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Integrated multi-omics identifies
pathways governing interspecies
interaction between A. fumigatus and
K. pneumoniae
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Michael Tscherner 3, Karl Kuchler 3 & Thomas Lion 1,2,5

Polymicrobial co- and superinfections involving bacterial and fungal pathogens pose serious
challenges for diagnosis and therapy, and are associated with elevated morbidity and mortality.
However, the metabolic dynamics of bacterial–fungal interactions (BFI) and the resulting impact
on disease outcome remain largely unknown. The fungus Aspergillus fumigatus and the bacterium
Klebsiella pneumoniae are clinically important pathogens sharing common niches in the human body,
especially in the lower respiratory tract. We have exploited an integrated multi-omics approach to
unravel the complex and multifaceted processes implicated in the interspecies communication
involving these pathogens in mixed biofilms. In this setting, A. fumigatus responds to the bacterial
challenge by rewiring its metabolism, attenuating the translational machineries, and by connecting
secondary with primary metabolism, while K. pneumoniae maintains its central metabolism and
translation activity. The flexibility in the metabolism of A. fumigatus and the ability to quickly adapt
to the changingmicroenvironmentmediatedby thebacteria highlight newpossibilities for studying the
impact of cross-communication between competing interaction partners. The data underscore the
complexity governing the dynamics underlying BFI, such as pronouncedmetabolic changesmounted
inA. fumigatus interacting withK. pneumoniae. Our findings identify candidate biomarkers potentially
exploitable for improved clinical management of BFI.

Invasive fungal infections showhighmortality rates, claiming globallymore
than 1.5 million lives per year1,2. In this worldwide scenario, A. fumigatus
(Afu) is a prominent fungal pathogen, responsible for about 300,000 casesof
invasive aspergillosis per year. In the immunocompromised setting, the
reported lethality of Afu infections ranges from 50% to 100%, depending on
the timeliness of diagnosis and the adequacy of treatment2,3. The WHO
therefore ranks Afu as a critical fungal pathogen requiring the highest
priority for research and drug discovery4.

Despite this staggering impact on human health, many aspects related
to the pathophysiology of fungal infections are ill-defined. Although many
studies have focused on unveiling molecular determinants associated with
A. fumigatus infections, the complexity of processes underlying the

metabolic flexibility of this pathogen remains largely unknown5. The most
likely multifactorial processes involved in Afu interactions with other
microbiota at various sites, prominently involving the lungs as well as the
host immune surveillance, have an important impact on clinical outcome6–8.
The spatial arrangements and exchanges upon polymicrobial interactions
are determining factors for the regulation of host microenvironment
dynamics affecting nutrient availability, distribution ofmicrobial symbionts
and immune responses9. Hence, a detailed understanding of the interplay
between bacterial and fungal pathogens might uncover important clinical
aspects of polymicrobial infections relevant for diagnosis and treatment.
Indeed, polymicrobial infections involving bacterial–fungal interactions
(BFIs) pose serious therapeutic challenges, since BFIs are associated with
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challenging clinical manifestations such as increased antimicrobial drug
resistance or immune evasion, and thus with higher morbidity and
mortality10.

Importantly, Klebsiella pneumoniae (K. pneumoniae), which belongs
to the antimicrobial-resistant ESKAPE pathogens (Enteroccocus faecium,
Staphylococcus aureus, K. pneumoniae, Acinetobacter baumannii, Pseudo-
monas aeruginosa and Enterobacter species), has been associated with a
significant number of community-acquired and nosocomial infections,
resulting in highmorbidity andmortality. Infections caused by the ESKAPE
pathogens have sparked great concerns owing to the increased disease
burden, failure of treatment and elevated death rates11–13. Due to the global
human health threat represented by the ESKAPE pathogens, the WHO
included them in the critical priority group for antibiotic research and
development14. In the context of BFI, Klebsiella strains present in mixed
biofilm communities are often hypervirulent15.

