease when applied to cases from laboratories not included
in the training data or to WSIs generated by different slide
scanners.” Consequently, the model is intended for a “human-
in-the-loop” use scenario where the output is verified by a
skilled pathologist by examining the lymphocyte mask on an
H&E overlay. If these conditions are met, our data suggests that
the current model is sufficiently reliable to provide a reproduc-
ible and quantitative evaluation of small lymphocytes at a
whole-slide level, an outcome that a pathologist cannot cur-
rently achieve.
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