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Abstract
Variation in nuclear size and shape is an important criterion of malignancy for many tumor types; however, categorical estimates 
by pathologists have poor reproducibility. Measurements of nuclear characteristics can improve reproducibility, but current 
manual methods are time-consuming. The aim of this study was to explore the limitations of estimates and develop alternative 
morphometric solutions for canine cutaneous mast cell tumors (ccMCTs). We assessed the following nuclear evaluation 
methods for accuracy, reproducibility, and prognostic utility: (1) anisokaryosis estimates by 11 pathologists; (2) gold standard 
manual morphometry of at least 100 nuclei; (3) practicable manual morphometry with stratified sampling of 12 nuclei by 9 
pathologists; and (4) automated morphometry using deep learning–based segmentation. The study included 96 ccMCTs with 
available outcome information. Inter-rater reproducibility of anisokaryosis estimates was low (k = 0.226), whereas it was good 
(intraclass correlation = 0.654) for practicable morphometry of the standard deviation (SD) of nuclear size. As compared with 
gold standard manual morphometry (area under the ROC curve [AUC] = 0.839, 95% confidence interval [CI] = 0.701–0.977), 
the prognostic value (tumor-specific survival) of SDs of nuclear area for practicable manual morphometry and automated 
morphometry were high with an AUC of 0.868 (95% CI = 0.737–0.991) and 0.943 (95% CI = 0.889–0.996), respectively. 
This study supports the use of manual morphometry with stratified sampling of 12 nuclei and algorithmic morphometry to 
overcome the poor reproducibility of estimates. Further studies are needed to validate our findings, determine inter-algorithmic 
reproducibility and algorithmic robustness, and explore tumor heterogeneity of nuclear features in entire tumor sections.

Keywords

anisokaryosis, artificial intelligence, computer vision, dog, karyomegaly, mast cell tumor, mitotic count, nuclear pleomorphism, 
tumor heterogeneity

https://us.sagepub.com/en-us/journals-permissions
https://journals.sagepub.com/home/vet
mailto:Christof.bertram@vetmeduni.ac.at
http://crossmark.crossref.org/dialog/?doi=10.1177%2F03009858241295399&domain=pdf&date_stamp=2024-11-19


162	 Veterinary Pathology 62(2) 

Variation in nuclear size and shape of neoplastic cells is an 
important histologic criterion of malignancy, and various eval-
uation methods have been used in previous studies. The most 
practical method is categorical estimation by pathologists, 
most commonly evaluating anisokaryosis or nuclear pleomor-
phism. Anisokaryosis is defined as the variation of nuclear size, 
and nuclear pleomorphism describes the variation in nuclear 
size and shape. Although these estimates have been shown to 
be relevant histologic prognostic factors for several tum
ors,18,36,40,44,46 some studies suggest low inter-rater and intra-
rater reproducibility.22,47,48 For both parameters, categories 
(mostly 3-tier such as mild, moderate, and severe) can only be 
vaguely defined, and applications of the same thresholds 
between pathologists may be problematic. Another limitation is 
that estimates are based on categories that need to be defined 
arbitrarily before conducting a study, and thresholds are not 
based on a statistical association with patient outcome.

Alternatives to estimates are computerized measurements of 
nuclear size and/or shape (nuclear morphometry) in digital 
images, which can be either done by pathologists using a mea-
surement software (manual morphometry)15,19,48 or by image 
analysis algorithms (fully automated/algorithmic morphome-
try).1,16,22 Morphometry can be based on 2-dimensional mea-
surements (nuclear area and shape)22,33,51 or 3-dimensional 
volume estimates based on stereological assumptions from 
2-dimensional histologic sections using point-sampled inter-
cepts (volume-weighted mean nuclear volume).15,48 Besides an 
assumed higher degree of reproducibility as compared with 
categorical estimates, morphometry enables the extraction of 
quantitative features from histological images and thereby cre-
ates more granularity and richness of the obtained data. A 
potential benefit of morphometry is the output of numerical 
values, which allows statistical determination of meaningful 
prognostic thresholds at the desired sensitivity and specificity 
trade-off. However, manual measurements by pathologists are 
time-consuming and, thus, difficult to conduct in a routine 
diagnostic setting. The number of nuclei measured was 100 in 
most previous studies on tumors.5,15,33,37,48,49,51 A time invest-
ment of 10 to 15 minutes has been reported for 75 and 166 (± 
66 standard deviation [SD]) point-sampled intercept measure-
ments,15,48 making this manual morphometry impracticable for 
routine diagnostic settings. In contrast, algorithms using state-
of-the-art deep learning models are capable of eliminating 
human labor for these tasks and are very promising for quanti-
tative evaluation of tumor markers.11,22,39 Fully automated 
nuclear morphometry can be done by post-processing of algo-
rithmic nuclear segmentation (demarcation of all pixels repre-
senting the nuclei) masks (algorithmic output).16

Aside from morphometry based on nuclear segmentation, 
additional image analysis approaches have been used for auto-
mated evaluation of nuclear features: (1) image classification 
that categorizes images into tiers of anisokaryosis35 and (2) 
regression analysis that generates a continuous score based on 
the anisokaryosis tiers.38 Although all approaches achieve the 
goal of improving rater reproducibility by removing rater subjec-
tivity, automated nuclear morphometry has several advantages 

as it is a quantitative and a very adaptable method. With 2-dimen-
sional morphometry, several nuclear characteristics can be eval-
uated individually or in combination at any desired prognostic 
threshold, whereas classification and regression approaches are 
restricted to the predefined classes of morphological patterns. In 
addition, segmentation masks can be easily displayed as an over-
lay on the histological image, which allows visual verification of 
algorithmic performance to ensure reliability of the prognostic 
interpretation. Segmentation models can probably also be devel-
oped in a more consistent manner due to the nature of the ground 
truth data (accurate nuclear contour annotations) used for train-
ing. However, these data sets needed for the training of such seg-
mentation models are more time-consuming to create when 
compared with the other approaches that require only 1 label 
(anisokaryosis class) per image.

Canine cutaneous mast cell tumors (ccMCTs) are one of the 
most pertinent skin tumors in dogs for possible application of 
these solutions due to their high frequency and malignant poten-
tial.27 Although studies on prognostic parameters for this tumor 
type are extensive in the veterinary oncologic literature, includ-
ing the mitotic count (MC) and 2 multiparameter grading sys-
tems published in 1984 and 2011,6,9,10,12,26,28,42,45 further 
relatively inexpensive and practicable quantitative tests are 
needed to improve the prognostic ability of routine histopatho-
logic assessment. Interestingly, despite their inclusion in the 
multiparameter grading systems (eg, karyomegaly and bizarre 
nuclei),28,42 the prognostic value of histologic estimates of 
nuclear characteristics has rarely been investigated in 
ccMCT.14,50 In an attempt to provide more objective criteria, the 
2011 2-tier grading system defined a tumor as having karyomeg-
aly if “the nuclear diameters of at least 10% of neoplastic mast 
cells vary by at least two-fold.”28 However, that definition of 
karyomegaly (origin of the word from ancient Greek for “large 
nuclei”) actually reflects anisokaryosis (variation in nuclear 
size), does not necessarily require abnormally enlarged nuclei, 
and would not be fulfilled when all neoplastic cells are karyome-
galic. Furthermore, a significant association of karyomegaly as 
a solitary parameter with survival has not been shown to date.14 
The prognostic value of manual nuclear morphometry of 
ccMCT has rarely been investigated for histologic15 and cyto-
logic ccMCT specimens51 using either the 2- or 3-dimensional 
approaches. Fully automated solutions for nuclear morphome-
try have not been studied for ccMCT or any other tumors in 
domestic animals thus far, as opposed to tumors in humans.1,16,54 
In addition, the variation of nuclear characteristics between dif-
ferent tumor areas in histological sections (tumor heterogeneity) 
has not been evaluated for ccMCT. This information on tumor 
heterogeneity is relevant for deciding optimal sampling strate-
gies of regions of interest used for image analysis.

The primary objectives of this study are as follows:

•• Explore the limitations of anisokaryosis estimates by 
pathologists, particularly regarding rater reproducibility.

•• Develop nuclear morphometry methods that are feasible 
for a routine diagnostic setting, including practicable 
manual morphometry and automated morphometry.
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•• Investigate the measurement accuracy, reproducibility, 
and prognostic utility of the developed nuclear mor-
phometry methods in comparison to the current gold 
standard morphometry method, anisokaryosis estimates, 
and the MC as an independent benchmark.