Hence, both A. fumigatus and K. pneumoniae are clinically highly
relevant pathogens sharing common niches in the body, including parti-
cularly the lower respiratory tract, which represents a site of their potential
interactions. These interactions appear to be largely antagonistic, as K.
pneumoniae is capable of inhibiting the growth of A. fumigatus16,17. Indeed,
previous studies showed inhibitory effects of K. pneumoniae on Afu ger-
mination and hyphae formation upon contact with live bacteria and a
significant fungal biomass reduction upon exposure to bacterial filtrates16,17.
However, the metabolic networks and pathways driving this interaction
remain unresolved. It is unclear how antagonistic BFIs reduce the fungal
burden, but the reduced fungal loads persist in long co-cultures and in
contexts of chronic infection, maintaining the ability to cause substantial
damage18. These observations indicate that the capacity of microorganisms
to adapt their metabolism in the context of BFI may support the main-
tenance of their pathogenicity. This notion is supported by an elegantmodel
comparing16different bacterial–fungal pairs revealingnew insights into the
rewiring of metabolism and microbial fitness in BFIs19. In another study,
integrated metabolomics and transcriptomics revealed antagonistic inter-
actions between Lactobacillus rhammosus and Candida albicans (C. albi-
cans), showing that bacterial overgrowth drives alterations of the
metabolism of C. albicans, thus affecting fungal pathogenicity in intestinal
epithelial cells20.

Here, we provide insights about metabolic networks operating during
the physical interactions between K. pneumoniae and A. fumigatus. Using
integrated multi-omics datasets, we uncover strategies and possible defense
strategies that contribute to maintaining fitness and metabolism in A.
fumigatus facinghostile environments.Ourdata reveal significantmetabolic
adaptations in A. fumigatus upon interaction with K. pneumoniae, high-
lighting regulators that influence the temporal dynamics of interspecies BFI.
These data also reveal potential biomarkers that could be exploited to
improve the clinical management of BFI.

Results
A. fumigatus activates catabolism to compensate for nutrient
limitation during the interaction with K. pneumoniae
To identify the interdependent responses during the BFI, we performed
dual-RNA-seq ofmixed bacterial–fungal biofilms. The transcriptomics data
reflected an approximate minimum genome coverage of 12× and 111× for
A. fumigatus and K. pneumoniae, respectively. The principal component
analysis (PCA) verified the high quality of the biological replicates. Distinct
clusters appeared for single and BFI biofilm samples. Notably, the BFI
biofilm group exhibited greater variance when compared to the single
biofilm group, which most likely is due to the increased complexity in BFI
samples, such as distinct maturation stages present in the biofilm or altered
responses in each microbial species. Further, time-dependent stochasticity
mounting in BFI may further impact the variance, and thus modulate the
number of regulated genes in a qualitative and quantitative manner.
Nonetheless, the data showed clearly defined clusters specific to the BFI
biofilm conditions (Fig. 1a). Hierarchical clustering based on normalized
read counts emphasized distinct profiles between single pathogen and BFI

cultures (Fig. 1b). The BFI compared to A. fumigatus alone showed 1642
differentially regulated genes (DEGs), with 1166 upregulated and 476
downregulated genes (Supplementary Fig. 1a). The BFI comparisonwithK.
pneumoniae alone yielded 1561 DEGs, revealing 804 upregulated and 757
downregulated gene transcripts. The analysis highlighted the activation of
catabolic routes of metabolism and ethanol metabolism in A. fumigatus, as
well as a deregulation of biosynthetic metabolism and sporulation (Fig. 1c
and Supplementary Fig. 1b). In K. pneumoniae, the central carbon meta-
bolism was activated, with induction of glycolysis, TCA and oxidative
phosphorylation, whereas pathways for amino acid synthesis, sulfur meta-
bolism and cell wall construction were downregulated (Fig. 1c). The tran-
scriptomics data imply dynamic metabolic alterations mounting in A.
fumigatus to cope with the impact of overgrowing K. pneumoniae that
promotes nutrient-starvation. These changes are emphasizedmainly by the
regulation of pathways that are required to utilize alternative carbon sources
(Supplementary Table 1). Indeed, the top 20 DEGs in A. fumigatus pertain
to carbon metabolism and secondary metabolism primarily related to
gliotoxin biosynthesis and oxidoreductase genes (Supplementary Table 2).
In contrast, the biosynthesis of alkaloid/secondary metabolism was down-
regulated (Supplementary Table 2). Regarding K. pneumoniae, most of the
induced genes reflected central carbon metabolism and the translation
machinery, while expression of the membrane transport system was
diminished (Supplementary Table 3).

