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Abstract

Objectives Radical prostatectomy (RP) is a common intervention in patients with localized prostate cancer (PCa), with
nerve-sparing RP recommended to reduce adverse effects on patient quality of life. Accurate pre-operative detection
of extraprostatic extension (EPE) remains challenging, often leading to the application of suboptimal treatment. The
aim of this study was to enhance pre-operative EPE detection through multimodal data integration using explainable
machine learning (ML).

Methods Patients with newly diagnosed PCa who underwent [68Ga]Ga-PSMA-11 PET/MRI and subsequent RP were
recruited retrospectively from two time ranges for training, cross-validation, and independent validation. The presence
of EPE was measured from post-surgical histopathology and predicted using ML and pre-operative parameters,
including PET/MRI-derived features, blood-based markers, histology-derived parameters, and demographic
parameters. ML models were subsequently compared with conventional PET/MRI-based image readings.

Results The study involved 107 patients, 59 (55%) of whom were affected by EPE according to postoperative findings
for the initial training and cross-validation. The ML models demonstrated superior diagnostic performance over
conventional PET/MRI image readings, with the explainable boosting machine model achieving an AUC of 0.88 (95%
CI 0.87–0.89) during cross-validation and an AUC of 0.88 (95% CI 0.75–0.97) during independent validation. The ML
approach integrating invasive features demonstrated better predictive capabilities for EPE compared to visual clinical
read-outs (Cross-validation AUC 0.88 versus 0.71, p = 0.02).

Conclusion ML based on routinely acquired clinical data can significantly improve the pre-operative detection of EPE in PCa
patients, potentially enabling more accurate clinical staging and decision-making, thereby improving patient outcomes.

Critical relevance statement This study demonstrates that integrating multimodal data with machine learning significantly
improves the pre-operative detection of extraprostatic extension in prostate cancer patients, outperforming conventional
imaging methods and potentially leading to more accurate clinical staging and better treatment decisions.

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Clemens P. Spielvogel and Jing Ning contributed equally to this work.

Alexander R. Haug and Sazan Rasul jointly supervised this work.

*Correspondence:
Sazan Rasul
sazan.rasul@meduniwien.ac.at
Full list of author information is available at the end of the article

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

http://orcid.org/0000-0003-2898-3232
http://orcid.org/0000-0003-2898-3232
http://orcid.org/0000-0003-2898-3232
http://orcid.org/0000-0003-2898-3232
http://orcid.org/0000-0003-2898-3232
http://creativecommons.org/licenses/by/4.0/
mailto:sazan.rasul@meduniwien.ac.at


Key Points
● Extraprostatic extension is an important indicator guiding treatment approaches.
● Current assessment of extraprostatic extension is difficult and lacks accuracy.
● Machine learning improves detection of extraprostatic extension using PSMA-PET/MRI and histopathology.
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Introduction
Radical prostatectomy (RP) is a common treatment
option for patients with localized prostate cancer (PCa)
[1]. While RP often provides excellent curative results,
functional adverse effects such as erectile dysfunction
associated with surgical destruction of the neurovascular
bundles can occur [2]. In order to balance postoperative
functional [3] and long-term disease outcomes [4], cur-
rent practice guidelines recommend, therefore, nerve-
sparing RP in case of localized tumors. For tumors with
extraprostatic extension (EPE), including tumors with
extracapsular extension (ECE) (T3a) or seminal vesicle
invasion (SVI) (T3b), wide resection of periprostatic tissue
is recommended [1].
However, accurate pre-operative detection of EPE is

challenging due to the suboptimal sensitivity of multi-
parametric magnetic resonance imaging (mpMRI) and
positron emission tomography (PET) radiotracers that
target prostate-specific membrane antigen (PSMA), which

often leads to inadequate selection of surgical extent [5,
6]. Therefore, a more accurate approach for the pre-
operative assessment of EPE is highly desirable.
Machine learning (ML) can potentially enable more

