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Abstract
Mitotic count (MC) is the most common measure to assess tumor proliferation in breast cancer patients and is
highly predictive of patient outcomes. It is, however, subject to inter- and intraobserver variation and reproduc-
ibility challenges that may hamper its clinical utility. In past studies, artificial intelligence (AI)-supported MC has
been shown to correlate well with traditional MC on glass slides. Considering the potential of AI to improve
reproducibility of MC between pathologists, we undertook the next validation step by evaluating the prognostic
value of a fully automatic method to detect and count mitoses on whole slide images using a deep learning
model. The model was developed in the context of the Mitosis Domain Generalization Challenge 2021
(MIDOG21) grand challenge and was expanded by a novel automatic area selector method to find the optimal
mitotic hotspot and calculate the MC per 2 mm2. We employed this method on a breast cancer cohort with
long-term follow-up from the University Medical Centre Utrecht (N = 912) and compared predictive values for
overall survival of AI-based MC and light-microscopic MC, previously assessed during routine diagnostics. The
MIDOG21 model was prognostically comparable to the original MC from the pathology report in uni- and multivariate
survival analysis. In conclusion, a fully automated MC AI algorithm was validated in a large cohort of breast cancer with
regard to retained prognostic value compared with traditional light-microscopic MC.
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Introduction

The annual global incidence of breast cancer (BC)
exceeds 2 million cases, making it the most commonly
diagnosed cancer worldwide [1]. Female BC currently
ranks fifth in terms of mortality on a global scale, and
its incidence continues to rise. Nonetheless, when
detected in its early stages, BC can have a favorable
prognosis. The main determinants of BC prognosis are
typically tumor size, lymph node status, and histopatho-
logical grade [2,3]. Of these, histopathological grade is
typically evaluated using the Nottingham modification

of the Bloom–Richardson (BR) grade [4,5]. The BR
grading system involves assessing three key features:
tubule formation, nuclear pleomorphism, and mitotic
count (MC). Each feature is assigned a score ranging
from 1 to 3. Score sums in the range of 3–5 classify the
cancer as grade 1, score sums of 6–7 as grade 2, and
score sums of 8–9 as grade 3 BC. Grade 1 BCs gener-
ally exhibit significantly better survival rates than grade
2 or 3 cancers [2–4]. Furthermore, the histopathological
grade has been shown to influence treatment decisions
in up to a third of cases [2]. Among the components of
BR grade, MC, as a marker of tumor proliferation, is

© 2024 The Author(s). The Journal of Pathology: Clinical Research published by The Pathological Society of Great Britain and Ireland and John Wiley &
Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.

http://wileyonlinelibrary.com
https://orcid.org/0000-0002-5457-7580
https://orcid.org/0000-0002-5294-5247
https://orcid.org/0000-0002-5306-6797
https://orcid.org/0000-0002-9065-0554
https://orcid.org/0000-0002-2402-9997
https://orcid.org/0000-0003-1711-3098
https://orcid.org/0000-0003-0658-2745
mailto:n.stathonikos-2@umcutrecht.nl
http://creativecommons.org/licenses/by/4.0/


the most prominent and a high MC is associated with
poor prognosis [6–9]. However, assessing MC is an
error-prone process that requires strict protocols to be
highly reproducible [10]. According to guidelines [11],
mitoses should be counted at �40 objective magnifi-
cation in the most mitotically active part of the tumor
in an area of approximately 2 mm2 where most
mitotic cells are found, the so-called mitotic hotspot.
Next, specific cut-offs are applied to calculate the
MC, which is categorized as 1, 2, or 3. Still, various
studies have reported only moderate reproducibility
for the BR grading system [12–14]. A recent study
identified significant inter- and intralaboratory varia-
tions in BR grade among more than 33,000
patients [12]. Given these variations and the critical
role of MC in BC prognosis, achieving higher repro-
ducibility is required for optimal clinical applicabil-
ity of MC and BR grade.
In recent years there have been several studies [15–17]