Proteomics indicates translationalterations inA. fumigatusasan
adaptive strategy upon BFI
The proteomics data corroborated with the interdependent responses
during the BFI showed a PCA with clear separation of samples from single
pathogen vs BFI cultures (Fig. 2a), whichwas also confirmed by hierarchical
clustering (Fig. 2b). Although the proteomics coverage was only about 30%
of the total proteomes from both K. pneumoniae and A. fumigatus (Sup-
plementary Fig. 2a), the data displayed 84 differentially abundant proteins
(DAPs), as shown in (Supplementary Fig. 2b), and 1059 DAPs when
comparing BFIs with single culture of A. fumigatus or K. pneumoniae,
respectively.

A number of parameters may explain the low number of DAPs dis-
played by A. fumigatus upon the interaction with bacteria. For instance, a
reduction of ribosome biogenesis that ultimately regulates the components
of the translational machinery and translation. Furthermore, translation
efficiency, co- and post-translational modifications, intracellular transport
and stability, complex formation, may affect protein abundance in BFI.
Notably, adaptive ribosome biogenesis is critical for proteostasis regulation
in cells adapting to stress or nutrient limitations to compensate for the need
of high energy costs in cells facing stress conditions21. Indeed, the functional
enrichment of DAPs in A. fumigatus under BFI condition reveals a similar
profile of deregulation of the translation machinery, sporulation, fatty acid
synthesis and chromatin organization, reinforcing a shutdown of different
energy-consuming processes (Fig. 2c and Supplementary Fig. 2c). Of note,
alternative metabolic processes such as ethanol metabolism and carboxylic
acid catabolism were induced (Fig. 2c and Supplementary Fig. 2c). Inter-
estingly, K. pneumoniae sustained its central metabolism, and further
activated peptide and amino acid biosynthesis pathways upon interaction
with Afu (Fig. 2c). At the same time, sulfur-relatedmetabolism, carboxylate
metabolism and the biosynthesis of small compounds and aromatic com-
pounds declined (Fig. 2c).

Hence, BFI conditions affected A. fumigatus in its energy metabolism
and alternative carbon source utilization, including the upregulation of
metabolic proteins such as Grg1, alcohol dehydrogenase, acetate kinase,
malate dehydrogenase, succinate dehydrogenase, phosphatidyl synthase
and pyruvate decarboxylase. Furthermore, BFI impacted fungal cell division
and chromatin remodeling, including the downregulation of proteins such
as sister chromatid cohesion/DNA repair (e.g., BimD) and nuclear locali-
zation (e.g., NPL6), rRNA processing (e.g., nucleolar protein 12), and
ascospore formation (e.g., VPS13) (Supplementary Table S4). Proteins of
higher abundance in K. pneumoniae were primarily related to translation,
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Fig. 1 | Transcriptomic profiling shows that overgrowth of K. pneumoniae
triggers the activation of catabolic processes and alters carbon routes in A.
fumigatus. a Principal component analysis (PCA) of transcripts obtained from BFI
cultures and single pathogen cultures of A. fumigatus and K. pneumoniae.
b Hierarchical clustering of differentially expressed genes (DEGs) of A. fumigatus
and K. pneumoniae. The three biological replicates are shown for single pathogen
cultures and co-cultures. The color code indicates the fold-change (log2) in gene