accurate assessment by multimodal integration of imaging
and clinical data. However, two of the main criticisms of
clinical ML applications are the lack of insight into their
decision-making procedures and the fact that there are
few specialists who are skilled in both clinical and ML
aspects. On the one hand, novel explanatory methods can
improve validation, risk assessment, safety, comprehen-
sibility and the integration of ML systems with previously
derived clinical knowledge, leading to greater acceptance
in the medical community and thus to better health
outcomes [7–9]. On the other hand, automated ML
approaches promise to partially lift restrictions in terms of
the ML expertise required for clinical applications.
In this work, we therefore employ explainable and

automated ML to non-invasively and pre-operatively
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predict the presence of EPE in men with primary PCa
based on PSMA-PET/MRI, histological, and clinical
parameters to explore its potential for explainable ML-
assisted surgical guidance.

Materials and methods
Study design
For this pilot study of a prospective registered clinical trial
(NCT02659527), patients who underwent RP and
received a pre-operative [68Ga]Ga-PSMA-11 PET/MRI
scan between May 2014 and December 2019 were retro-
spectively enrolled to be employed during the develop-
ment (training and cross-validation) phase. For
independent validation, patients with the same inclusion
and exclusion criteria were enrolled who received a [68Ga]
Ga-PSMA-11 PET/MRI scan between May 2020 and
February 2021. Exclusion criteria are shown in the cohort
flow diagram (Fig. 1).
All patients underwent [68Ga]Ga-PSMA-11 PET/MRI

scans and received RP within a median of 43 ± 26 days
after the scan. In total, 24 pre-operative parameters were
extracted for each patient from the clinical data archive of
the Vienna General Hospital. Eleven qualitative, visually
assessed PET/MRI features were determined as part of the
clinical routine. In addition, six semi-quantitative PET/
MRI features as well as two blood-derived parameters
(pre-operative PSA and serum testosterone levels), three
biopsy-derived parameters including International Society
of Urological Pathology (ISUP) grading, ratio of tumor to
overall tissue and ratio of tumor-containing biopsy sam-
ples, and two general patient characteristics including age
and body mass index (BMI) were acquired. Criteria for the
selection of the employed parameters included their
routine assessment to ensure seamless integration of the
developed model into the clinical workflow, agreement
with the parameters acquired as specified by the study
protocol of the associated clinical trial (NCT02659527),
and a high probability for robustness to center-effects,
ensuring robustness and generalizability beyond the
development cohort.
The prediction target was EPE, which was defined as the

presence of either SVI or ECE based on the post-surgical
histopathology results. Two ML-based classification
models were created for the prediction of EPE. One model
was based on all 24 pre-operative features while the other
model was based only on non-invasively acquired para-
meters (exclusion of histology and blood parameters).
The diagnostic performance of the ML models was
compared to the pre-operative PET/MRI readings. An
overview of the study workflow is shown in Fig. 2. The
study was conducted with adherence to the Declaration of
Helsinki and approved by the local ethics committee
(ethics ID: EK 1985/2014). Patients approved their

participation via written informed consent. Reporting
was performed in accordance with the CLAIM
guidelines [10].

Image reading
[68Ga]Ga-PSMA-11 PET/MRI images were interpreted
using the Hermes Hybrid 3D software (Hermes Medical
Solutions, Sweden) by two clinical experts in hybrid
imaging (M. Hartenbach, nuclear medicine; P. Baltzer,
radiology). PET/MRI-derived features included tumor
stage, nodule status, metastasis stage, presence of bone
metastases, neurovascular bundle invasion, capsule
penetration, whether the prostate apex or whether the
prostate base was contacted by the tumor, seminal vesicle
invasion, presence of EPE, and the semi-quantitative
maximum standardized uptake value (SUVmax), SUV-
mean, SUVmin, SUVpeak, total lesion PSMA (TL-PSMA),
and PSMA-derived tumor volume (PSMA-TV). Grading
and staging were performed in accordance with the Union
Internationale Contre Le Cancer (UICC) tumor node
metastasis (TNM) classification of 2009 [11]. EPE was
determined to be present if either MRI or PSMA-PET
findings were suggestive of EPE. On MRI, visual assess-
ment of EPE was performed as suggested by Bloch et al
[12]. For PET, EPE status was positive if high PSMA
uptake was present outside the prostate capsule, especially
in the areas of the neurovascular bundles and surrounding
tissue. Details on image acquisition can be found in the
Supplementary section “Imaging protocol”.

