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Artificial intelligence can be trained to predict
c-KIT-11 mutational status of canine mast cell
tumors from hematoxylin and eosin-stained
histological slides
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Marc Aubreville?”; and Robert Klopfleisch'

Abstract

Numerous prognostic factors are currently assessed histologically and immunohistochemically in canine mast cell tumors
(MCTs) to evaluate clinical behavior. In addition, polymerase chain reaction (PCR) is often performed to detect internal tandem
duplication (ITD) mutations in exon || of the cKIT gene (c-KIT-11-ITD) to predict the therapeutic response to tyrosine kinase
inhibitors. This project aimed at training deep learning models (DLMs) to identify MCTs with ¢-KIT-11-ITD solely based on
morphology. Hematoxylin and eosin (HE) stained slides of 368 cutaneous, subcutaneous, and mucocutaneous MCTs (195 with
ITD and 173 without) were stained consecutively in 2 different laboratories and scanned with 3 different slide scanners. This
resulted in 6 data sets (stain-scanner variations representing diagnostic institutions) of whole-slide images. DLMs were trained
with single and mixed data sets and their performances were assessed under stain-scanner variations (domain shifts). The DLM
correctly classified HE slides according to their ¢-KIT-11-ITD status in up to 87% of cases with a 0.90 sensitivity and a 0.83
specificity. A relevant performance drop could be observed when the stain-scanner combination of training and test data set
differed. Multi-institutional data sets improved the average accuracy but did not reach the maximum accuracy of algorithms
trained and tested on the same stain-scanner variant (ie, intra-institutional). In summary, DLM-based morphological examination
can predict ¢-KIT-1-ITD with high accuracy in canine MCTs in HE slides. However, staining protocol and scanner type influence
accuracy. Larger data sets of scans from different laboratories and scanners may lead to more robust DLMs to identify c-KIT
mutations in HE slides.
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Currently, hematoxylin and eosin (HE) stained slides are the
gold standard to diagnose and prognosticate canine mast cell
tumors (MCTs). After identification of a canine cutaneous
MCT, tumor grading according to either Patnaik (3 tiers: grade
1,2, or 3), Kiupel (2 tiers: high grade or low grade), or both are
performed.!3!182233 In addition, prognostic evaluation of MCTs
often includes the detection of ¢-KIT gene mutations, specifi-
cally in exons 8 and 11.2

The most commonly analyzed c-KIT mutation of canine
cutaneous MCTs is the internal tandem duplication (ITD) in
exon 11 (c-KIT-11-ITD), which results in a constitutive c-KIT
activation leading to uncontrolled cell growth and more aggres-
sive behavior.?”*% Besides the general prognostic value of
information on the mutational status, confirmation of a muta-
tion of the c-KIT gene is required by the European Medicine
Agency before treatment of dogs with non-resectable MCTs
with the tyrosine kinase inhibitor Masitininb.!> Polymerase

chain reaction (PCR)-based ¢-KIT mutation analysis is, how-
ever, not performed routinely as it represents a supplementary
cost and time factor for the dog owners. In addition, mutation
analysis is often performed on formalin-fixed and
paraffin-embedded material, which is usually affected by DNA
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Table I. PCR status of internal tandem duplication (ITD) in exon || of ¢-KIT, and 2-tier and 3-tier grades of 368 canine mast cell tumors.

KIT-11 ITD Positive Negative
n 195 173
(53%) (47%)
Kiupel grade High Low High Low
N 121 74 97 76
(62.1%) (37.9%) (56.1%) (43.9%)
Patnaik grade 3 2 2 | 3 2 2 I
N 55 66 69 5 35 62 70 6
(28.2%) (33.8%) (35.4%) (2.6%) (20.2%) (35.8%) (40.5%) (3.5%)

fragmentation. This can lead to decreased sensitivity of the
PCR, the current gold standard method for ¢-KI/7-11-1TD
detection.>!7:%3

Recent studies in human oncology have shown that deep
learning models (DLMs) are able to predict the genotype of
tumors solely based on their microscopic morphology in HE
slides. For instance, a machine-learning algorithm was trained
to predict 10 specific driver mutations in human non-small cell
lung carcinoma,®?! as well as mutations in human gliomas, "’
colorectal cancer,' and liver cancer® among others obtaining
classification accuracies ranging from 0.64 to 0.93.6819:21