as well as grand challenges [18–20] around the detection
of mitotic cells in invasive BC using machine learn-
ing algorithms, with excellent results reaching human
observer performance [19,20]. In a previous study,
we showed that an artificial intelligence (AI)-based
mitoses detector achieved similar diagnostic outcomes
of MC assessment [15]. AI algorithms have great
potential to improve reproducibility [16,21] and efficacy
of MC since they can analyze multiple whole slide
images (WSIs) and help the pathologist to quickly find
the optimal hotspot saving considerable amounts of
time. However, AI assisted MC is not yet widely
implemented in clinical practice, which makes it diffi-
cult to assess its added value on a broader scale. This
lack of implementation can be attributed to technical
difficulties such as not having a fully digital workflow,
lack of integration into image management systems,
necessity of specialized IT infrastructure and personnel,
but especially lack of prognostic validation of available
AI-based MC models [22,23].
For the present study, we therefore aimed to investi-

gate if an automated AI-based method to assess MC
on hematoxylin and eosin (H&E)-stained WSIs of BC
is prognostically noninferior to traditional MC on glass
slides using existing internationally recognized diag-
nostic criteria.

Materials and methods

Study cohort
We collected a large digital pathology and clinical BC
dataset from a single source (University Medical Centre

[UMC] Utrecht) with follow-up for up to 10 years from
patients treated in our hospital from 2000 until 2013
(n = 2,230). We excluded WSIs not scanned at �40
magnification or that had issues with scan quality (sig-
nificant amount of out-of-focus regions, tissue folds,
and tissue tears), cases above the age of 80 years, or
where MC was missing in the original pathology
reports, finally leaving 912 unique subjects (see
Tables 1 and 2). Slides were scanned with a
Hamamatsu XR NanoZoomer 2.0 at a resolution of
0.23 μm/pixel, using a �40 objective lens. For every
case, there was at least one slide where a pathologist
roughly annotated the tumor outline to confine the
processing area. Since light-microscopic MC in the
original pathology reports was reported as the number
of mitoses per 2 mm2, we implemented MC by the AI
models accordingly.

Mitosis detection pipeline
To detect mitotic figures (MFs) in the H&E slides,
we employed an AI model based on a convolutional
neural network that scans a WSI for possible mitotic
cells and assigns a probability to all identified candi-
dates. Using a predetermined threshold, we classified
all detections above a certain threshold as MFs that were
subsequently used as input to calculate the MC. Using
the tumor annotations supplied by the pathologists, we
excluded all candidates outside of the tumor area. Using
the remaining MFs we applied an area detection algo-
rithm (see below) to determine the 2 mm2 area of the
mitotic hotspot according to the modified BR scoring
system (see Figure 1), and the number of MFs herein
was used as the final MC detected per WSI. The
AI model was developed using the dataset [24] from
the Mitosis Domain Generalization Challenge 2021
(MIDOG21), which focused on mitotic cell detection
in the presence of scanner-induced domain shifts
[19,25]. In the context of the challenge, a baseline
model was provided by the organizers, trained on
the official challenge training dataset. This model

Table 1. Dataset overview – explanation of inclusion criteria for
the study

Included Excluded

Total cases 2,230 0
Only �40 scans 1,466 764
With mitotic activity index and survival
data

1,316 150

Correctly labeled and of
sufficient quality

1,237 79

Below 81 years old 1,005 232
Unique subjects 912
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achieved great performance and ranked within the top
5 methods of the challenge [19] while achieving a
higher F1-score than the majority of the human
experts on the challenge test set [19]. The MIDOG21
model was based on a the RetinaNet architecture [26]
which was customized by adding a gradient reversal
layer (GRL) and a domain classifier [25]. The domain
classifier was trained in an adversarial fashion to
classify the different WSI scanners available in the
dataset, aiming to make the model applicable on all
scanners. Using a GRL, the feature encoder was
trained to extract domain-invariant features. The
network was trained on the grand challenge training
dataset and evaluated on the preliminary test
dataset. The threshold used was selected by maxi-
mizing the F1-score on an internal validation subset
of the MIDOG challenge training data, which corre-
sponds to an F1-score of 0.7369 at an operating
point of 0.64 [25]. The model has been published
and the code and weights are available online.

(https://github.com/DeepMicroscopy/MIDOG_reference_
docker).

Automatic area computation
In order to determine the MCs, a pathologist must find
the tumor area with the highest mitotic activity and
count all mitotic cells at �40 objective magnification
up to an area of 2 mm2 [10]. To emulate this diagnos-
tic step, a procedure to automatically select this area
had to be developed. We used two different methods
to determine the highest mitotic activity area, an
overlapping window search algorithm and a geometric
computation method for calculating optimal convex
hulls.