Machine learning
To ensure robust performance estimation, 100-fold stra-
tified Monte Carlo cross-validation was performed with
80% of samples randomly assigned to the training set and
20% of samples assigned to the test set as part of the initial
training and cross-validation phase. The best model
during cross-validation was selected and further validated
on an independent test set. A total of five classification
algorithms were used, including decision tree (DT),
logistic regression (LGR), random forest (RF), extreme
gradient boosting (XGB), and explainable boosting
machine (EBM) [13]. Evaluation performance metrics
included area under the receiver operating characteristic
curve (AUC), accuracy, balanced accuracy, sensitivity,
specificity, positive predictive value and negative pre-
dictive value. Metric formulas are shown in the Supple-
mentary section “Performance metrics”. Details on
preprocessing are shown in the Supplementary section
“Machine learning preprocessing”.
Next to inherently interpretable models such as logistic

regression and EBM classifier, a variety of explainable
artificial intelligence functionalities were employed.
Insights into the predictive importance and directionality
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of the importance of individual features were investigated
via Shapley additive explanations (SHAP) [14]. EBM-
specific global feature-wise partial dependence plots
(PDP) were created to indicate the precise change in
model output with respect to feature values. Exploratory
data analysis was performed, including univariate
descriptive statistics for each feature and dimensionality
reduction based on uniform manifold approximation and
projection (UMAP) [15].

Statistical analysis
Continuous data were reported as mean ± standard
deviation (SD) or median and interquartile range. Cate-
gorical variables were expressed as numbers and percen-
tages. Diagnostic performance metrics are provided in
association with 95% confidence intervals (CI), calculated
over cross-validation folds where possible. For the inde-
pendent validation, 95% confidence intervals were calcu-
lated using 10,000 bootstrapping samples. Any missing
values were imputed using k-nearest neighbor imputation.
Subgroup differences in patient characteristics were
assessed using t-tests or Mann–Whitney U tests for

continuously distributed variables and either Fisher’s
exact test or Chi-squared test for categorical variables.
AUC values were compared using the DeLong test. Sta-
tistical significance was defined as p-values ≤ 0.05. All
employed software is listed in the Supplementary section
“Software”.

Results
Patients
For the development cohort, 122 patients with localized
PCa were assessed, 45 of whom had to be excluded due to
reasons displayed in Fig. 1. A total of 77 patients were
eligible for the initial training and cross-validation pro-
cedure. Patient characteristics stratified with respect to
the presence of EPE are shown in Table 1. Among the 77
patients, 44 (57%) were diagnosed with EPE based on the
post-surgical histology results, with 28 (36%) patients
affected by EPE based on visual PET/MRI assessment.
Interactivate descriptive statistics of the entire data can be
accessed via https://cspielvogel.github.io/epe_descriptive_
statistics/epe_descriptive_statistics.html. Dimensionality
reduction via UMAP indicated a tendency toward

Fig. 1 Cohort flow and validation diagram. A total of 107 patients were included in the overall analysis, 77 of whom were in the development cohort
(training and cross-validation) and 30 who were part of the independent validation cohort. EPE, extraprostatic extension
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similarity of patients with EPE over all features (Supple-
mentary Fig. 1). An independent validation cohort was
collected after the model development procedure was
concluded. The independent validation cohort was com-
prised of 30 patients with 15 (50%) being affected by EPE
based on histology. The patient characteristics of the
independent validation cohort are displayed in Supple-
mentary Table 3.