This study evaluated the use of DLMs for the prediction of
¢-KIT-11-ITD mutations in MCTs based on HE slides. For this
study, we curated a data set of digitized HE slides of canine
MCTs with PCR-confirmed ¢-KIT-11-ITD genotype. To reflect
the diversity of HE-staining variants and scanner types in diag-
nostic institutions, each slide was stained in 2 different labora-
tories and scanned with 3 different scanning devices, resulting
in 6 different data sets (stain-scanner variants). DLMs were
either trained and evaluated on the same data set they were
trained on (same stain-scanner variant, in-domain) or trained
on 1 data set and tested on unknown data sets (different stain-
scanner variants, out-of-domain).

Material and Methods

Tumors

The study set was composed of 368 HE-stained histologic
slides of MCT biopsies that had been submitted to the Veterinary
Diagnostic Laboratory of Michigan State University between
2018 and 2022 for routine diagnostics with histologic grading
as well as a prognostic MCT panel including molecular evalu-
ation of ¢-KIT-11-ITD and c-KIT exon 8. The 2-tier'® and
3-tier?? histological grades were gathered from the histopathol-
ogy reports (274 cases) or attributed retrospectively (94 cases)
by 3 veterinary pathologists (2 board-certified and 1 resident).
In the event of non-unanimity, the majority grade was attrib-
uted. For the 3-tier grading system, if all pathologists assigned
different grades, grade 2 was attributed. In this study, all MCTs
were graded equivalently to cutaneous MCTs, even though stud-
ies mention applying the 2-tier grading scheme to subcutaneous
MCTs with modified cut-off values.”**3° There are no specific
recommendations regarding the grading of mucocutaneous

MCTs. Further information, such as breed, age, sex, localiza-
tion of the MCT, involvement of the different skin layers (der-
mal, subcutaneous, or mucocutaneous), and surface condition
(ulcerated or intact) could be collected in most of the cases
(Supplemental Table S1). Thick tissue sections (several cell
layers in fine focus), tumors with extensive necrosis, speci-
mens in bad conservation state, damaged slide glass, presence
of artifacts under the coverslip (air bubbles, tissue folds), and
missing information about the ¢-KI7-11-ITD status were exclu-
sion criteria. One hundred ninety-five MCTs with ITD in ¢-KIT
exon 11 and 173 ¢-KIT non-mutated MCTs (negative in exons
11 and 8) were selected (Table 1).

PCR-Based Identification of ITD Mutation
in the ¢-KIT Exon I|

The PCR-based identification of ¢-KI7-11-ITD was done at the
Michigan State University as part of the MCT panel for routine
diagnostics, as previously described.?? Exon 11 of the ¢c-KIT
gene was amplified by PCR using the primer pair at the 5’ end
oftheexon11(PE1:5’-CCATGTATGAAGTACAGTGGAAG-3’
sense, bp 1657-1680 of exon 11) and the 5° end of intron 11
(PE2: 5’>GTTCCCTAAAGTCATTGTTACACG-3’ anti-sense,
nucleotides 43—66 of intron 11).* A Mutation Detection PCR
Kit (Qiagen) was used for the amplification.* PCRs were pre-
pared in a 25 pl total reaction volume, with 10 to 25 ng of
extracted DNA; 5 pmol of each primer; 0.5 U of Taq poly-
merase (Invitrogen, Carlsbad, California); and final concentra-
tions of 80 pm deoxynucleoside triphosphate, 2 mM MgCl,, 20
mM Tris-HCI, and 50 pl of KC1.2? Cycling conditions were as
follows: 95°C for 5 minutes; 35 cycles at 95°C for 30 seconds,
58°C for 90 seconds, 72°C for 30 seconds; followed by 68°C
for 10 minutes.’ PCR products were visualized on the QIAxcel
Capillary Electrophoresis System (Qiagen).’