A secondary objective was to evaluate the heterogeneity of 
nuclear size in different tumor areas.

Material and Methods

Study Data Sets

Two separate sets of histological images of ccMCT with asso-
ciated data were used in this study: (1) a data set with survival 
outcome and (2) a ground truth data set with ground truth anno-
tations for outlines of tumor nuclei. The outcome data set was 
used to determine the reproducibility and prognostic value of 
the nuclear evaluation methods. The ground truth data set was 
primarily used to train, validate, and test the deep learning–
based algorithm (fully automated morphometry) and was addi-
tionally used to evaluate the measurement accuracy of the 
nuclear evaluation methods. For both independent data sets, 1 
representative tissue block for each ccMCT (all tumors had 
confirmed dermal involvement with possible subcutaneous 
infiltration) was selected, and histological slides were routinely 
produced using a section thickness of 2 to 3 µm and staining 
with hematoxylin and eosin. Digitization of the glass slides was 
done with the Pannoramic Scan II (3DHistech, Hungary) 
whole-slide image (WSI) scanner at default settings with a scan 
magnification of 400× (resolution of 0.25 µm/pixel). Each 
WSI represented a different ccMCT case. Using the software 
SlideRunner,2 a variable number of regions of interest (ROIs) 
within each WSI (1–2 for the ground truth data set, 3–5 for the 
outcome data set) were cropped and exported as TIFF files 
using lossless compression. Each ROI had a size of 0.1185 
mm2 (equivalent to 0.5 standard high-power fields39) and an 
aspect ratio of 4:3. The ROI selection at low magnification was 
designed to include an arbitrary tumor region without paying 
particular attention to nuclear characteristics. This means that 
ROI selection was semi-random, except that tumor regions 
with widespread necrosis, severe inflammation and poor cell 
preservation, and nontumor regions were excluded, which was 
confirmed at high magnification once the region was selected. 
We decided against selecting a hotspot tumor location in this 
study to avoid any bias of oversampling regions with a particu-
lar nuclear characteristic (ie, over-representing a specific mor-
phometric parameter). Selection of hotspot locations would 
have also hindered analysis of tumor heterogeneity.

The small ROI size was selected to ensure a quick (diagnos-
tically practicable) computational time for algorithmic mor-
phometry and to allow complete ground truth annotations (all 
neoplastic nuclei per image) of many cases. The variable num-
ber of selected ROIs for the 2 data sets (1–2 vs 3–5) is justified 
by the distinct requirements for the use of the data sets within 
this study. The total number and size of ROIs used for the 

ground truth data set were limited by the time investment 
required for the manual annotations. Considering this require-
ment for the ground truth data set, we tried to obtain a realistic 
variability in the ccMCT images for the ground truth data set 
by including a large number of different cases (and thus, a low 
number of relatively small ROIs per case). For the outcome 
data set, we wanted to obtain insight into the variability of 
nuclear parameters between different tumor regions (tumor 
heterogeneity) and its effect on prognostication for the out-
come data set, and thus, a higher number of ROIs from differ-
ent tumor locations were selected. The higher number of ROIs 
in the outcome data set was also used to account for low cel-
lularity in a few cases and ensure that at least a few hundred 
nuclei were available for morphometry.

Outcome data set.  The outcome data set consisted of 96 cases 
(1 tumor per patient) with known follow-up on patient survival. 
Histological sections were processed at Michigan State Uni-
versity (MSU) following routine protocols. Information on 
patient follow-up (date of surgery, date of death, and suspected 
cause of death based on the clinical interpretation of the patient) 
was collected through a survey sent to the submitters of the 
surgical tissue samples. Cases were excluded from the outcome 
population if the patients were lost to follow-up before 12 
months after surgical excision of the ccMCT or were treated by 
systemic or radiation therapy, ie, all included patients were 
exclusively treated by surgical removal of the tumor. Follow-
ing the routine trimming protocol at MSU and tumor margin 
evaluation (usually evaluating at least 4 peripheral margins and 
the deep margin), complete surgical excision was confirmed 
for all included cases. Postmortem examinations to verify the 
tumor burden were not available for any case.

For larger tumors (N = 91), 5 ROIs in different tumor loca-
tions at the periphery and center were selected. For smaller 
tumors, in which the 5 ROIs could not be placed without over-
lap (N = 5), the maximum number of nonoverlapping ROIs (3, 
N = 1; or 4, N = 4) was chosen.

Ground truth data set.  ccMCT cases were retrieved from the 
diagnostic archives of 4 veterinary pathology laboratories 
(MSU, N = 21; The Schwarzman Animal Medical Center New 
York, N = 14; Freie University Berlin, N = 14; Vetmeduni 
Vienna, N = 15) with equal numbers of high-grade and low-
grade tumors according to the 2011 histological grading sys-
tem.28 For the samples from MSU, 2 ROIs per WSI were used, 
and for the samples from other laboratories, 1 ROI per WSI 
was used. As the cases from MSU were the target domain for 
application of the algorithm (see section “Outcome data set”), 
we decided to use 1 ROI from a central region and 1 ROI from 
a peripheral tumor region in an attempt to capture potential 
intratumoral variability. The other laboratories (with 1 ROI per 
case) were used to increase the robustness of the derived algo-
rithm regarding laboratory-derived domain shift.

Using the software SlideRunner,2 1 author (EP) delineated 
the contours of the nuclear membrane of all mast cells present 
in these 85 images using the polygon annotation tool. The final 
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data set comprised 40 542 ground truth annotations (median 
per ROI = 455, range = 107–1049). The images were ran-
domly assigned to the algorithm training subset (N = 61), the 
validation subset (N = 11), and the test subset (N = 13), 
whereas the 2 images per case from MSU were always assigned 
to the same training or validation subset. The test subset com-
prised 6111 annotations. This data set (images and ground truth 
annotations) was made publicly available for research purposes 
on https://git.fh-ooe.at/fe-extern/mastcell-data.

The annotations of the test subset were morphometrically 
measured (subsequently referred to as ground truth measure-
ments) as listed in Table 1 and described for the gold standard 
manual morphometry below.

Nuclear Evaluation Methods

For this study, the different methods of 2-dimensional nuclear 
size and shape evaluation investigated encompassed:

•• Current routine method: anisokaryosis estimates by 
pathologists using 2 definitions:

|| 2-tier classification scheme (referred to as karyomegaly);
|| 3-tier classification scheme (referred to as 3-tier 

anisokaryosis).

•• Current gold standard (benchmark) method: manual 
morphometry by a pathologist of at least 100 neoplastic 
nuclei (complete sampling of grids).

•• Practicable alternative: manual morphometry of 12 rep-
resentative neoplastic nuclei (stratified sampling).

•• Automated solution: morphometry of all neoplastic 
nuclei segmented by a deep learning–based algorithm.

The methods of each test are specified in the following sec-
tions. Pathologists from 9 different laboratories conducted the 
prognostic tests and were blinded to the assessment by the 
other pathologists, to the results of the other prognostic tests, 
and to outcome information.

Anisokaryosis estimates.  Eleven veterinary pathologists (TAD, 
C-AA, PB, MJD, AF-B, AK, KJ, RK, SM, BR, and FYS) par-
ticipated in this study and were anonymized by a random iden-
tification number (P1–11). Anisokaryosis estimates were 
conducted at 2 time points with a wash-out time of at least 2 
weeks. For time point 1 (11 participants), pathologists 

estimated the degree of anisokaryosis using 2 systems for the 
cases of the outcome data set. For time point 2 (9 participants), 
pathologists were instructed to estimate the degree of aniso-
karyosis a second time and to measure 12 neoplastic mast cell 
nuclei (manual morphometry) for each tumor in the test subset 
of the ground truth data set and the outcome data set. Images 
were provided to the pathologists through the online annotation 
platform EXACT.34 The images from the 3 to 5 ROIs of each 
case of the outcome data set were stitched to an image panel 
and separated by a black line to allow simultaneous viewing.

Two classification schemes (2- and 3-tier) for anisokaryosis 
estimation were applied by the pathologists for each case at 2 
time points, resulting in 3840 data points for the outcome data 
set and 234 data points for the test subset of the ground truth 
data set. First, karyomegaly was assessed according to the defi-
nition given by Kiupel et al28 for the 2-tier MCT grading sys-
tem, “nuclear diameters of at least 10% of neoplastic mast cells 
vary by at least two-fold,” as: (1) absent or (2) present. Second, 
the 3-tier anisokaryosis system consisted of the following cat-
egories: (1) none to mild, (2) moderate, and (3) severe variation 
in nuclear size of neoplastic mast cells. These stratifications 
were intentionally vaguely defined, as this is common practice 
in current veterinary literature.17,18,29,31,40,41,43,47 We also wanted 
to avoid creating arbitrary definitions of the 3 categories with-
out known association with patient outcome.