Diagnostic performance of machine learning models
For the prediction of EPE using all available pre-operative
features, the highest 100-fold Monte Carlo cross-
validation AUC was associated with the EBM at AUC
0.88 (95% CI 0.87–0.89), sensitivity 0.76 (95% CI
0.73–0.79), specificity 0.82 (95% CI 0.79–0.85), positive
predictive value 0.86 (95% CI 0.84, 0.88), negative pre-
dictive value 0.75 (95% CI 0.73–0.77), balanced accuracy

Fig. 2 Study workflow. A total of 77 patients with localized prostate cancer (PCa) underwent PET/CT examination and radical prostatectomy. Three
approaches for the assessment of extraprostatic extension were compared: (1) Visual qualitative assessment as performed in clinical routine, (2) Machine
learning modeling using non-invasive parameters, and (3) Machine learning modeling using invasive and non-invasive parameters. Comparative
diagnostic performance was assessed, and explainability methods for the machine learning models were integrated. The model using invasive and non-
invasive parameters was then validated on an independently collected cohort of additional 30 PCa patients
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0.79 (95% CI 0.77–0.81), and accuracy 0.79 (95% CI
0.77–0.81). For the second model built using only non-
invasive features, the EBM was again the best-performing
classifier with AUC 0.83 (95% CI 0.81–0.85), sensitivity
0.56 (95% CI 0.53–0.59), specificity 0.88 (95% CI
0.85–0.91), positive predictive value of 0.88 (0.86–0.90),

negative predictive value of 0.62 (95% CI 0.60–0.64),
balanced accuracy of 0.72 (95% CI 0.70–0.74), and accu-
racy of 0.70 (95% CI 0.68–0.72). Since the EBM surpassed
the performance of standard clinical PET/MRI read-out,
an additional independent validation was performed to
confirm the findings. In this additional validation step, the

Table 1 Patient characteristics including stratification by histology-confirmed extraprostatic extension status

Parameter Value Entire data No EPE EPE p-value

Number of patients, n (%) 77 (100.00%) 33 (42.86%) 44 (57.14%)

Age 64.97 (7.16) 63.85 (7.7) 65.82 (6.6) 0.2813

BMI 27.06 (3.51) 27.03 (3.45) 27.09 (3.55) 0.9464

ISUP

1 16 (20.78%) 12 (36.36%) 4 (9.09%) < 0.0001*

2 17 (22.08%) 12 (36.36%) 5 (11.36%)

3 14 (18.18%) 1 (3.03%) 13 (29.55%)

4 16 (20.78%) 4 (12.12%) 12 (27.27%)

5 8 (10.39%) 0 (0%) 8 (18.18%)

NA 6 (7.79%) 4 (12.12%) 2 (4.55%)

Neurovascular bundle contact (PET/MRI) 9 (11.69%) 1 (3.03%) 8 (18.18%) 0.0697

Bone metastases (PET/MRI) 5 (6.49%) 0 (0%) 5 (11.36%) 0.0670

Nodule status (PET/MRI) 11 (14.29%) 0 (0%) 11 (25.0%) 0.0018*

Metastases (PET/MRI) 7 (9.09%) 0 (0%) 7 (15.91%) 0.0177*

Location both sides (PET/MRI) 17 (22.08%) 8 (24.24%) 9 (20.45%) 0.7839

Location base (PET/MRI) 15 (19.48%) 3 (9.09%) 12 (27.27%) 0.0709

Location apex (PET/MRI) 0.38 (0.48) 0.33 (0.47) 0.41 (0.49) 0.5039

Seminal vesicle invasion (PET/MRI)

Yes 19 (24.68%) 0 (0%) 19 (43.18%) < 0.0001*

NA 2 (2.6%) 0 (0%) 2 (4.55%)