Staining Variants

To investigate the dependency of the mutational status predic-
tion on the staining protocol, we applied 2 stains (stains A and
B) to the same tissue slice, which was de-stained in-between
the staining steps, using the following protocol:

HE—stain A—Paraffin sections of all tumors were origi-
nally stained at Michigan State University Veterinary
Diagnostic Laboratory using the Ventana HE600 system from
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Figure |. Impact of stain and scanner type on whole-slide image quality. Images of the same tumor sample with 6 stain-scanner variants. Mast
cell tumor, skin, canine, and hematoxylin and eosin. Each image represents the same portion of the same tumor in a different stain-scanner
variant. Images produced by the different scanners (comparison in the same row) show differences in color calibration and a slight difference
in sharpness/depth of field. The staining differs in colors shades/intensity and in the amount of visible detail (comparison in the same column).

Scanner |, Aperio CS2; Scanner 2, Aperio AT2; Scanner 3, 3DHistech Pannoramic Il.

Roche. Dry deparaffinization, rehydration, and HE staining
were run according to a standard protocol!'! and using Ventana
HE 600 Hematoxylin (Roche, 07024282001) and Ventana HE
600 Eosin (Roche, 06544304001).

De—staining—After scanning with all 3 scanners (see
below), all slides were manually de-stained by immersion in
xylol for at least 2 days before carefully manually removing the
coverslip. They were then transferred into a 1% hydrochloric
acid alcohol solution until all color was washed away and sub-
sequently rinsed with distilled water.

HE—stain B—De-stained slides were then manually dipped
in Mayer’s hemalaun (Carl Roth, T865.3) for 8 minutes, rinsed
in tap water, dipped in eosin (Diagonal, 2C140.01000) for 30
seconds, and shortly rinsed in tap water before going through
an ascending alcohol series (1 minute in 70%, 80%, 96%, and
100% alcohol, respectively).

Scanners and Stain-Scanner Variant Data Sets

All 368 slides were scanned twice (first with stain A and con-
secutively with stain B) on 3 different scanners, Aperio CS2
(scanner 1), Aperio AT2 scanner (scanner 2), and 3DHistech
Pannoramic II scanner (scanner 3). This resulted in 6 distinct
stain-scanner variant data sets of whole-slide images (WSIs)

(Fig. 1): data set A1 (stain A + scanner 1), data set A2 (stain A
+ scanner 2), data set A3 (stain A + scanner 3), data set Bl
(stain B + scanner 1), data set B2 (stain B + scanner 2), and data
set B3 (stain B + scanner 3).

Deep Learning Model

The DLMs were trained to predict the c-K/7-11 mutational sta-
tus of canine MCTs based on their respective WSI. The aim
was to discriminate between “c-K/7-11 mutated” and “non-
mutated” tumors.

In this work, this was done by formulating the problem as a
multiple-instance learning task. In multiple-instance learning,
the WSI is split into image patches (instances), which together
are commonly referred to as a bag of instances.'® The informa-
tion from all patches is extracted and combined to form a pre-
diction for the entire bag, rather than making predictions for
each individual patch.

The clustering-constrained attention multiple-instance
learning (CLAM) algorithm by Liu et al** was used for multi-
ple-instance learning (Fig. 2). To optimize computational effi-
ciency in the first step, the WSIs were segmented into tissue
and background, using the segmentation approach described by
Liu et al.?® Afterwards, the area of the slide with sufficient
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Figure 2. Schematic representation of the clustering-constrained attention multiple-instance learning (CLAM) algorithm that was used for
multiple-instance learning. Whole-slide image classification is performed in several steps within the CLAM pipeline used in this study. First,
the tissue is segmented from the background and the tissue region is separated into M patches. For each patch, a patch feature embedding
is computed, which encodes the visual information contained in the respective patch. To aggregate these patch embeddings into a slide
embedding, the deep learning model computes a single attention score for each patch that is directly related to the importance of the
respective patch for the model’s prediction. By combining the patch embeddings with their respective attention scores, the overall slide
feature embedding is computed. This feature embedding is representative for the whole slide and is used for the final prediction of the

mutational status.

tissue coverage was divided into a set of M patches. Then, a
feature embedding was computed for each patch, encoding the
visual information of the respective patch into a 1-dimensional
vector. To combine the information from all patch embeddings
into a slide embedding, the DLM calculated an attention score
for each patch embedding, which directly indicated the patch’s
importance to the model’s prediction. If a patch did not contain
meaningful information, it received an attention score close to
zero and was discarded from the aggregation of the overall
slide embedding. The slide embedding was a 1-dimensional
vector that contained characteristic information of the entire
slide. Finally, this embedding was used to predict the muta-
tional status (Supplemental Materials).