Gold standard manual morphometry of ≥100 nuclei.  Consistent 
with previous literature on nuclear morphometry in veterinary 
pathology,5,33,37,49,51 the gold standard morphometry method 
included manual annotations of at least 100 neoplastic mast 
cell nuclei. Although acknowledging that this test is too time-
consuming for routine diagnostic application, we considered 
this method the benchmark for comparison with the other 
nuclear evaluation methods.

One pathologist (CAB) evaluated the images of the test sub-
set of the ground truth data set and ROI 1 of the outcome data 
set by this method. In these images, a 5 × 6 grid overlay with 
thin black lines was added, ie, the images were separated in 30 
equally sized grid fields. Using the software SlideRunner,2 the 
pathologist annotated as many grid fields (complete sampling) 
as needed to reach 100 nuclei. The sequence of grid fields 
selected followed a uniform meandering pattern that included 
the central grid fields first and the fields at the image borders 
last. Each grid field was completely annotated including each 
neoplastic nucleus that touched the grid borders and excluded 
nuclei that were cut-off at the image borders (Supplemental 

Table 1.  List of parameters for manual and algorithmic morphometry evaluated in this study.

Feature Measurement Parameters

Size Area (in µm2) Mean, median, standard deviation (SD), 90th percentile (90th P), 90th P/median, mean of the largest 
10% of the nuclei, percentage of large nuclei (>37.8 µm2 or >50.3 µm2), skewness (asymmetry of the 
data distribution)

Size Eccentricity Mean, SD, skewness
Solidity Mean, SD, percentage of nuclei with indentation (solidity <0.913), skewness

https://git.fh-ooe.at/fe-extern/mastcell-data
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Figure S1). For the 109 evaluated images, an average of 108 
annotations per image (minimum: 100, maximum: 133, total: 
11,766) were created with an average of 7.7 of 30 grid fields 
(minimum: 2, maximum: 29). Time investment for the ≥100 
annotations per image was 17.5 minutes on average (minimum: 
14.5; maximum: 24).

From these manual annotations, different characteristics of 
the probability density function (Table 1) were calculated 
(morphometry). The nuclear area was defined by the number of 
pixels within the segmented nuclei and subsequent conversion 
into µm2 based on the scan resolution. The SD of the nuclear 
area reflects the variation of the nuclear size and thus was used 
as the primary parameter to compare with the 3-tier anisokary-
osis estimates by pathologists. To approximate the 2-tier sys-
tem definition for karyomegaly, “nuclear diameters of at least 
10% of neoplastic mast cells [i.e., proportion of large nuclei] 
vary by at least two-fold [i.e., extent of nuclear size differ-
ence],”28 we evaluated 2 morphometric parameters. The pro-
portion of abnormally enlarged (karyomegalic) cells was 
calculated by the number of nuclei above a case-independent 
reference size divided by the number of all tumor nuclei 
detected. The case-independent size for large nuclei was >50.3 
µm2 (2 times the median area of all the annotated nuclei in the 
training/validation subset of the ground truth data set) or >37.8 
µm2 (the 90th percentile of the annotated nuclei). We decided 
to select the thresholds for the karyomegaly definition from the 
ground truth data set (and not based on statistical correlation 
with the outcome data set) to avoid overfitting of the parameter 
on the outcome data set. The extent of nuclear size variation 
was determined by the 90th percentile divided by the median, 
representing the factor by which the largest 10% of nuclei, ie, 
potentially karyomegalic cells, differ from the median nuclear 
size of the same tumor (case-specific reference size). Instead of 
using the diameter according to the karyomegaly definition 
used in the 2-tier system, we based our calculations on the 
nuclear area, as an increase of the diameter is not proportional 
to the actual increase of nuclear size and a nuclear diameter is 
not representative of size for oval nuclei.

As indicators of nuclear shape, we measured eccentricity 
and solidity, as implemented in the scikit-image framework.53 
The eccentricity measure is used to evaluate the roundness of 
the detected object. It is calculated by the ratio of the distance 
between the focal points of an ellipse over the major axis 
length. The closer this ratio is to 1, the more elongated the 
shape is. The closer the ratio is to 0, the more circular the shape 
is. For the calculation of the solidity measure, we used the ratio 
of the detected object area compared with the resulting convex 
hull of this area. A solidity value of 1 indicates that the detected 
pixel area has the same size as its convex hull. The closer this 
value is to 0, the more indentations are present and/or the larger 
the indentations are, corresponding to the bizarre nuclei defini-
tion of the 2011 grading system.28 Nuclear indentation thresh-
olds evaluated were <0.913, <0.936, and <0.943, representing 
the 2nd, 5th, and 10th percentiles, respectively, of the training/
validation subset of the ground truth data set. The percentage of 
indented nuclei over all detected nuclei was calculated. 

For calculation of the prognostic value of mean solidity, the 
direction of the values was inverted (ie, higher degrees of 
nuclear indentations are represented by larger values) by sub-
tracting the mean solidity value of the 3 to 5 ROIs from 1 for 
each case.

Practicable manual morphometry of 12 nuclei.  At time point 2 
(after anisokaryosis estimates), the 9 pathologists measured 12 
neoplastic mast cell nuclei per case (Fig. 1). For cases with 
notable nuclear size differences, participants were instructed to 
perform stratified sampling with selection of 4 nuclei with a 
small, intermediate, and large area each. The relatively low 
number of nuclei was needed for practicability in routine diag-
nostics, whereas a stratified sampling method aimed at a repre-
sentative frequency distribution. The images from the test 
subset of the ground truth data set were analyzed first (resulting 
in a total of 1407 annotations by 9 pathologists; in 3 instances, 
a participant had annotated 1 nucleus too many), and subse-
quently, the images of the outcome data set were evaluated 
(resulting in a total of 10 368 annotations). Pathologists were 
asked to use the 1 ROI of the outcome cases with the presumed 
(estimated) highest degree of anisokaryosis. The polygon 
annotation tool in Exact34 was used to outline the neoplastic 
nuclei. Based on the annotations, the mean, SD, and maximum 
nuclear area were calculated for each case and pathologist. We 
restricted the practicable manual morphometry to size param-
eters as pathologists reported difficulty in delineating the shape 
of the nuclei.

Automated morphometry using a supervised deep learning–based 
algorithm.  We developed a Unet++-based segmentation 
model to create binary masks where pixels corresponding to 
the nuclei of the initial slide image are depicted as positive 
foreground (ones) in front of a negative background (zeros).56 
We trained our model using the training and validation subsets 
of the ground truth data set. A more detailed description of the 
development method of the segmentation model is provided in 
the Supplemental Material. The developed model is available 
through https://git.fh-ooe.at/fe-extern/mastcell-data. As a post-
processing step, we used connected component labeling pro-
vided by the scikit-image framework 53 to detect the individual 
nuclei within the segmentation mask. Based on the identified 
nuclei, we applied a filtering mechanism for objects smaller 
than approximately 7 µm2 to exclude segmented objects that do 
not represent complete and valid nuclei. Subsequent to seg-
mentation and filtering of the individual mast cell nuclei, dif-
ferent morphometric parameters were calculated for each case 
(algorithmic morphometry) as listed in Table 1 and detailed in 
section “Gold standard manual morphometry of ≥100 nuclei”.

The developed algorithm was used to analyze the images of 
the test subset of the ground truth data set and the outcome data 
set. For the outcome cases, calculations were done for each 
ROI separately and averaged for all ROIs per case. Algorithmic 
segmentation resulted in 5794 objects for the test subset of the 
ground truth data set (average per image: 445, minimum: 75, 
maximum: 929) and 176 912 objects for the outcome data set 

https://git.fh-ooe.at/fe-extern/mastcell-data
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(average per case: 1842, minimum: 604, maximum: 4090). 
Algorithmic morphometry was calculated from the uncorrected 
predictions, ie, no expert review of the segmentation masks 
was conducted in this study. However, for application of the 
algorithm in a diagnostic setting, we do recommend expert 
review of the segmented nuclei.