Extracapsular extension (PET/MRI) 0 26 (33.77%) 4 (12.12%) 22 (50.0%) 0.0006*

Extraprostatic extension (PET/MRI) 0 28 (36.36%) 4 (12.12%) 24 (54.55%) 0.0001*

Tumor stage (PET/MRI)

cT2a 13 (16.88%) 7 (21.21%) 6 (13.64%) < 0.0001*

cT2b 9 (11.69%) 4 (12.12%) 5 (11.36%)

cT2c 22 (28.57%) 18 (54.55%) 4 (9.09%)

cT3a 12 (15.58%) 4 (12.12%) 8 (18.18%)

cT3b 14 (18.18%) 0 (0%) 14 (31.82%)

cT3a+b 5 (6.49%) 0 (0%) 5 (11.36%)

cT4 2 (2.6%) 0 (0%) 2 (4.55%)

Ratio positive cylinders 0.45 (0.32) 0.26 (0.22) 0.62 (0.29) < 0.0001*

Positive tissue ratio 0.37 (0.25) 0.29 (0.18) 0.45 (0.28) 0.0342*

Pre-operative PSA 34.5 (97.38) 10.89 (8.79) 52.2 (125.72) 0.0112*

Pre-operative testosterone 3.44 (2.19) 4.08 (1.83) 3.1 (2.28) 0.2173

SUVpeak 9.82 (7.36) 7.63 (3.52) 11.46 (8.91) 0.0362*

SUVmean 6.84 (4.88) 5.5 (2.25) 7.84 (5.96) 0.0750

SUVmin 3.18 (3.47) 2.76 (1.46) 3.51 (4.38) 0.3577

SUVmax 14.35 (11.09) 11.27 (6.81) 16.66 (12.95) 0.0443*

TL-PSMA 67.07 (73.33) 47.26 (52.28) 81.93 (82.73) 0.0395*

PSMA-TV 9.41 (8.18) 8.95 (10.21) 9.76 (6.22) 0.1527

Data are n, mean (SD), or n (% of patients). Asterisks indicate significance
EPE extrapostatic extension, BMI body mass index, ISUP International Society of Urological Pathology, PSA prostate-specific antigen, NA not applicable (unknown)
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EBM achieved an AUC of 0.88 (95% CI 0.75–0.97), sen-
sitivity 0.93 (95% CI 0.80–1.00), specificity 0.60 (95% CI
0.33–0.87), positive predictive value 0.71 (95% CI 0.58,
0.87), negative predictive value 0.71 (95% CI 0.71–1.00),
balanced accuracy 0.77 (95% CI 0.63–0.90), and accuracy
0.77 (95% CI 0.63–0.90). The full spectrum of perfor-
mance metrics is shown in Fig. 3a. The performance of
other classifiers during cross-validation is shown in Sup-
plementary Figs. 2 and 3.

Comparison with visual PET/MRI interpretation
To introduce a baseline model for comparison with ML-
derived results, clinical-standard visual PET/MRI-based pre-
operative EPE estimation was compared to the histopatho-
logical ground truth to derive diagnostic performance
metrics. Visual interpretation yielded an AUC of 0.71, sen-
sitivity 0.55, specificity 0.88, positive predictive value 0.86,
negative predictive value 0.59, balanced accuracy 0.71, and
accuracy of 0.69. Performance metrics and confusion
matrices are shown in Fig. 3. Comparison of AUCs via
DeLong test indicated a significant improvement of the ML
model with invasive over non-invasive features only
(p < 0.0001). Further, there was a significant difference
between the ML model with invasive features and the visual
clinical PET/MRI read-out (p= 0.02). However, there was no
difference between the ML model with non-invasive features
only and the visual clinical PET/MRI read-out (p = 0.34).