Model Training Scheme

To increase the statistical informativeness of the results, the DLMs
were trained using a 10-fold Monte-Carlo cross-validation.

This means that for each of 10 consecutive runs, the data set
was randomly split into disjoint training, validation, and test
splits. Within each split, 85% of the slides were used as training
and validation data, and 15% were used as test data. In each
run, a model was trained on the training data. To ensure compa-
rability across experiments, the same 10 trainings, validations,
and test splits were used for the experiments across all data set
variants.

To assess the DLM performances, the following metrics
were used: classification accuracy, mean classification accu-
racy (MCA), and area under the receiver-operating characteris-
tic curve (AUC). The classification accuracy measures the
number of correct predictions divided by the total number of
predictions made in 1 test run. MCA is the mean accuracy
achieved across 10 different test folds. AUC is used to measure
the DLM’s ability to correctly distinguish the labels across all
possible probability thresholds. Furthermore, the sensitivity
and specificity of the models were assessed. All metrics were
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Figure 3. Schematic representation of the model training approaches for the detection of internal tandem duplication mutation in exon | |
of ¢-KIT. Two general training strategies were applied for deep learning model (DLM) training. Training sets composed of single data sets (left
side) and training sets composed of equal shares of 5 of the 6 data sets (right side) were used. The resulting trained DLMs were consecutively
tested on all 6 data sets to assess their performances in-domain (tested on a data set from the same stain-scanner variant) and out-of-domain
(tested on a stain-scanner variant that was not included in the training). w/o, without; Scanner |, Aperio CS2; Scanner 2, Aperio AT2; Scanner

3, 3DHistech Pannoramic Il.

computed using the scikit-learn python package (v. 1.3.0).2 All
DLMs were trained until convergence as observed by the vali-
dation loss. Implementation details of the used model architec-
ture and training parameters can be found in the supplementary
materials.

Training Approach—Single Data Set

In a first approach, DLMs were trained using the training frac-
tion of the 6 data sets. Each DLM was then tested on the test
fraction of all data sets, resulting in 1 in-domain and 5 out-of-
domain tests (Fig. 3, left side). Subsequently, this approach was
referred to as single data set training. This simulated the fol-
lowing scenario: a pathology laboratory trains a model on its
own archive cases, uses it to test its own cases (in-domain), and
shares that model with other facilities to test their cases
(out-of-domain).

Training Approach—Mixed Data sets
(“Leave-One-Out Approach”)
To assess whether the training with a more diverse data set

leads to a more robust prediction of the ¢-KIT-7/-ITD status,
DLMs were trained with combined training data sets composed

of 5 of the 6 original data sets, that is, leaving 1 data set out of
the training. The DLMs were then tested on the test fraction of
all data sets, resulting in 5 in-domain and 1 out-of-domain
training (Fig. 3, right side). In the following sections, we will
refer to this approach as mixed data set training. This simulated
the following scenario: several pathology laboratories contrib-
ute to a collaborative data set to train a model on variably pro-
duced archive cases, use it to test their own cases (in-domain),
and share that model with further facilities to test their cases
(out-of-domain).

Test for Independence of Diagnostic Variables

To assess the association between the model’s predictions and
clinical-pathologic variables like the 2-tier or 3-tier tumor
grade, we used the chi-square test of independence. This is a
statistical method for assessing the associations between vari-
ables of different scales. To lower the chances of misinterpret-
ing 2 variables as associated, we applied Bonferroni correction
since we conducted multiple statistical tests simultaneously.
Bonferroni correction was applied separately for each of the
clinical-pathologic variables. Given that 7 tests were conducted
for each variable, the resulting P-values were divided by this
number. The assessment only considered models trained on a
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Table 2. Mean classification accuracies and area under the curve with respective standard deviations of c-KIT-11 internal tandem
duplication mutation predictions with deep learning models (DLMs) trained on single data sets.