Mitotic Count (Prognostic Value Benchmark)  
and Histologic Grade

As the prognostic value of the gold standard manual nuclear 
morphometry (using the 2-dimensional method) is not well 
established for ccMCT, the MC was determined as an indepen-
dent benchmark with the intention of providing guidance for 
the interpretation of prognostic value of the nuclear evaluation 
methods. The MC is probably the single most important prog-
nostic histological parameter for ccMCT with numerical val-
ues10,27 and is valuable in understanding how well a single 
prognostic test can theoretically discriminate patient survival 
for this specific outcome data set. This does not mean that the 
evaluated prognostic parameters must have a better prognostic 
value than the MC to be of relevance as cellular proliferation 

and nuclear pleomorphism reflect distinct malignancy charac-
teristics of the tumor. We consider the histologic grading 
schemes28,42 to be less appropriate benchmark tests for this 
study because these systems combine nuclear characteristics 
(ie, karyomegaly and bizarre nuclei) with other morphologic 
criteria (such as the MC); thus, they are theoretically superior 
to a single morphometric parameter. As the grades are categori-
cal values, some statistical tests for evaluation of the prognostic 
relevance are not possible as compared with numerical tests 
(such as the MC and nuclear morphometry), also hindering a 
thorough statistical comparison of the prognostic value with 
nuclear morphometry.

The MC was determined by 2 pathologists (first pathologist: 
CAB; second pathologist: TAD) in the images of the outcome 
data set according to current guidelines.39 First hotspot tumor 
regions were selected by the first pathologist, and subsequently, 
both pathologists annotated all mitotic figures in the same 
tumor regions. For region selection, the software SlideRunner2 
with a plug-in for a rectangular bounding box overlay (4:3 
ratio, area of exactly 2.37 mm2) was used, as previously 
described.7 This area box was placed in a mitotic hotspot loca-
tion, which was selected based on the impression of mitotic 

Figure 1.  Overview of the study design. Two different sets of histologic images with associated data—the ground truth data set and the 
outcome data set were used to investigate different nuclear evaluation methods. ROI, region of interest; Train/Val subset, training and 
validation subset; WSI, whole-slide images.
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activity evaluated by the pathologist in several tumor areas. 
Regions with widespread necrosis, severe inflammation, low 
tumor cell density, poor cell preservation, and extensive arti-
facts were excluded, if possible. Mitotic figures annotations 
(according to published definitions20) were done by both 
pathologists using SlideRunner 2 by screening these areas at 
high magnification twice to minimize the number of over-
looked mitotic figures. The number of annotations per image 
represents the MC. For statistical analysis, we used the MC of 
each pathologist individually and the average of both patholo-
gists (rounded up to a whole number).

The 2-tier grade was assigned by 1 pathologist (CAB) for 
the cases of the outcome data set according to the published 
criteria.28 The same MC as determined above by CAB was used 
for grading and the other parameters were determined in the 
WSIs, if the MC was below the threshold of the grading sys-
tem. For both the MC and tumor grade, the pathologists were 
blinded to patient outcome and results of the nuclear evaluation 
methods.

Statistical Analysis

Statistical analysis and graph creation were performed by 
GraphPad Prism version 5.0 (GraphPad Software, San Diego, 
California), IBM SPSS Statistics version 29.0 (IBM Corporation, 
Armonk, New York), and R version 4.2.2 (R Foundation, 
Vienna, Austria).

Rater reproducibility (outcome data set).  Rater reproducibility 
was determined for the cases of the outcome data set. For cat-
egorical estimates, inter-rater and intrarater reproducibility was 
determined by Light’s kappa and weighted Cohen’s kappa (k). 
The level of agreement was interpreted as poor = 0, slight = 
0.01–0.20, fair = 0.21–0.40, moderate = 0.41–0.60, substan-
tial = 0.61–0.80, and almost perfect = 0.81–1.00.25 For pathol-
ogists’ measurements (numerical values), inter-rater agreement 
was measured by the intraclass correlation coefficient (ICC; 
2-way agreement, single measures, and random) with the fol-
lowing interpretation: poor = 0–0.39, fair = 0.40–0.59, good 
= 0.6–0.74, and excellent = 0.75–1.00.25 To compare the esti-
mate categories assigned by each pathologist with the actual 
SD of nuclear area (algorithmic morphometry) of the individ-
ual case, linear regression was used.

Test accuracy (ground truth data set) and correlation (outcome 
data set).  The test accuracy of the nuclear evaluation methods 
was determined on 13 images from the test subset of the ground 
truth data set. Segmentation performance of the deep learning 
model (ie, overlap of the algorithmic segmentation map with 
the area of the ground truth annotations) was determined by the 
Dice score. The algorithmic performance to detect individual 
nuclei as compared with the ground truth was measured by the 
F1 score, recall (sensitivity), and precision. Measurement errors 
of algorithmic and manual measurements for the entire image 
were determined by comparison to the ground truth measure-
ment using the root mean squared error (RMSE). Algorithmic 

and manual measurements and pathologists’ estimates were 
compared with the ground truth measurements using scatter-
plots. The correlation between the algorithmic morphometric 
parameters was analyzed on the outcome data set using Pear-
son’s method.

Prognostic value (outcome data set).  The outcome metrics pri-
marily evaluated in this study (outcome data set) were tumor-
related mortality at any time of the follow-up period and 
tumor-specific survival time. Dogs that died due to other causes 
(not considered ccMCT-related by the clinician) were grouped 
with cases that survived the follow-up period (receiver operat-
ing characteristic (ROC) curves, scatter plots, sensitivity, and 
specificity) or were censored (Kaplan-Meier curves and hazard 
ratios). The bias of this outcome metric is the variable follow-
up period between cases without reported death (minimum of 
12 months) and the lack of conclusive proof of the cause of 
death. It cannot be ruled out that tumor-related mortality was 
missed in a few cases with a relatively short follow-up period, 
while acknowledging that most ccMCT patients who survive 
the first 12 months will die from other causes. To eliminate the 
bias of a variable follow-up period and unproven cause of 
death, tumor-specific mortality and overall mortality within the 
first 12 months of the follow-up period were used as alternative 
outcome metrics. Overall death was defined as the occurrence 
of death regardless of the cause of death.

Numerical tests (algorithmic and manual morphometry and 
MC) were analyzed by ROC curves (plotting sensitivity against 
specificity for numerous thresholds) and the area under the 
ROC curve (AUC) with 95% confidence intervals (95% CIs). 
The distribution of the algorithmic measurements and the MC 
were displayed in scatter plots comparing cases with tumor-
related mortality and other cases. Numerical tests with an AUC 
≥0.700 were dichotomized by thresholds, resulting in a uni-
form sensitivity value for the different tests, which allows com-
parison of the associated specificity values. For the MC, the 
threshold proposed by Romansik et al45 was used to group 
cases with values of 0–5 and ≥6. The range of the morphomet-
ric measurements was divided into 200 intervals (thresholds 
increased by 0.5% steps), and 2 thresholds leading to a sensi-
tivity of 76.9% (threshold 1: 10 true-positive cases and 3 false-
negative cases; represents the sensitivity value for the MC 
determined by CAB) and 53.8% (threshold 2: 7 true-positive 
cases, 6 false-negative cases) were selected. If multiple cut-off 
values resulted in the desired sensitivity value, the highest 
value was picked.

With the categorical data (dichotomized numerical tests 
and pathologists’ estimates), Kaplan-Meier curves, hazard 
ratios with 95% CI (univariate Cox regression), as well as sen-
sitivity (Sen, also known as recall), specificity (Sp), and preci-
sion (Pre, also known as positive predictive value), were 
calculated.

The pathologists’ measurements were analyzed individually, 
averaged, and combined (repeated measure data), when reason-
able. For combined data, bootstrapping (AUC values) or a 
mixed model (Cox regression) was used to calculate 95% CIs.
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Intratumoral heterogeneity (outcome data set).  Heterogeneity 
was evaluated for automated morphometric measurements 
between the different ROIs per case using the outcome data set. 
The difference between the 3 and 5 ROIs was determined by 
the coefficient of variation (SD/mean). The influence of the 
number of ROIs used for prognostic evaluation was determined 
by the AUC calculated from the mean measurements of 1, 2, 3, 
4, and 5 ROIs based on their order of selection within the WSI. 
Tumor heterogeneity as a prognostic test was defined by the 
SD between the 3 and 5 ROIs and by the proportion of ROIs 
with a morphometric measurement above threshold 1 (defined 
as a hotspot) over all evaluated ROIs.