Explainability of machine learning models
For the ML model, including invasive features, ISUP and
the ratio of positive biopsy cylinders were ranked most

and third most important in the feature importance
estimation based on SHAP (Fig. 4). Apart from the
addition of the two invasively derived features, the
remaining non-invasive features were approximately
consistently important over the invasive and purely non-
invasive model. A notable exception was SUVmax, which
ranked fourth most important in the non-invasive model
but was missing from the model with invasive features.
Owing to the discrepancy observed in the importance of
SUVmax across the two models, we hypothesized that
SUVmax might be redundant, and potentially correlated
with one of the invasive features. As a result, the ML
algorithm might have excluded the feature from the
model. Hence, we tested for linear correlation between
SUVmax and other features (Supplementary Fig. 4).
Spearman rank test indicated a slight but monotonous
and highly significant correlation between ISUP grade and
SUVmax (R= 0.37, p < 0.001, Supplementary Fig. 8). Due
to differences in feature importance estimation methods,
we validated SHAP importance using permutation
importance estimations (Supplementary Figs. 5 and 6)
which confirmed the SHAP feature importance despite
expected minor variations. Since SHAP feature impor-
tance has a low resolution in terms of providing insights
into the association of precise feature values and the
model output, EBM-specific PDPs were created (Supple-
mentary Fig. 7). The PDPs confirmed the expected feature
directions indicated by the SHAP analysis, however,
indicated a counter-intuitive, slight increase of the prob-
ability of the model outputting a positive EPE status at
tumor stage cT2c compared to lower stages.

Fig. 3 Comparison of the three investigated approaches for pre-operative EPE detection. a Diagnostic performance metrics of the three approaches.
b Confusion matrix of the visual clinical PET/MRI read-out. c Confusion matrix for the machine learning model based on non-invasive features only.
d Confusion matrix for the machine learning model based on non-invasive and invasive features. e Confusion matrix for the machine learning model
with non-invasive and invasive features on the independent test cohort. For c and d, predictions are shown cumulatively over all 100 folds. ACC,
accuracy; SNS, sensitivity; SPC, specificity; PPV, positive predictive value; NPV, negative predictive; BAC, balanced accuracy; AUC, area under the receiver
operating characteristic curve; EPE, extraprostatic extension
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Discussion
In this pilot study of the registered clinical trial
(NCT02659527), EPE was successfully predicted from
routinely recorded pre-operative parameters. The diag-
nostic performance of the explainable ML models was
compared to the performance of visual clinical read-outs of
[68Ga]Ga-PSMA-11 PET/MRI imaging. The ML models
increased the diagnostic performance by AUC 0.17 (0.71 vs
0.88), sensitivity 0.21 (0.55 vs. 0.76), negative predictive
value 0.16 (0.59 vs. 0.75), balanced accuracy 0.08 (0.71 vs.
0.79) and accuracy 0.17 (0.71 vs. 0.88) while the positive

predictive value was the same and specificity was
slightly higher for the visual assessment (0.88 vs. 0.82).
The model, which was based purely on non-invasive fea-
tures, was slightly better compared to clinical read-outs;
however, the difference was not significant. In the inde-
pendent validation, the performance of the invasive model
remained high (AUC 0.88), indicating the robustness of the
model.
We performed a literature search using PubMed on

December 4th, 2023, with the following search query:
(“machine learning” OR “deep learning” OR “artificial

Fig. 4 Global SHAP feature importance for the machine learning models with (a) non-invasive features only and (b) for all features. Features are ranked
in order of their importance with the most important feature at the top. Each dot represents a single patient’s prediction. Colors indicate the magnitude
of the feature value in each row for the given patient. The x-axis indicates the model’s tendency for the prediction of EPE or no-EPE due to the given
feature value for the given patient. ISUP, International Society of Urological Pathology (grade); EPE, extraprostatic extension
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intelligence”) AND PET AND (“extracapsular extension”
OR “extraprostatic extension”). The search yielded a total
of three publications [16–18], all of which were original
articles published between February 2021 and November
2023. In each of these three investigations, the predictive
analysis was exclusively based on imaging characteristics.
These encompassed both experimental radiomics features
and standard SUV parameters. However, none of these
studies incorporated blood, demographic, or histological
factors in their predictive models. Imaging was performed
in all three publications using PET/CT rather than PET/
MRI, and only the PET modality was considered for fea-
ture extraction. All studies employed Flourine-18 labeled
PSMA (either [18F]DCFPyL or [18F]F-PSMA-1007)
instead of the here employed [68Ga]Ga-PSMA-11 and
predicted ECE instead of EPE. The performances of the
associated studies ranged from AUC 0.63 to 0.77.
The 2024 EAU guidelines have only issued a weak