Trained on Data Set

Tested on Data Set Al A2 A3 Bl B2 B3
Al MCA 0.75* = 0.08  0.63° = 0.04 0.68 * 0.08 0.59 = 0.04 0.61 = 0.04 0.62 * 0.07
AUC 0.83 = 0.04 0.77 = 0.07 0.76 = 0.07 0.71 = 0.07 0.75 + 0.06 0.70 = 0.04
A2 MCA 0.74 = 0.05 0.75 = 0.07 0.68 *= 0.05 0.71 = 0.05 0.70 = 0.04 0.68 * 0.04
AUC 0.80 + 0.05 0.84 + 0.06 0.82 = 0.04 0.79 = 0.05 0.81 = 0.05 0.77 = 0.4
A3 MCA 0.73 = 0.06 0.66 = 0.03 0.80 + 0.04 0.72 = 0.06 0.57 = 0.04 0.58 + 0.05
AUC 0.71 = 0.07 0.84 + 0.05 0.89 = 0.03 0.82 = 0.06 0.84 = 0.04 0.76 + 0.06
Bl MCA 0.63 *= 0.08 0.61 = 0.06 0.61 = 0.06 0.81 = 0.05 0.76 = 0.06 0.61 = 0.08
AUC 0.69 + 0.07 0.75 = 0.06 0.74 + 0.07 0.89 + 0.05 0.85 + 0.05 0.80 *= 0.06
B2 MCA 0.63 = 0.06 0.72 = 0.07 0.61 + 0.06 0.74 + 0.05 0.78 + 0.05 0.67 = 0.09
AUC 0.70 £ 0.07 0.79 *= 0.06 0.77 + 0.08 0.84 + 0.05 0.87 = 0.04 0.82 += 0.05
B3 MCA 0.65 = 0.07 0.58 + 0.04 0.54 + 0.08 0.75 + 0.05 0.59 + 0.03 0.87 += 0.05
AUC 0.75 = 0.06 0.77 = 0.07 0.59 = 0.08 0.84 + 0.04 0.83 = 0.04 0.94 + 0.03

Abbreviations: MCA, mean classification accuracy; AUC, area under the receiving-operating characteristic curve; A, stain A; B, stain B; I, scanner | (Aperio

CS2); 2, scanner 2 (Aperio AT2); 3, scanner 3 (3DHistech Pannoramic Il).

?Bold font = MCA of DLMs trained and tested on the same data set (in-domain).
®Regular font = MCA of DLMs tested on a different training data set from the one they were trained on (out-of-domain).

single data set to establish a direct link between training data
and DLM results. The pingouin python package (v. 0.5.3),’! a
statistical analysis package, was used to compute the chi-square
test.

Results

Data Set Composition

In total, 50 different dog breeds were represented in the data
set. The 10 most common breeds, accounting for 198 cases
(53.8%), were: mixed breed (20.1%), Labrador retriever
(12.8%), golden retriever (4.6%), boxer (3.3%), American pit
bull terrier (3.0%), Maltese dog (2.4%), Pug (2.4%), French
bulldog (1.9%), Boston terrier (1.9%), and Shih Tzu (1.4%)
(Supplemental Table S2). Breed information was unavailable
for 96 (26.1%) cases.

Of'the selected 195 c-KIT-11-ITD positive MCTs, 121 (62.1%)
were high grade and 74 (37.9%) were low grade (Table 1). One
hundred sixty-four MCTs (84.1%) were cutaneous, 18 (9.2%)
were subcutaneous, 6 (3.1%) were mucocutaneous, and 7 (3.6%)
could not be reliably located due to lacking histologic reports and
absence of orientation criteria on the slide. The 173 ¢-KIT-11-ITD
negative MCTs were chosen in the aim of mirroring the reparti-
tion of the ¢-KIT-11-ITD positive group, with 97 (56.1%) being
classified as high grade and 76 (43.9%) as low grade. Moreover,
145 (83.8%) were cutaneous, 26 (15.0%) subcutaneous, and 2
(1.2%) were mucocutaneous (Supplemental Table S1).