Results

Rater Reproducibility

Inter-rater reproducibility was slight to fair for estimates (time 
point 1) of karyomegaly (k = 0.226) and 3-tier anisokaryosis 
(k = 0.187), whereas it was good for practicable measurements 
(12 nuclei) of mean nuclear area (ICC = 0.637, 95% CI = 
0.482–0.750), SD of nuclear area (ICC = 0.654; 95% CI = 
0.577–0.730), and maximum nuclear area (ICC = 0.683, 95% 
CI = 0.603–0.756). Categorization of the practicable measure-
ments (based on threshold 1 of the mean pathologists’ values) 
resulted in k = 0.432, k = 0.471, k = 0.497 for mean, SD, and 
maximum nuclear area, respectively. Consensus on the catego-
ries by at least 8/9 pathologists (excluding the 2 pathologists 
that did not do the measurements) occurred in 43 of 96 cases 
(45%) for karyomegaly estimates, in 62 of 96 cases (6465%) 

for mean nuclear area measurements, in 65 of 96 cases (68%) 
for SD of nuclear area measurements, and in 69 of 96 cases 
(72%) for maximum nuclear area measurements.

Intrarater reproducibility between time points 1 and 2 was 
moderate for estimates of karyomegaly (k = 0.51; 95% CI = 
0.44–0.58) and 3-tier anisokaryosis (k = 0.60, 95% CI = 0.55–
0.65). Comparing inter-rater and intrarater reproducibility, the 
higher inter-rater inconsistency can be largely explained by dif-
ferent interpretations by the pathologists of the vaguely pre-
defined thresholds. The variable application of the thresholds is 
illustrated in Fig. 2 and Supplemental Figure S3, which plot the 
3-tier anisokaryosis categories to its corresponding algorithmi-
cally measured SD of the nuclear area.

Test Accuracy and Correlation

Higher categories of karyomegaly and 3-tier anisokaryosis esti-
mates were more commonly assigned to cases with higher SD of 
nuclear area based on the ground truth annotations (Supplemental 
Tables S1 and S2) or based on their own measurements of 12 
nuclei (Supplemental Figure S5); however, there were marked 
inconsistencies between cases and pathologists.

The measurement errors/difference for gold standard man-
ual morphometry to the ground truth measurements are pro-
vided in Supplemental Table S3. Comparison of the 
measurement errors/difference of the gold standard manual 
morphometry with the other morphometry methods revealed 
that the practicable manual method (12 nuclei) had a markedly 
higher degree of errors (Supplemental Tables S4 and S5 and 
Supplemental Figures S4 and S5) and algorithmic morphome-
try had a slightly higher degree of errors (Supplemental Table 
S6 and Figure S6). Overall, the measurement errors were lower 
for nuclear size parameters than for nuclear shape parameters.

Segmentation performance of the deep learning–based algo-
rithm on the test subset of the ground truth data set had a Dice 
score of 0.785 (Fig. 3 and Supplemental Figure S7). The algo-
rithm detected 5.794 individual neoplastic objects, which, 
compared with the annotations in the ground truth data set, 
resulted in a performance of F1 score = 0.854, recall = 0.830, 
and precision = 0.880. The model was able to adequately seg-
ment most tumor nuclei even in images with prominent meta-
chromatic cytoplasmic granules, which partially obscured the 
nuclei (Supplemental Figure S8), and severe eosinophilic infil-
tration (Supplemental Figure S9). Comparison of the gold stan-
dard manual measurements with the algorithmic measurements 
on the outcome data set showed similar output of these meth-
ods for the nuclear size parameters but not for the evaluated 
nuclear shape parameters (Supplemental Figure S10).

Most morphometric parameters of nuclear area had a very 
strong correlation with each other including the 90th percentile 
to the median with a correlation coefficient of 0.936 (manual 
morphometry of ≥100 nuclei; Supplemental Table S7 and 
Figure S11) or 0.970 (algorithmic morphometry; Supplemental 
Table S8 and Figure S12). SD of eccentricity and solidity poorly 
to moderately correlated with the nuclear area parameters (SD, 
mean, median, 90th percentile, mean of the largest 10%, and 

Figure 2.  Illustration of the increase in the average 3-tier 
anisokaryosis estimate (time point 2, outcome data set) depending 
on the algorithmic standard deviation (SD) of the nuclear area for 
each pathologist (curves determined by linear regression). The 
curves show which anisokaryosis category was likely assigned by the 
corresponding pathologist to a case depending on the SD of nuclear 
area measured. Curves were smoothed using a spline regression. 
Pathologists P4 and P9 did not complete time point 2 and are not 
included in this graph. The results for anisokaryosis estimates at time 
point 1 are presented in Supplemental Figure S3.
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percentage of large nuclei) with coefficients ranging between 
0.100 and 0.320 for manual morphometry of ≥100 nuclei and 
between 0.404 and 0.674 for algorithmic morphometry.

Prognostic Value

Of the 96 cases (78 low-grade cases and 18 high-grade cases) 
included in the outcome data set, death was attributed to the 
ccMCT in 13 cases with a median survival time of 4.3 months 
(range = 0.5–24). Other cases (N = 83) were lost to follow-up 
(N = 72) with a median follow-up period of 24 months (range 
= 12–45.3 months) or were reported to have died due to ccMCT-
unrelated causes (N = 11) with a median survival time of 8.5 
months (range = 0.2–29.7). At 12 months after surgical removal, 
10 had died due to ccMCT-related and 6 due to ccMCT-unre-
lated causes. The demographic characteristics of this study pop-
ulation are described in the Supplemental Table S9.

The frequency distribution of nuclear morphometry 
(Supplemental Figure S13) was able to discriminate cases 
without tumor-related and overall death from other cases as 
indicated by high AUC values for each method. In comparison 
to the gold standard nuclear morphometry (≥100 nuclei; 
Supplemental Tables S10–S12), practicable manual morphom-
etry (12 nuclei; Supplemental Table S13) and algorithmic mor-
phometry (Supplemental Tables S14–S16) achieved higher 
AUC values for patient survival (Fig. 4). For example, AUC 
(tumor-specific survival) of the SD of nuclear area was 0.839 
(95% CI = 0.701–0.977) for gold standard morphometry, 
ranged between 0.823 and 0.960 for practicable morphometry 
of the individual pathologists and was 0.943 (95% CI = 0.889–
0.996) for algorithmic morphometry. The independent bench-
mark MC had an AUC for tumor-specific survival of 0.885 
(95% CI = 0.765–1.00, P < .001) for the first pathologists, 
0.870 (95% CI = 0.767–0.972, P < .001) for the second 

pathologist, and 0.900 (95% CI = 0.807–0.993, P < .001) for 
the average count, which was somewhat below most morpho-
metric size parameters of the practicable and algorithmic 
approach. On the contrary, algorithmic shape measurements 
had AUC values below the MC, whereas mean shape values 
did not provide any prognostic information (AUC values close 
to 0.5).

Comparing the 2 outcome groups (tumor-related death vs. 
other) shows that the nuclear size measurements are able to 
distinguish patient outcome at a high sensitivity (threshold 1) 
or specificity (threshold 2), depending on the selected thresh-
old (Fig. 5). Scatterplots for the further relevant parameters of 
manual (≥100 and 12 nuclei) and algorithmic nuclear mor-
phometry are provided in Supplemental Figures S14–S16. The 
specificity and precision values based on threshold 1 are pro-
vided in Table 2 for manual and algorithmic SDs of area mea-
surements, revealing a high performance of the algorithm and 
high variability between the pathologists in the threshold 
required to obtain the same sensitivity values. For SD of 
nuclear area based on algorithmic morphometry, a tumor-spe-
cific death rate of 3.9% (false omission rate) and 52.6% (preci-
sion) was determined for cases below and above the threshold 
of ≥9.0 µm2, respectively. Classification results of further mor-
phometric methods and parameters are provided in 
Supplemental Tables S19–S22, and the variability of manual 
morphometry between pathologists is summarized in 
Supplemental Figure S17.