Overlapping window search
For the window search we employed a fixed area size
rectangle of 2 mm2 with a 4:3 ratio of width over
height. Using this rectangular search area we iterated
over the MF detections with an overlap of a quarter of
the width and height of the rectangle and counted all
of the MFs that were found within. The rectangle with
the most MF detections was selected as the MC for
that slide.

Convex hull geometric calculation
For the method employing the geometric calculation,
we opted for a convex polygon as the shape of the
area, as this was thought to be more natural and com-
parable to the area that might normally be inspected
by a pathologist, rather than fixed geometric shapes
such as a circle and triangle, which are more likely to
include a part of the image where no tissue is present.
The automatic area computation algorithm, which we
named ‘bounded area maximum enclosing convex
hull’ (BAME convex hull), is based on a gift wrapping
algorithm from computational geometry [27]. A bound

Table 2. Breakdown of the type of cases included in the cohort
n %

Total subjects 912 100
Sex
Male 6 0.7
Female 906 99.3

Age, years
<50 309 33.9
≥50 603 66.1

Histopathological type
Ductal 708 77.6
Lobular 74 8.1
Ductolobular 93 10.2
Unknown 37 4.1

Immunohistochemical subtype
Luminal A 300 32.9
Luminal B 114 12.5
Triple-negative 72 7.9
HER2-driven 20 2.2
Unknown 406 44.5

Figure 1. Pipeline of the detection model. The model first detects all mitotic objects in the image. The objects that are outside of the
tumor annotation are excluded and the automatic area selector is run on the remaining objects to calculate the final MC.
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on the aspect ratio of the resulting polygon was
desired to ensure the convex hull was not thinly
stretched, i.e. unnatural, so the WSI was subdivided
into square patches with an area of 4 mm2, with an
overlap of 0.5 mm. This limited size causes any shape
that spans the whole width to still have room for an
average width of 0.5 mm that can be used to include
more points, before the area constraint is violated.
Furthermore, this patch-based processing significantly
sped up the computation, since the computational
burden of finding an optimal solution sharply
increases with the number of points. Nevertheless,
finding an exact solution remains impractical for
patches that contain a large number of points. To
ensure that performance was acceptable for use in
clinical practice, two algorithms were designed: An
exact algorithm that was used on patches that
contained 25 or fewer points and a heuristic one that
was applied to patches with more points. The precise
implementations of these algorithms can be found
on github (https://github.com/sjoerd-de-vries/Area-
Selector) and their workings are explained in both
text and pseudocode in Supplementary materials and
methods and Figure S1.

Case-level tumor proliferation scoring
When multiple slides were available for a case, the
slide with the highest MC was selected by the model
emulating the regular diagnostic workflow. For
patients with multiple tumors, we selected again the
tumor with the highest MC. The selected MC per
case was then translated into the mitosis score of the
BR grading system following the rules of the College
of American Pathologists guidelines: a score of 1 for
MC of 7 and below, score 2 for MC between 8 and
14 and score 3 for MC 15 and higher [11].

Statistical analysis
Statistical analysis was performed using lifelines [28],
scipy [29], scikit-learn [30] on python 3.9. We com-
pared the light-microscopic MC from the original
pathology reports to the AI-based MC as continuous
variables by Pearson correlation. The agreement
between the three-class BR MC scores was assessed
by linearly weighted Cohen’s kappa. For comparing
overall survival prediction of the different MC vari-
ables, a 5-year survival difference Kaplan–Meier esti-
mator using a Klein et al [31] transformation was
used. In addition, to assess the prognostic signifi-
cance of MC scores in relation to other diagnostic

parameters, we performed a multivariate survival analysis
by Cox regression analysis.

Results

Correlation between original light-microscopic
MCs and automatic AI-based counts
AI-based MC showed a strong correlation with the
light-microscopic MC from the original report (Pearson
r = 0.58, p < 0.00001), as shown in Figure 2.
Agreement between AI-based BR mitotic score and
light-microscopic BR mitotic score was similar (κ = 0.5).
For the AI-based MC using the overlapping window
search, the results were also similar (Pearson r = 0.57,
p < 0.00001) and Cohen’s kappa (κ = 0.52).