Prediction of the c-KIT || ITD Status Using Single
Data Set Training

To assess the capacity of a DLM trained in a single stain-scan-
ner environment to predict the c-KI/7-1/-ITD status in

HE-stained WSIs, 6 DLMs were trained on a single training set
(stain-scanner variant) and tested on a test set of the same stain-
scanner variant (in-domain) and on different stain-scanner vari-
ants (out-of-domain) (Table 2). Across all DLMs, an in-domain
average MCA of 0.79 (range 0.75-0.87) was found. The high-
est MCA of 0.87 was reached by the DLM trained on the data
set 6 (stain B, scanner 3) with a sensitivity of 0.90 and a speci-
ficity of 0.83. In other words, this DLM predicted the correct
c-KIT-11-ITD status in 87% of the cases with 90% probability
of true positive prediction and 83% of true negative prediction.
In general, DLMs trained and tested on stain B WSIs allowed
for a higher MCAs (average MCA 0.82) than DLMs trained on
stain A WSIs (average MCA 0.76), pointing toward a general
influence of HE-staining protocol for accurate ¢-KIT-11-1TD
prediction. Furthermore, scanner 3 seemed to be slightly more
suitable (average MCA 0.84) than scanner 1 (average MCA
0.78) and scanner 2 (average MCA 0.77). However, when the
models were tested out-of-domain, they only reached an aver-
age MCA of 0.65 (range 0.54-0.76). Detailed performance
metrics of all single data set trained DLMs can be found in
Supplemental Table S4.

Prediction of the c-KIT-1 I-ITD Status Using Mixed
Data Set Training (Leave-One-Out Approach)

To test whether more diverse data sets from multiple institu-
tions may lead to more robust ¢-KI7-11-ITD predictions in
HE-stained WSIs from unknown stain-scanner variants, a sec-
ond set of 6 DLMs was trained on a data set that contained
equal fractions (20%) of 5 of the 6 data sets and tested on the
sixth, unknown, data set (leave-one-out-approach, Table 3).
The average in-domain MCA was 0.76 (range 0.72-0.85),
which is lower than the in-domain MCA of the DLMs trained
and tested on a single data set (Table 2). However, with an
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Table 3. Mean classification accuracies and area under the curve with respective standard deviations of c-KIT-11 internal tandem
duplication mutation predictions with deep learning models (DLMs) trained on mixed data sets (leave-one-out-approach).

Trained on Data Set

Tested on Data Set w/o Al w/o A2 w/o A3 w/o Bl w/o B2 w/o B3
Al MCA 0.69> = 0.04 0.74> = 0.05 0.73 = 0.06 0.73 = 0.07 0.72 = 0.06 0.73 = 0.07
AUC 0.80 *= 0.06 0.82 = 0.05 0.81 + 0.05 0.82 + 0.05 0.82 = 0.05 0.82 = 0.07
A2 MCA 0.76 = 0.06 0.75 = 0.06 0.76 = 0.06 0.76 = 0.07 0.75 = 0.07 0.75 = 0.08
AUC 0.84 = 0.05 0.84 + 0.05 0.83 = 0.06 0.84 + 0.06 0.84 = 0.05 0.84 = 0.06
A3 MCA 0.77 = 0.06 0.76 = 0.05 0.71 = 0.05 0.77 £ 0.06 0.76 = 0.04 0.79 = 0.06
AUC 0.84 + 0.05 0.86 = 0.06 0.83 += 0.05 0.86 + 0.05 0.86 + 0.05 0.86 = 0.05
Bl MCA 0.80 + 0.05 0.77 £ 0.05 0.75 = 0.05 0.72 = 0.05 0.75 + 0.06 0.76 = 0.06
AUC 0.87 + 0.05 0.85 + 0.05 0.84 + 0.05 0.80 = 0.06 0.85 + 0.05 0.84 + 0.06
B2 MCA 0.79 = 0.06 0.77 + 0.05 0.77 = 0.05 0.77 = 0.06 0.77 += 0.05 0.77 + 0.06
AUC 0.86 + 0.05 0.85 + 0.05 0.84 + 0.05 0.83 = 0.06 0.83 *= 0.06 0.84 + 0.06
B3 MCA 0.85 = 0.04 0.82 = 0.04 0.83 = 0.04 0.82 = 0.05 0.83 = 0.04 0.73 *= 0.05
AUC 0.93 = 0.03 091 = 0.03 0.92 = 0.04 091 = 0.04 091 *= 0.04 0.80 = 0.05