expression. c Enrichment analysis of DEGs (log2 FC ± 1.5) showing the main bio-
logical processesmodulated in response to BFI interaction inA. fumigatus (left side),
according toGene ontology (GO) terms andK. pneumoniae (right side) according to
KEGG.AspA. fumigatus,KleK. pneumoniae. Numbers in front of the bars in blue or
green indicate genesmodulated in our dataset either inAfu or Kp, respectively, while
numbers in black represent the total number of genes within that particular biolo-
gical process.
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such as ribosomal proteins, carbon and nitrogen utilization, including
glutamate and aspartate, lysine and ornithine transporters, as well as
nitrogen regulatory proteins. Among downregulated bacterial proteins, the
majority were involved in carboxylic acid metabolism, including acet-
olactate synthase, malate oxidoreductase and oxoglutarate (Supplementary
Table S5).

Metabolomics verifies adaptive routes inA. fumigatus in BFI and
reveals candidate biomarkers
The untargeted metabolomics approach was carried out to obtain an
overview of the metabolism crosstalk during the BFI. In BFI super-
natants, we identified 204 differentially modulated metabolites when
compared to A. fumigatus single culture after 24 h. In K. pneumoniae,
256 metabolites were subject to changes during BFI. Depleted metabo-
lites amounted to 126 and 227 for A. fumigatus and K. pneumoniae,
respectively. These metabolites reflected specific pathways associated
with fungal and bacterial adaptation to the environment emerging during
BFI (Fig. 3 and Supplementary Fig. 3).

The functional categorization of Afu-depleted metabolites revealed a
shift from glucose metabolism toward alternative sugar sources such as
fructose, galactose andmannose.This shift is drivenby a shortageof glucose,
redirecting energy flow into different pathways, including concurrent
involvementof glycerolmetabolism,purine catabolismanduptakeof amino
acids. These adjustments secure nitrogen and carbon sources to meet the
metabolic demands of the fungus (Fig. 3a and Supplementary Fig. 3a, b).
Conversely, the 78 Afu-upregulated metabolites identified were mainly
associated with ROS response, peroxisomal and mitochondrial activities
(Fig. 3b and Supplementary Fig. 3c, d).

In K. pneumoniae, the enrichment analysis revealed a depletion of
metabolites belonging to central energy pathways, such as glycolysis, pyr-
uvate metabolism and the TCA cycle. We also observed a set of depleted
metabolites related to amino acid, peptidoglycan and enterobactin bio-
synthesis (Fig. 3c andSupplementaryFig. 3e, f) indicating that thebacterium
maintained favorable energetic routes. Although 29 bacterial metabolites
found to be upregulated were indirectly linked to central energy routes
revealing by-products of TCA and oxidative phosphorylation, processes of
amino acid metabolism were predominant (Fig. 3d and Supplementary
Fig 3e, f). An overview of themetabolic rearrangements inA. fumigatus and
K. pneumoniae is shown in Fig. 3e and f, respectively. The most prominent
metabolites produced by both pathogens upon BFI, revealing potential
biomarker candidates, are listed in Supplementary Table 6.

Considering the set of upregulated metabolites in A. fumigatus, some
compounds are potential candidate biomarkers for BFI, including ascorbic
acid, a norfenefrine-mimic, hydroxycaproic acid, deoxyribose 5-phosphate,
isopropylmalic acid and nipecotic acid. For K. pneumoniae, potential bio-
marker metabolites encompassed 6-methylnicotinamide, α-D-mannose 1-
phosphate, L-aspartic acid, methamphetamine, amphetamine as well as
gluconic acid.