Comparison of prognostic value
Figures 3 and 4 show overall survival curves for light-
microscopic and AI-based BR mitotic scores. For all
methods, the curves for the three scores diverge sig-
nificantly with χ2 = 12.55 (p < 0.001) and χ2 = 5.70
(p < 0.01) for light-microscopic mitotic score groups
(1, 2) and (2, 3), respectively; and, for the AI-based
methods, χ2 = 7.22 (p < 0.01) and χ2 = 4.59 (p = 0.03)
for the AI-based BAME method and χ2 = 5.51
(p = 0.018) and χ2 = 4.58 (p = 0.03) for the AI-based
window search method, for groups (1, 2) and (2, 3),
respectively. In multivariate Cox regression analysis we
included age, tumor size, lymph node status (if lymph
nodes were positive for tumor metastasis), and BR
mitosis scores as covariates. Both light-microscopic and

Figure 2. Regression between AI-based MC and report.
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both AI-based BR mitotic scores retained additional
prognostic value (see Tables 3 and 4).

Influence of pathologist supervision on AI model
output
In 30 cases, an experienced pathologist (PJvD)
reviewed all individual objects found by the model in
the tumor area, reclassified the output, re-ran the auto-
matic area selector, and performed a final review of
the objects in the selected area. In this subgroup,
the Pearson correlation between pathologist-corrected
AI-based BR mitotic score and original report MC was

r = 0.505 (p = 0.0044) while the correlation between
uncorrected AI model output (no intervention by
pathologist) and BR mitotic score from the original
report was r = 0.40 (p = 0.028) with kappa being 0.43
and 0.21 respectively.

Discussion

Grading is still a very effective way [2–4] to accu-
rately offer a prognosis for a BC patient. Mitosis
counting is the most important constituent of grading

Figure 3. Kaplan–Meier estimates (overall survival) for original Bloom–Richardson (BR) mitotic score (left) versus automatic AI-based
(BAME method) mitotic scores (right) showing comparable survival estimates for the three BR mitotic score classes.

Figure 4. Kaplan–Meier estimates (overall survival) for original Bloom–Richardson (BR) mitotic score (left) versus automatic AI-based
(window search method) mitotic scores (right) showing comparable survival estimates for the three BR mitotic score classes.

5 of 8Mitosis detector predicts breast cancer survival

© 2024 The Author(s). The Journal of Pathology: Clinical Research published by The Pathological Society
of Great Britain and Ireland and John Wiley & Sons Ltd.

J Pathol Clin Res 2024; 10: e70008

 20564538, 2024, 6, D
ow

nloaded from
 https://pathsocjournals.onlinelibrary.w

iley.com
/doi/10.1002/2056-4538.70008 by C

ochraneA
ustria, W

iley O
nline Library on [31/10/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://pathsocjournals.onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F2056-4538.70008&mode=


and is also directly correlated to patient outcome [7].
However, modest interobserver agreement is a consid-
erable drawback of MC, which will likely improve
with AI, but retained prognostic value must be dem-
onstrated to avoid the ‘precise but not accurate’
caveat. In our study, we compared the prognostic
value of light-microscopic MC as reported in the
original pathological report, with MC by an auto-
mated AI algorithm. In both uni- and multivariate
survival analysis, AI-based MC had comparable
prognostic value to light-microscopic MC. When
comparing the two AI methods, that differ only on
how the MC is derived, the window search overlap
method performed slightly better than the BAME
convex hull method. The hazard ratios for both
groups (1, 2) and (2, 3) for the window search over-
lap were independent predictors of prognosis,
whereas for the BAME method, the p value for
group (1, 2) was above 0.05.
From this we see that the AI model itself (regardless

of the MC method) performs on par diagnostically
with the light-microscopic method without having to
revise or devise new diagnostic criteria, simply follow-
ing existing guidelines.
Our AI mitoses detection model was derived from

the MIDOG21 grand challenge that intended to foster
an environment for developing the most appropriate
AI methods to detect mitotic cells across domains be
that scanners, tissue types, or even species [20]. The
developed models were made publicly available, first
to the grand challenge participants and then to the
greater public (https://github.com/DeepMicroscopy/