Abbreviations: MCA, mean classification accuracy; AUC, area under the receiving-operating characteristic curve; w/o, without; A, stain A; B, stain B; I,
scanner | (Aperio CS2); 2, scanner 2 (Aperio AT2); 3, scanner 3 (3DHistech Pannoramic Il).

2Bold font = MCA of DLMs tested on a data set different from the one they were trained on (out-of-domain).

PRegular font = MCA of DLMs trained and tested on the same data set (in-domain).

Table 4. Associations between the deep learning model (DLM) prediction and known clinical-pathologic parameters of the tumor.

PCR DLM Trained on Data Set
Parameter Al A2 A3 BI B2 B3
Location 0.47 | | | 0.82 | |
Ulcerated surface 5.87E-09 9.72E-08 1.03E-08 9.72E-08 9.79E-04 |.12E-04 1.91E-07
Kiupel grade 0.02 0.0l 0.07 0.13 0.09 0.10 0.27
Patnaik grade 0.74 0.0l 9.97E-04 4.94E-04 | | 0.58
Gender | | 0.11 0.46 | | |

Abbreviations: A, stain A; B, stain B; |, scanner | (Aperio CS2); 2, scanner 2 (Aperio AT2); 3, scanner 3 (3DHistech Pannoramic Il); PCR, polymerase chain

reaction.

P-values of the chi-square test of independence with Bonferroni correction. P-values << 0.05 are considered significant.

average MCA of 0.73 (range 0.69-0.77), the models trained on
mixed data sets showed a better out-of-domain performance
than the models trained on a single data set, which achieved an
average out-of-domain MCA of 0.65 (range 0.54-0.76) (Table
2). Detailed performance metrics of all mixed data set trained
DLMs can be found in Supplemental Table S5.

Analysis of ¢-KIT Mutation Prediction, c-KIT-1 I-ITD
Status, and Other Clinical-Pathologic Parameters

Chi-square analysis was used to test for independence between
the DLM-based mutation prediction and the following param-
eters: tumor grade (2-tier and 3-tier grading system), location
of the tumor (subcutaneous, cutaneous, and mucocutaneous),
skin ulceration, and sex (Table 4 and Supplemental Table S5).
Analysis confirmed that the DLM predictions were not signifi-
cantly independent with either the skin layer involvement or
the sex of the affected dog. A significant association was found
between the 3-tier grade and the predictive output of all models
trained on stain A (DLMs trained on data sets A1-3) as well as

an association of c¢-KI/7-11-ITD mutation prediction by the
DLM trained on data sets Al and BI1, and the 2-tier grade.
Furthermore, chi-square analysis indicated that the ulceration
status of the overlying epidermis of the skin is significantly
associated with the mutation prediction by all DLMs.

Discussion

This study was conducted to assess the efficacy of artificial
intelligence-based DLMs in predicting c-KI7-11-ITD of canine
MCTs solely based on HE-stained WSIs. A total of 368 MCT
cases were gathered and digitized, creating 6 data sets corre-
sponding to various stain-scanner combinations. The most suc-
cessful DLM achieved an MCA of 0.87, with a sensitivity of
0.90, specificity of 0.83, and an AUC of 0.94, underscoring the
effectiveness of DLMs in this predictive task.

Given the variability in fixation and staining protocols
across pathology laboratories, as well as differences in WSIs
from various image acquisition devices, domain shifts (ie, vari-
ations between training and test situations) are bound to affect
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a DLM’s performance.' The study addressed this by consecu-
tively staining slides with 2 HE-staining protocols (A and B)
from different laboratories and digitalizing them with 3 slide
scanners (1-3). DLMs were trained on individual scanner-stain
combinations (single data set) or mixtures thereof (mixed data
set), simulating institution-specific versus collaborative train-
ing scenarios. Cross-validation results for DLMs trained on a
single data set and tested in-domain (ie, on WSIs produced in
the same training institution) showed an average MCA of 0.79.
However, testing on out-of-domain WSIs (ie, from different
institutions) led to an important MCA drop (0.65), underlining
the domain-dependency of DLMs. A transfer of a locally
trained DLM to another institution is thus not possible without
tailored mitigation of the domain gap.