Secondary and alternative metabolism of A. fumigatus coop-
erate to maintain fungal fitness
To cope with the limited glucose supply, A. fumigatus repressed central
carbon routes such as glycolysis, while catabolism was enhanced, as shown
by the integration of proteomics and transcriptomics datasets (Fig. 4,
Supplementary Fig. 4 and Supplementary Table 7). Among the markedly
induced genes are those belonging to the beta-oxidationpathway, glyoxylate
shunt and gluconeogenesis, such as enoyl-CoA hydratase, fatty-acyl coen-
zyme A oxidase (pox1), acyl-CoA dehydrogenase, 3-ketoacyl-CoA keto-
thiolase (kat1), isocitrate lyase (icl), malate synthase (acuE),
phosphoenolpyruvate carboxykinase (pck1), fructose-1,6-bisphosphatase
(fbp1) as well as the acetyl-CoA transporter genes (Supplementary Table 1).
It is important to note that only a few genes and their corresponding protein
products, including 3-oxoacyl-acyl-carrier protein, malate synthase and
fatty acyl CoA oxidase, showed a divergence in expression levels across
datasets (Table S1). This emphasizes temporal and spatial differences in the

regulation andproductionof transcripts or proteins seen inA. fumigatus. By
contrast, corresponding transcript and protein levels, including succinate
dehydrogenase, aconitase hydratase or alcohol dehydrogenase showed high
abundance, especially under emerging BFI conditions.

It is noteworthy that thedata revealed theupregulationof keyplayers of
fatty acid catabolism, including the transcription factor Cat8
(AfuA_1g13510) and Ctf1A (AfuA_4g03960) (Supplementary Table 1).
Conversely, cell division, translation, spore formation and secondary
metabolism primarily associated with conidia were downregulated (Fig. 4
and Supplementary Table 8). The shutdown of these pathways was a con-
sequence of the metabolic shift, to save energy for the maintenance of
cellular homeostasis allowing fungal adaptation. Remarkably, the data
analysis indicated a connection of “secondary metabolism”, related to
cysteine and sulfur metabolism, with primary metabolism involving
methionine synthesis, the pentose phosphate pathway (PPP), ethanol
metabolism, TCA, GABA metabolism and beta-oxidation (Figs. 5 and 6).
The MetR transcription factor (AfuA_4g06530) possibly serves as an
upstream control for sulfur metabolism, methionine cycle and PPP. The
resulting metabolic products such as ketoglutarate, pyruvate and glutamate
appear to feed into or regulate the TCA cycle, ethanol metabolism and
amino acid biosynthesis (Fig. 6). Moreover, owing to the altered ethanol
metabolism and acetate production, active beta-oxidation was increased.
Adaptive chromatin changes possibly also played a role due to the effect of
histone modification on transcription by altering translation efficiency
through lysine acetylation (Fig. 6).

Regarding sulfur metabolism, downstream components such as the
carbon–sulfur lyase genes, Fe–S cluster genes and gliotoxin-cluster genes
were upregulated in A. fumigatus upon interaction with K. pneumoniae
(Figs. 5, 6 and Supplementary Table 9). Antioxidant defense mechanisms
were induced in A. fumigatus during BFI, including catalase
(AfuA_8g01670) and superoxide dismutase sod1 (AfuA_5g09240) (Sup-
plementary Fig. 5). Our data revealed key transcription regulators (Cat8,
Ctf1A andMetR) as crucial elements engaged in adaptation ofA. fumigatus
to the interaction with K. pneumoniae, as shown in Fig. 6 and in the vali-
dated dataset displayed in Supplementary Fig. 5.

Discussion
The human body hosts trillions of microbial species that coexist within the
tissue microbiota and are typically organized in heterogeneous mixed
biofilms22–25. Tissuemicrobiotamust offer conditions that enablefitness and
access to nutrients to allow for physiological and homeostatic growth.
Dysbiosis may arise from pathological interactions of microbial species but
also from acute or chronic inflammatory host immune responses26. Hence,
changes in the host immune status or in the availability of nutrients and
microbial growth imbalances are often associated with disease27,28. For
instance, inflammatory bowel diseases (IBD), which are chronic inflam-
matory disorders, are characterized by a breakdown of immune tolerance to
the gut flora and an excessive immune response. This is mediated by dif-
ferent factors including the enhancement of pro-inflammatory bacterial
communities in this particular niche29,30.