recommendation for MRI to detect EPE due to its
insufficient sensitivity to identify all tumors with extra-
prostatic growth and its reliance on interpretive exper-
tise, affecting diagnostic consistency [5]. The advent of
PSMA-PET/MR, as applied in this study, offers
enhanced sensitivity and specificity by targeting mole-
cular features of prostate cancer. Overall, our findings
contribute to the limited but growing evidence sup-
porting multimodal approaches, enhancing staging
accuracy by combining MRI’s spatial capabilities with
PSMA-PET’s molecular precision.
Particularly in mpMRI, image quality is paramount to

ensure diagnostic accuracy, especially for local staging
assessments of prostate cancer patients who underwent
MRI-guided biopsy [19]. High-quality MRI allows for more
accurate delineation of the prostate capsule and neigh-
boring structures, critical in EPE detection [20]. Francesco
Giganti et al have demonstrated that PI-QUAL
v2 simplifies image assessment and ensures that high-
quality images can be used for the subsequent diagnosis
[21]. Low-quality images can obscure early extraprostatic
signs, increasing false negatives. Ensuring high-quality
imaging protocols and standardizing MRI parameters, as
well as the integration of hybrid imaging modalities such as
PET/MRI can improve EPE diagnostic accuracy, further
supporting the integration of advanced imaging into pre-
operative assessment workflows.
In our study, we decided to omit experimental radiomics

features due to the current limitations in their readiness for
clinical application. Despite significant advances in the field
of radiomics, considerable challenges remain that impede
their integration into clinical practice. One of the primary
issues is the lack of standardization, a concern that persists
despite efforts such as the Image Biomarker Standardiza-
tion Initiative [22]. This lack of standardization affects

radiomics features, making them susceptible to variability
depending on the center, scanner, and protocol used, par-
ticularly in nuclear medicine and PET applications.
Moreover, radiomics features are sensitive to data formats,
preprocessing, and dataset inhomogeneity, leading to
challenges in reproducibility and standardization [23, 24].
Given these considerations and the fact that radiomics
features have not yet been implemented in clinical settings,
our opportunistic ML models allow for the integration of
features solely collected as part of routine clinical practice.
This approach aims to facilitate a more straightforward and
reliable integration of these models into clinical workflows,
ensuring safer, more interpretable, and more effective
implementation in real-world clinical scenarios. Still,
radiomics may represent a legitimate approach for the
assessment of image-based extraprostatic extension. For
example, a previously performed meta-analysis suggests
that among the 13 publications analyzed, the mean pooled
AUC for the detection of extraprostatic extension via MRI
radiomics was 0.80 [25].
The interpretability of our approach was further

enhanced by the application of the EBM algorithm, in
which each feature of an EBM model contributes to
predictions in a modular fashion. Consequently, the
impact of each isolated feature at a given value can be
precisely determined instead of approximation via meth-
ods such as SHAP. This allows to enable trust in the
model by demonstrating that reasonable and clinically
known associations are exploited by the model to make its
predictions. For example, it is reasonable to assume that a
higher ratio of tumor-positive biopsy cylinders is asso-
ciated with a higher aggressiveness and spread of the
tumor (Supplemental Fig. 7), likely being correlated with
the occurrence of EPE. Furthermore, when integrating
novel biomarkers into a glass-box model such as an EBM,
a precise assessment of the influence of a novel biomarker
on the model can be obtained. This may help to under-
stand the role of the biomarker, allow for integration with
existing medical knowledge, and enable the possibility of
more precise validation of the feature robustness when
employed in other models and scenarios. Our study fur-
ther confirms previous findings identifying SUVmax as a
non-invasive indicator for Gleason score and ISUP grade
[26]. Both EBM and SHAP can further provide insights
into the relative contribution of individual parameters,
allowing physicians to not only better understand the
predictive model but also improve the understanding of
the relevance of risk factors independently of the model.
Explainability methods, including EBM and SHAP, can
also provide guidance on how to use a model. For
example, features may not always be available in clinical
practice. If a feature is missing, it may be imputed or
approximated to allow for the application of the predictive
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model. The relative, global feature importance provided
by EBM and SHAP can guide physicians in understanding
how severe the impact of the missingness of a feature may
be and, therefore, whether the model can be trusted in a