The categorical anisokaryosis estimates by pathologists 
resulted in highly variable Sen and Sp values for tumor-spe-
cific survival ranging between Sen = 100%/Sp = 4.8% 
(pathologist 8) to Sen = 46.2%/Sp = 98.8% (pathologist 7) for 
anisokaryosis 1 vs 2 and 3, between Sen = 84.6%/Sp = 69.9% 
(pathologist 5) to Sen = 0%/Sp = 100% (pathologist 1) for 
anisokaryosis 1 and 2 vs 3, and between Sen = 92.3%/Sp = 
31.3% (pathologist 11) to Sen = 0%/Sp = 98.8% (pathologist 
5) for karyomegaly (Fig. 6 and Supplemental Tables S17 and 
S18). The performance of the estimates by almost all patholo-
gists was below the algorithmic ROC curve (Fig. 6). As com-
pared with the MC of the first pathologist classified by the 
threshold proposed by Romansik et al45 (Sen = 79.6%, Sp = 
92.8%), the sensitivity for tumor-specific survival was slightly 
higher for the 2011 2-tier histologic grade (Sen = 84.6%, Sp = 
91.6%) due to the combination with the nuclear characteristics. 
The MC classified by the threshold proposed by Romansik et 
al45 of the second pathologists resulted in a Sen of 84.6% and 
Sp of 75.9% and of the average count resulted in a Sen of 
76.9% and Sp of 85.5%.

Kaplan-Meier curves and hazard ratios determined that 
patient survival time was significantly different for cases with 
low vs high anisokaryosis based on the predefined categories 
of the estimates and based on threshold 1 for nuclear mor-
phometry of SD of area (Fig. 7, Supplemental Figures S18–
S22, and Supplemental Tables S23–S26). The hazard ratios of 
the morphometric size measurements were higher than those 
for the shape measurements (Supplemental Tables S24 and 
S26). For the MC (classified by the threshold proposed by 

Figure 3.  Example of an algorithmic segmentation mask for 
an outcome case. In rare instances, 2 nuclei are connected 
(undersegmentation). The algorithm has the tendency for omission 
of few neoplastic nuclei, whereas rarely false objects are detected.
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Romansik et al45), the hazard ratios were 30.5 (95% CI = 7.8–
118.0, P < .001) for the first pathologist, 13.8 (95% CI = 3.0–
62.6, P < .001) for the second pathologists, and 14.6 (95% CI 
= 3.9–53.4, P < .001) for the average count (Supplemental 
Figure S23). The histologic grading system resulted in a hazard 
ratio of 46.5 (95% CI = 9.6–223.3, P < .001).

Intratumoral Heterogeneity (Algorithmic 
Morphometry)

Some variability in the measurements between the tumor loca-
tions of the 3 to 5 ROIs was noted for the different algorithmic 
morphometric parameters (Supplemental Table S27 and Figure 

S24). Regarding the prognostic classification based on thresh-
old 1 (the sensitive threshold) of SD of the nuclear area, 39 of 
96 cases (41%) had divergent (low and high) measurements 
between the individual ROIs (Table 3). Based on threshold 2 
(the specific threshold), divergent classification between the 
ROIs of 1 tumor occurred in 18 of 96 cases (19%). However, 
the overall test performance (determined by the AUC) only 
increased mildly with the number of ROI used for statistical 
analysis, except for SD of eccentricity (Supplemental Figure 
S25).

Tumor heterogeneity as a prognostic test had a high AUC 
value for tumor-related death (Supplemental Table S28), ie, 
cases with a higher number of ROIs above the prognostic 

Figure 4.  Graphical illustration of the area under the curve (AUC; point estimator indicated by black dot) with its 95% confidence intervals 
(black line) and probability density function (red, green, and blue areas) using bootstrapping for different nuclear morphometry parameters 
regarding tumor-specific survival. Algorithmic morphometry is displayed in blue and manual morphometry by pathologists in green (gold 
standard method) and red (practicable method) density functions. For practicable manual morphometry of 12 nuclei, the maximum value 
is equivalent to the 90th percentile. These graphs show that algorithmic and practicable manual morphometry have an at least equivalent 
prognostic value to the gold standard method regarding the AUC for all the displayed morphometric parameters, which include (a) mean 
nuclear area, (b) standard deviation (SD) of nuclear area, (c) 90th percentile of nuclear area, (d) 90th percentile/median nuclear area, (e) 
percentile of large nuclei with an area of >37.8 µm2, (f) SD of eccentricity, and (g) SD of solidity.
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threshold or cases with high variability between the different 
tumor locations were more likely to be aggressive tumors. For 
the morphometric parameter of SD of nuclear area, the SD 
between the different ROIs had an AUC of 0.790 (95% CI = 
0.632–0.947), and the proportion of hotspot ROIs (above 

threshold 1 = 9.0 µm2) had an AUC of 0.890 (95% CI = 
0.780–1.00). With a higher proportion of hotspot ROIs, the 
tumor-related death probability increases (Table 3), and group-
ing cases with 0%–20% vs ≥40% hotspot ROI resulted in a 
Sen of 92.3% and Sp of 78.3%.

Figure 5.  Scatterplots comparing cases with tumor-related mortality (TRM) with others (survived follow-up period or died due to tumor-
unrelated cause). The short solid lines represent the mean of the measurement of the respective outcome group. The 3 graphs show that 
these prognostic factors can distinguish canine cutaneous mast cell tumor patients with TRM from others with high sensitivity or specificity, 
depending on the selected threshold. (a) Standard deviation (SD) of nuclear area measured by gold standard manual morphometry. The lower 
broken line represents threshold 1 (6.4 µm2; sensitivity: 76.9%, specificity: 71.1%) and the upper broken line represents threshold 2 (9.3 µm2; 
sensitivity: 53.8%, specificity: 97.6%). (b) SD of nuclear area measured by fully automated morphometry. The lower broken line represents 
threshold 1 (9.0 µm2; sensitivity: 76.9%, specificity: 89.2%) and the upper broken line represents threshold 2 (11.5 µm2; sensitivity: 53.8%, 
specificity: 100%). (c) Mitotic count by the first pathologist. The broken line represents the threshold according to Romansik et al45 (≥6; 
sensitivity: 76.9%, specificity: 92.8%).

Table 2.  Sensitivity, specificity, and precision regarding tumor-related mortality for the standard deviation (SD) of nuclear area measured 
by the different morphometric methods.

Method Pathologist Threshold Sensitivity Specificity Precision

Manual (≥100 nuclei) N/A ≥6.4 µm2 76.9% 71.3% 29.4%
Manual (12 nuclei) P1 ≥8.0 µm2 76.9% 84.3% 43.5%

P2 ≥9.8 µm2 76.9% 84.3% 43.5%
P3 ≥10.9 µm2 76.9% 88.0% 50.0%
P5 ≥13.4 µm2 76.9% 86.7% 47.6%
P6 ≥8.5 µm2 76.9% 69.9% 28.6%
P7 ≥12.2 µm2 76.9% 95.2% 71.4%
P8 ≥10.5 µm2 76.9% 84.3% 43.5%
P10 ≥14.0 µm2 76.9% 90.4% 55.6%
P11 ≥12.2 µm2 76.9% 84.3% 43.5%

Algorithmic N/A ≥9.0 µm2 76.9% 89.2% 52.6%

N/A, not applicable; P1–P11, pathologists 1–11.
The classification threshold is adapted equally for all tests to the sensitivity value of the mitotic count by one of the 2 pathologists (CAB) at the proposed 
threshold by Romansik et al45 of ≥6 (sensitivity: 76.9%; specificity: 92.8%; precision: 62.5%).
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Discussion

This study assessed several nuclear evaluation methods, includ-
ing anisokaryosis estimates, manual morphometry, and algo-
rithmic morphometry pertaining to reproducibility, measurement 
accuracy, and prognostic utility. This work represents a compre-
hensive veterinary study to: (1) compare anisokaryosis esti-
mates with morphometry and (2) develop and validate (2A) a 
practicable manual morphometry method and (2B) algorithmic 
morphometry. The results of this study highlight the limitations 
of estimating nuclear characteristics of tumor cells as part of 
prognostic histologic evaluation, particularly regarding rater 
reproducibility. Nuclear morphometry has several advantages 
over categorical evaluation of nuclear features; however, large 
numbers of cells cannot be measured by pathologists in a rou-
tine diagnostic setting. Measurement of ≥100 nuclei (gold stan-
dard method) required an average of 17.5 minutes. Our proposed 
practicable manual nuclear morphometry and automated nuclear 
morphometry approaches can overcome these limitations while 
having a high prognostic value and practicability that allows 
integration into routine diagnostic workflows of laboratories 
using digital microscopy. The choice of using small ROIs for 
algorithmic morphometry was mostly made to ensure practica-
bility of the proposed approach, including the need for 

computational resources for image analysis. The size of the 
ROIs is roughly equivalent to photomicrographs at 400× using 
a camera mounted on a light microscope, making this approach 
also feasible for pathologists that do not have access to WSI.