Mixed data set-trained DLMs exhibited comparable in-
domain performance (average MCA of 0.76) and slightly
improved out-of-domain performance (average MCA of 0.73)
compared with single data set-trained DLMs, suggesting
enhanced transferability through collaborative training.
However, training with multiple data sets also increases the
demands on the hardware used, especially in terms of memory
space, as the calculated features of each data set must be stored
in addition to the actual WSI. This high domain-dependency of
DLMs has been described for HE-stained WSIs before,? and
domain generalization is currently a major research focus in
computer science to reduce data set variability required for
robust real-life artificial intelligence applications.

Although scanner 1 (Aperio CS2) and scanner 2 (Aperio
AT?2) use the same optical system and produce images with the
same resolution, they differ in their loading capacity and scan-
ning speed. The observed performance differences between
DLMs trained and tested on these respective devices might be
due to processing-induced image variations.

The utilization of a weakly supervised training approach,
relying solely on mutational status information without explicit
annotations or tumor segmentations, posed a potential bias risk
(eg, random overrepresentation of necrosis in one of the groups)
but has proven to be an efficient method to train the DLMs.
Histologic review of false-positive and false-negative cases did
not reveal any evident sources of error. The morphologic causes
of wrong predictions are thus unclear, as are the morphologic
structures that allow correct predictions by DLMs. Moreover,
the varying associations found between DLM-based predictions
and clinical-pathologic variables through chi-square analyses
emphasize the significance of considering stain-scanner combi-
nations as integral factors influencing predictive modeling out-
comes. Hence, a model trained on 1 stain-scanner combination
may not generalize to other combinations without specific
adjustments. For instance, tumors with ulcerated surfaces, as
well as high-grade tumors, were more likely to be classified as
¢-KIT-11-ITD positive, as indicated by a P value largely inferior
to 0.05 across all DLMs. Of the 119 cases exhibiting an ulcer-
ated epidermis, 86 (72%) are ¢-KIT-11-ITD positive against 33
(28%) ¢-KIT-11-ITD negative. This association might just be
due to the percentage of high-grade MCTs carrying a ¢-KIT-11-
ITD being fundamentally more elevated, and high-grade MCTs

being more prone to ulcerate.*%!4?%3* Interestingly, our study
identified stain B as allowing better prediction of the ¢-KIT-//-
ITD status across all scanners. This suggests that stain B might
highlight a morphological feature linked with the ¢-KIT-7/-ITD
mutation that might not be visible in stain A and highlights the
importance of stain selection in enhancing model performance.
Minimal morphological changes resulting from the de-staining
and re-staining processes might also be a potential source of
performance variations.

This study was inspired by similar work done in the human
medicine field with comparably sized data sets (between 62 and
433 samples).®'>192! Tt is worth mentioning that these human
data sets often exhibit imbalances, with notably more non-
mutated samples. The AUC metric had to be used to assess the
performance of DLMs trained on unbalanced data sets, whereas
MCA can be used for balanced data sets. These studies reported
AUCs ranging from 0.64 to 0.86. Noteworthy comparisons
include a study by Elche et al, which worked with a very large
data set of 8343 cases compiled from 9 distinct data sets with
the aim of predicting microsatellite instabilities, a highly rele-
vant prognostic factor in colorectal cancers, from HE slides.
AUCs ranging from 0.74 to 0.96 were reported.'’ The data set
generated for the present study represents, to this date, the larg-
est digital c-K17-11-ITD mutated canine MCT collection in vet-
erinary medicine and achieved comparable or even superior
performances, with AUCs ranging from 0.80 to 0.94.

These promising outcomes led to the planning of several
follow-up projects to refine the model’s performance, ensure
robustness in diverse real-life scenarios, and explore practical
applications of DLMs in routine diagnostics (eg, low-cost and
fast screening tool).
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