MIDOG_reference_docker). When comparing the method
developed by Wilm et al [25] for MIDOG21, it
performed as well as some of the top submissions using
an established methodology and network structure [26].
It is opensource and the model weights are available, so
it can be used by others to further validate and perhaps
improve upon using other datasets. We have fully inte-
grated the model within our picture archiving and com-
munication system (PACS) and have been using it in
clinical practice at the UMC Utrecht in order to prop-
erly evaluate and certify it internally in compliance with
our quality system. A limitation of this model is that it
was only trained with hotspot regions of interests and
not whole tumor or entire WSI-labeled datasets; this
makes it perhaps weaker at recognizing some artifacts
and generating false positive detections that most
often occur outside of the tumor. We chose to over-
come this by only taking into account the detections
in the tumor area, which is how the model is cur-
rently used in daily clinical practice [15,32]. This can
be assisted/augmented by including a tumor segmen-
tation model that would indicate beforehand on which
part of the WSI to apply the model.
In a limited sample subset we saw that pathologist

interaction with the output of the AI model did
improve correlation and agreement with the original
light-microscopic MC as has been shown by similar
studies [16], so we strongly feel that, in daily diagnos-
tic practice, the output of the algorithm must be
presented in a way that allows easy review by the
pathologist. That means that the result will only be
accepted after a specialist has reviewed all objects

Table 3. Multivariate Cox regression statistics on report and AI-based BAME and window search mitotic count
Report AI (BAME) AI (window search)

Hazard ratio (95% CI) p Hazard ratio (95% CI) p Hazard ratio (95% CI) p

Mitosis count 0.99 (0.97–1.00) 0.08 1.00 (0.99–1.01) 0.67 1.00 (0.99–1.02) 0.49
Age 1.02 (1.01–1.04) <0.005 1.02 (1.01–1.04) <0.005 1.02 (1.01–1.03) 0.01
Lymph node status 1.85 (1.32–2.58) <0.005 1.76 (1.26–2.46) <0.005 1.86 (1.32–2.64) <0.005
Tumor size 1.26 (1.18–1.35) <0.005 1.23 (1.15–1.31) <0.005 1.25 (1.17–1.33) <0.005
Mitotic score
Score 1 (0–7) 1 (Ref) 1 (Ref) 1 (Ref)
Score 2 (8–14) 2.14 (1.38–3.31) <0.005 1.41 (0.86–2.30) 0.17 1.70 (1.10–2.63) 0.02
Score 3 (15 and higher) 4.26 (2.62–6.95) <0.005 2.35 (1.46–3.79) <0.005 2.18 (1.30–3.65) <0.005

Table 4. Univariate Cox regression statistics on report and AI-based BAME and window search mitotic count
Report AI (BAME) AI (window search)

Hazard ratio (95% CI) p Hazard ratio (95% CI) p Hazard ratio (95% CI) p

Mitotic score
Score 1 (0–7) 1 (Ref) 1 (Ref) 1 (Ref)
Score 2 (8–14) 2.09 (1.37–3.19) <0.005 1.64 (1.02–2.63) <0.005 2.19 (1.44–3.31) <0.005
Score 3 (15 and higher) 3.26 (2.31–4.60) <0.005 3.13 (2.15–4.55) <0.005 3.07 (2.15–4.40) <0.005
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detected and clicked on ‘submit’ to detect the 2 mm2

area with the most confirmed mitoses. In our imple-
mentation, we choose to show both the objects above
the optimal F1-score detection threshold which are
labeled as ‘mitosis’ in the output as well as the objects
that are above the optimal F2-score threshold which
are labeled as ‘negative’. The pathologist can then
review both what the model has labeled as mitosis as
well as objects that were rejected. That helps counter a
potential confirmation bias while speeding up the
mitosis review process. Objects can be corrected by
dragging thumbnails from one class to the other, or
by keyboard correction (key 1 for mitoses, key 2 for
nonmitoses) after clicking the thumbnails and
inspecting the objects at high resolution. The algo-
rithm runs fully automatically in the background on all
our breast slides and, within the PACS, the results
can with one click be pulled up for display for each
individual image that contains cancer according to the
observer. The strong points of this study include
the large cohort with long-term prognostic value, the
utilization of both uni- and multivariate survival analysis,
and the integration of our AI pipeline, consisting of the
mitosis detection model and automatic area selection
method, in the Sectra PACS. Further studies will address
multiobserver reproducibility and the economic impact
for a laboratory through time saving of this tedious task.
In conclusion, introducing an AI algorithm in

clinical practice comes with several challenges that go
above and beyond designing and training a model to
perform on fixed datasets. In this study, our open
source, publicly available fully automated MC AI
algorithm was validated in a large cohort of BC with
regard to retained prognostic value compared with
traditional light-microscopic MC.
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