The results of this study show low inter-rater reproducibility 
for anisokaryosis estimates in ccMCT. Given the wide varia-
tion in sensitivity and specificity (tumor-specific survival) 
when comparing individual pathologist’s estimates, this param-
eter has different prognostic values between pathologists. Low 
inter-rater reproducibility may be the result of the following 2 
issues: (1) distinct anisokaryosis categories are difficult to pre-
cisely define and (2) the defined thresholds between the cate-
gories are interpreted differently by individual pathologists. A 
vague definition of the categories (ie, mild, moderate, severe, 
or similar) is common in the current literature;17,18,29,31,40,41,43,47 
thus, we decided to use a similar approach for the 3-tier aniso-
karyosis method. Other studies provide a more specific defini-
tion for the anisokaryosis categories with percentage of affected 
cells and/or degree (fold-change) of nuclear size variation,21,28,36 
as for the karyomegaly definition used in this study. Regardless 
of the use of a vague or more specific definition, study partici-
pants had difficulty applying the categories in the same man-
ner. The specific definitions (fold-change size variation in X% 
of nuclei) are interpreted differently by pathologists when 

Figure 6.  Comparison of the pathologists’ sensitivity and specificity values for anisokaryosis estimates of time points 1 (dots) and 2 (triangle) 
regarding tumor-related mortality. The solid line in both graphs represents the same ROC curve for standard deviation (SD) area measured 
by the deep learning-based algorithm. (a) Pathologists’ estimates (dots and triangles) based on the 3-tier anisokaryosis (1: none to mild, 2: 
moderate, or 3: severe) approach. Two of the 3 categories are combined into none to moderate vs severe (red symbols) and none to mild vs 
moderate to severe (blue symbols) anisokaryosis. (b) Pathologists’ estimates by the karyomegaly definition (green symbols). Both graphs show 
that anisokaryosis estimates by all pathologists have a good prognostic value almost reaching the performance of the deep learning–based 
algorithm (ROC curve). However, the individual pathologists’ sensitivity and specificity values vary markedly, indicating relevant differences in 
the thresholds between the categories that each pathologist applies.
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estimated. Further studies are needed to evaluate methods that 
improve reproducibility, such as pictorial illustrations of each 
category or reference sizes within the image based on a scale 
overlay (digital microscopy) or nontumor cell within the image 
(light microscopy), similar to that used for the lymphoma sub-
type classification.52 Of note, average neoplastic mast cells in 

the tumor section seem to be a less ideal reference size, as 
aggressive tumors not only have a higher variation in nuclear 
size but also a higher mean/median nuclear area. When creat-
ing new definitions for reproducible anisokaryosis estimates, 
the numerical morphometry data may guide finding prognosti-
cally meaningful thresholds a priori.

Figure 7.  Kaplan-Meier curves regarding tumor-specific survival time for different tests on nuclear size evaluation. (a) Karyomegaly estimates 
(combined data from time point 1 of all 11 pathologists). The hazard ratio is 7.6 (95% CI = 5.7–10.1, P < .001). (b) Standard deviation (SD) 
of nuclear area measured by gold standard manual morphometry (≥100 nuclei). The hazard ratio for this test is 24.8 (95% CI = 7.5–81.2, P < 
.001). (c) SD of nuclear area measured by practicable manual morphometry (12 nuclei; combined data of all 9 pathologists). The hazard ratio 
for this test is 9.0 (95% CI = 6.0–13.4, P < .001). (d) SD of nuclear area measured by algorithmic morphometry. The hazard ratio for this 
test is 18.3 (95% CI = 5.0–67.1, P < .001). These graphs show that the 4 prognostic factors can separate patients (based on the proposed 
threshold) according to their survival probability.

Table 3.  Distribution of the outcome of cases based on the proportion of hotspot regions of interest (ROI, classified by threshold 1) 
according to the standard deviation of nuclear area measurements (fully automated morphometry; calculated by the number of ROI with a 
measurement above threshold 1 (9.0 µm2) divided by the number of evaluated ROI), comparing cases with tumor-related mortality (TRM) 
to other cases without TRM.

Outcome

Proportion of hotspot ROI

0/3–5 (0%) 1/5 (20%) 2/5 (40%) 2/4 (50%) 3/5 (60%) 4/5 (80%) 5/5 (100%)

TRM 1 0 3 0 0 2 7
Other 47 18 6 1 6 3 2
Death probability 2% 0% 33% 0% 0% 40% 78%

For each case, 3 (N = 1), 4 (N = 4), or 5 (N = 91) ROIs were analyzed.
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Low reproducibility of pathologists’ estimates is the main 
motivation for morphometry15,48 and the development of the 
different algorithmic approaches. Manual morphometry has 
been shown to have high reproducibility,15 but it is impractical 
to measure a larger number of cells for routine diagnostic 
pathology. In our study, we limited the number of cells to 12 
(stratified sampling method) with the intention of creating a 
practical quantitative test, although some study participants 
commented that they found annotating the 12 nuclei challeng-
ing for the time available in a diagnostic setting. Despite 
improved reproducibility as compared with estimates, signifi-
cant differences between pathologists were still noted, suggest-
ing that 12 selected nuclei with stratified sampling may not be 
representative enough for each case. Interestingly, the maxi-
mum nuclear area measured by manual morphometry (12 
nuclei) had the highest inter-rater reproducibility in this study 
(compared with anisokaryosis estimates and other parameters 
of practicable manual morphometry), while also having a good 
prognostic value. Measuring just one of the largest neoplastic 
nuclei in the tumor section would improve the feasibility of 
applying morphometry and should be evaluated as a prognostic 
factor in future studies. Owing to intratumoral heterogeneity, 
reproducibility may be reduced when this task is performed on 
WSI and not restricted to a few preselected tumor regions. 
Future studies should compare reproducibility of manual mor-
phometry depending on the number of tumor nuclei annotated 
(less or more than 100 nuclei) and the method of cell selection 
(complete vs stratified). Using 1 algorithm will result in 100% 
reproducibility;11 however, the reproducibility between differ-
ent segmentation models (based on different network architec-
tures and/or training/validation data) that may be applied in 
different laboratories needs to be evaluated (interalgorithmic 
reproducibility).

Identification of nuclei and their outlines is generally a 
straightforward task for pathologists and trained deep learning 
models. However, it is our experience from the manual annota-
tions (pathologists’ experiments and creation of the ground 
truth data set) that identification of the cell type (neoplastic 
mast cell vs stromal cell, etc) and nuclear borders can be diffi-
cult for some cells. Nuclear membranes may be obscured in 
heavily granulated ccMCT. We therefore evaluated the mea-
surement accuracy of manual and algorithmic morphometry. 
Compared with the ground truth, manual morphometry of 12 
nuclei resulted in an overestimation of nuclear size, suggesting 
that pathologists had a tendency to oversample larger cells 
within the ROIs. In contrast, the algorithm sampled most nuclei 
in the ROIs (little sampling bias) and was able to accurately 
segment mast cell nuclei, resulting in a smaller error for nuclear 
size measurements. The perceived sources of errors of the seg-
mentation model are discussed in the following sentences. 
Undersegmentation (algorithmic division of the image into too 
few segments, ie, nuclei, leading to the interpretation of exces-
sively large nuclei) was a rare problem that resulted in slight 
overestimation of karyomegalic cells. As compared with other 
tumor types, undersegmentation may be less relevant due to the 
lack of close cell contact between the neoplastic round cells 

and the moderate amount of cytoplasm that separates the neigh-
boring mast cell nuclei.22,24 Oversegmentation (segmentation 
of only a part of the nucleus) and omission of neoplastic cells 
rarely occurred, particularly when cytoplasmic granules 
obscured the nucleus. It should be noted that the omission of 
neoplastic cells does not affect the overall morphometry if this 
is a random error. Another source of error that rarely occurred 
for our algorithm is the segmentation of non-neoplastic nuclei, 
such as stromal cells or endothelial cells, which should be 
included in higher numbers in future training data sets. It was 
beyond the scope of the present study to evaluate the robust-
ness of the segmentation models to changes in the image char-
acteristics, particularly the different WSI scanners and tumor 
types, as these have been identified as relevant sources of a 
domain shift that lead to reduction in the algorithmic perfor-
mance of deep learning–based mitotic figure algorithms.3,4

All these sources of algorithmic error—ie, undersegmenta-
tion, false object localization, and potential domain shift—may 
bias the nuclear size measurements, and further improvements 
of the model are warranted. The potential sources of domain 
shift (particularly different WSI scanners) should be consid-
ered for the development of future data sets. Deep learning–
based models are the state-of-the-art for nuclear segmentation 
(as compared with traditional machine learning methods) as 
demonstrated by several computer science challenges.23,30 
Future studies should evaluate an instance segmentation model 
for ccMCT that can better separate overlapping/connected 
nuclei and completely segment or omit obscured nuclei. Based 
on the frequency and extent of error in nuclear segmentation, 
different degrees of human–machine interaction (computer-
assisted vs fully automated prognosis) may be recommended to 
reduce errors during case evaluation.7,39 In this study, we did 
not apply any human–machine interaction; however, we sug-
gest that the model’s segmentation mask (overlay on the hema-
toxylin and eosin image) should be verified visually by a 
trained pathologist if algorithmic morphometry is applied for 
routine diagnostic service. This transparency of the intermedi-
ate results of the segmentation model can be used to remove 
algorithmic errors, including undersegmentation and overseg-
mentation as well as detection of non-neoplastic nuclei.