given scenario. Additionally, SHAP can be employed to
provide insights into an individual patient’s prediction,
highlighting why the model assumes that a given predic-
tion may be reasonable for a given patient. Two examples

Fig. 5 SHAP importance for two example patients correctly predicted by the non-invasive model. Blue arrows indicate a shift of the model prediction toward
non-EPE due to the given feature while pink arrows indicate a shift toward a prediction of EPE. In a, an example patient with EPE is shown. Despite the feature
with the highest importance (ISUP grade) being 1, therefore indicating a tendency toward the prediction of non-EPE, the final prediction of the model was
EPE-positive since features including seminal vesicle invasion, tumor stage, and ratio of positive biopsy cylinders were in favor for the presence of EPE. In b, the
model predicted the patient correctly as EPE-negative even though the visual PET/MRI-based assessment by the imaging physician indicated positivity for
both, extraprostatic and extracapsular extension. ISUP, International Society of Urological Pathology (grade); EPE, extraprostatic extension
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of such a personalized SHAP-based prediction for our
model are shown in Fig. 5. Accurate pre-operative iden-
tification of EPE is challenging but crucial for the clinical
management of PCa patients. EPE, encompassing the
tumor’s local spread beyond the prostate, is detrimental
for clinical staging and crucial for surgical decision-
making, hormone, and radiation therapy decisions. As a
consequence, our findings indicate that ML approaches
may enhance TNM staging accuracy and treatment
decision-making in PCa. Despite the thorough validation
of our findings through explainable artificial intelligence
approaches and robust cross-validation as well as inde-
pendent validation, our study is not free of limitations,
and the results have to be interpreted with caution. ML
models employing medical imaging data are known to be
sensitive to variations in imaging protocol, scanner, and
center. In the present work, we aimed to counteract this
phenomenon by choosing robust imaging features which
are assessed as part of the clinical routine. The use of well-
established features in conjunction with explainability
methods further allowed us to assess whether the model
learned reasonable associations between features and the
prediction target, which is of high importance in this
study due to the limited cohort size and single-centric
nature. The primary objective of this research was to
explore the integration of established parameters through
ML to enhance clinical procedures. This approach aimed
to offer a robust and practical solution, circumventing the
need to acquire new, potentially complex, unreliable, and
expensive parameters and avoiding upstream alterations
to the existing clinical workflow. Hence, it was beyond the
scope of this work to discover new parameters linked to
EPE in primary prostate cancer. Lastly, despite the rig-
orous validation scheme employing both, cross-validation
and an independent validation set, further validation on
external cohorts is required to ensure generalizability.
Despite these limitations, this study provides solid evi-
dence for the possibility of integrating ML-driven tools for
supporting surgical decision-making by investigating a
well-characterized cohort with comprehensive imaging
and pathological information alongside rigorously applied
machine learning methods assessing the successful model
training despite limits in cohort size.
In conclusion, our study demonstrates that routinely

acquired parameters have the potential to aid clinical
treatment decisions in prostate cancer patients via pre-
operative detection of extraprostatic extension. The
findings of this study suggest that employing explainable
machine learning models for the anticipation of extra-
prostatic extension improves diagnostic performance in
comparison to standard visual assessment of [68Ga]Ga-
PSMA-11 PET/MRI with potential implications for clin-
ical staging and treatment decision-making.
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