Two-dimensional morphometric measurements were 
employed in the present study. Other studies have used stereo-
logical estimates of nuclear volume (3-dimensional).15,48 The 
rationale for estimating nuclear volume is that the measured 
area of the nucleus (a 3-dimensional structure) in 2-dimen-
sional tissue sections is influenced by the position and orienta-
tion of the nucleus to the plane of section.13,15 The incorrect 
assumption of orderly positioning and orientation of the nuclei 
along the plane of section introduces bias, such as the increased 
chance of evaluating larger nuclei more frequently.13 While we 
acknowledge that our measurements may not perfectly corre-
late with 3-dimensional nuclear characteristics, we assume that 
our measurements follow statistical principles that allow calcu-
lation of the probability density function. We argue that the 
3-dimensional methods might not be ideal either. Calculations 
of a 3-dimensional volume from a 2-dimensional area 
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measurement is based on the assumption that all 3-dimensional 
structures have the same volume, whereas the difference in the 
measured area is assumed to be related to the different planes 
of sections through the nuclei. However, a uniform nuclear vol-
ume is not the case for neoplastic nuclei with anisokaryosis. 
The benefit of 2-dimensional morphometry is that different 
parameters (mean, SD of nuclear area, 90th percentile, etc) of 
size and shape can be evaluated, whereas the stereologic 
approach is restricted to the mean volume. A direct comparison 
of the prognostic value of 2- and 3-dimensional-based methods 
may be an interesting subject for future studies.

Most nuclear size parameters had good prognostic value, 
while practicable manual and algorithmic morphometry pre-
dicted outcomes a little bit better than gold standard manual 
morphometry. The prognostic ability of practicable manual 
morphometry is encouraging considering that this test was 
restricted to 12 nuclei using a stratified sampling strategy, 
whereas the gold standard manual method evaluated 100 nuclei 
with a complete sampling within random grid fields. Our find-
ings (2-dimensional morphometry) stand in contrast to the con-
clusions of Casanova et al,15 who found limited prognostic 
value of the volume-weighted mean nuclear volume (3-dimen-
sional morphometry). The benefit of algorithmic morphometry 
is that a large number of nuclei (usually >1000, complete sam-
pling strategy) can be evaluated, increasing the representative-
ness of the measurement and thus increasing the prognostic 
value as compared to the manual measurements.

While most size measurements had a very similar prognos-
tic relevance, the parameters 90th percentile/median (approxi-
mating the 2011 karyomegaly definition 28) were not particularly 
relevant in this study population due to the high correlation 
between the 90th percentile and median, which reduced the 
effect size of the quotient. Defining karyomegaly through the 
proportion of tumor cells with enlarged nuclei above a specific 
nuclear area (such as ≥38 µm2) seems to be more appropriate; 
however, it is impractical for evaluations using traditional light 
microscopy. Of note, the manual measurement of one of the 
largest nuclei in the image (maximum measurement by pathol-
ogists), reflecting the presence or absence of few karyomegalic 
cells, had surprisingly high prognostic value and may be a very 
practical prognostic test. Nuclear morphometry may represent 
a useful alternative to karyomegaly estimates for use in the 
2011 grading system,28 providing that the laboratory uses digi-
tal microscopy. Validation of our findings is needed in larger 
study populations. Further studies are needed to evaluate the 
prognostic relevance of the different morphometric parameters 
of automated and practicable manual morphometry for further 
tumor types.

Another topic for future research is to combine different 
nuclear characteristics, such as nuclear size, shape, orientation, 
and spatial distribution.1,32 In our study, manual and algorith-
mic shape assessments had a markedly lower prognostic rele-
vance than nuclear size parameters; however, it was beyond the 
scope of this study to evaluate whether nuclear shape assess-
ments can add prognostic information when combined with 
nuclear size parameters.

Limitations of the present study are the lack of confirmation 
of the cause of death of the patients and the low number of 
cases with tumor-related death. These limitations justify a vali-
dation study on a second/independent outcome data set. The 
low number per outcome event also hindered multivariate anal-
ysis in determining whether a combination of several size and 
shape parameters had an added value.55 The prognostic results 
of the MC are as expected from the previous literature,9,10,12,45 
suggesting that this outcome data set is representative. A great 
advantage of this outcome population is that all patients were 
exclusively treated by complete surgical removal, eliminating 
the bias of variable treatment strategies on patient survival.

Tumor heterogeneity is interesting regarding sampling strat-
egies of tumor regions and understanding tumor biology. The 
use of a deep learning–based algorithm allowed us to analyze 
several ROIs and thus enabled intratumoral comparison of 
morphometric measurements in ccMCT for the first time. 
Although we observed variability of the morphometric mea-
surements between the different tumor regions, the number of 
ROIs used for prognostic evaluation generally had a minor 
effect on the determined AUC values. Although analysis of a 
single ROI provided a satisfactory prognostic interpretation of 
the case, a higher number of ROIs or potentially larger ROI 
sizes might be slightly beneficial, which should be evaluated in 
a future study in more detail. Of note, the maximum value of 
the analyzed ROI per case did not result in a higher discrimina-
tive ability of patient survival than the average of all ROIs. 
However, as we had selected the representative tumor regions 
without attention to nuclear features and restricted the analysis 
to a few ROIs, it remains unknown whether areas with the 
highest morphometric values in the tumor section would be 
favorable for prognostic assessment of the case.

It is intriguing that intratumoral heterogeneity of morphom-
etry itself had a moderate to good discriminative ability for 
patient survival, even though the heterogeneity measurement 
was restricted to 5 tumor regions. It would be interesting to 
explore the distribution of nuclear parameters throughout the 
entire tumor sections, as has been previously done for nuclear 
morphometry in human tumors 1 or for the MC in ccMCT.7,8 
Particularly, the prognostic test “proportion of hotspot ROI” 
would probably benefit from a more comprehensive analysis of 
the entire tumor section. These fully automated nuclear mor-
phometry algorithms have great potential for employing intra-
tumoral heterogeneity as a prognostic test.

Conclusion

Poor rater reproducibility of anisokaryosis estimates hinders 
meaningful application of this test for routine tumor prognosti-
cation. An alternative to estimation is nuclear morphometry, 
the advantages of which include high reproducibility and the 
capability of determining meaningful prognostic thresholds 
based on the association with patient outcome. Although man-
ual measurements of a larger number of cells are impractical 
for routine application, we have shown that assessment of a 
few (12) tumor nuclei using a stratified sampling strategy 
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provides improved rater reproducibility (as compared with 
estimates) and a meaningful prognostic information (as com-
pared with the gold standard manual morphometry method). In 
addition, we propose a deep learning–based algorithm that is 
capable of analyzing thousands of cells within seconds at low-
computational costs. This study demonstrated a high-measure-
ment accuracy and high prognostic value of fully automated 
nuclear morphometry for ccMCT. In this study population, 
morphometric parameters evaluating the nuclear area (such as 
the standard deviation or 90th percentile) were particularly 
prognostically relevant. The results of this study encourage the 
application of automated nuclear morphometry for routine 
tumor evaluation in laboratories with established digital work-
flows. A more thorough investigation of tumor heterogeneity 
and its prognostic value is warranted based on our preliminary 
findings with a relatively low number of tumor regions.
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