While complex polymicrobial infections have gained increasing
attention, little is known about the molecular mechanisms, metabolic
activities and interaction dynamics of this multi-microbial network. The
integration of distinct omics datasets for probing the environment of
polymicrobial interactions has provided powerful tools, enabling a better
understanding of genetic regulatory networks and pathways operating in
interactions between different species. This investigational strategy is
expected to provide a platform paving the path to improved diagnostic
and therapeutic approaches31,32. In our previous work16, we focused on
molecular dissection of the interaction between Aspergillus spp. and
K. pneumoniae, showing that the growth inhibitory effect of K. pneu-
moniae was mediated by blocking hyphal development. The inhibitory
effect required physical contact with metabolically active bacteria16,
although it cannot be excluded that soluble metabolites can contribute or
even control the response33–35. Nonetheless, many molecular aspects
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Fig. 3 | Metabolic routes adopted by A. fumigatus and K. pneumoniae upon
bacterial–fungal interaction. Enrichment analysis of differentially regulated
metabolites collected in supernatants from co-cultures after 24 h compared to the
single pathogen culture of A. fumigatus: downregulated (a) and upregulated (b).
Enrichment analysis of differentially regulated metabolites from co-cultures com-
pared to single pathogen culture of K. pneumoniae: downregulated (c) and upre-
gulated (d). Schematic representation of pathways potentially involved in A.

fumigatus (e) and K. pneumoniae (f) adaptation under BFI stimuli. Blue and red
arrows indicate down and upregulated general pathways, respectively. Gray boxes
represent potential metabolic processes activated by produced metabolites. Dashed
gray circles show possible metabolic processes involved in the entwined pathways.
The enrichment analysis of paths responding to BFI was performed in MetaboA-
nalyst 5.0, using the KEGG database for the annotated metabolites with a log2
FC ± 1.0 cutoff.
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underlying BFIs still need to be understood. Of note, competitive
antagonistic or synergistic microbial interactions may display adverse
clinical effects for the host36–38.

Here, we use integrated multi-omics data to identify metabolic
responses and pathways operating duringA. fumigatus and K. pneumoniae
interaction. We identify fungal strategies that counteract potential

inhibitory actions mounted by bacteria in BFI. The fungal adaptations not
only ensure fitness and regulate growth, but also include metabolic and
translational changes as integral requirements of survival and resistance
within hostile surroundings such as BFI. Hence, the hallmarks in A. fumi-
gatus responses that establish “survival” modes include a selective transla-
tionmode, environmental sensing and rewiring of themetabolism, aswell as

Fig. 4 |A. fumigatus adapts to the interaction with
K. pneumoniae by deregulating the synthesis
machinery and activating the bypass of energy
routes. The interaction network of common pro-
cesses upregulated (a) and downregulated (b) in A.
fumigatus, with overlapping transcriptome (red)
and proteome (blue) data, is shown.
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the connection of primary with “secondary” metabolism to achieve a
“resiliency” when growing under BFI conditions.

The combination of omics datasets displayed a state of selective
translation characterized by decreased biosynthesis, ribosome biogenesis
and sporulation processes. These alterations presumably steer the fungal
response to challenges posed by bacterial overgrowth. Indeed, it is feasible
that adaptation to hostile environments and some defense factors trigger
alterations in germination and translation processes, as shown previously39.
For instance, during the interaction with macrophages at early time points,
C. albicans exhibits decreased expression levels of genes associated with the
translation machinery, peptide biosynthesis and translation regulators40.
Moreover, interactions between Aspergillus spp. and K. pneumoniae dis-
played an impairment in fungal spore germination and hyphal formation
followed by downregulation of the transcription factor calcineurin-
responsive zinc finger and protein kinase A regulatory subunit (PKAR)
encoding genes16 responsible for regulating conidial germination, hyphal
growth and virulence41,42. Similarly, our data revealed a marked down-
regulation (log2 FC =−3.44) in the C2H2 transcription factor BrlA
(AfuA_1g16590), which regulates the formation of conidia.

Further, an elegant recent report deciphered the interaction of the lung
pathogens Cryptococcus neoformans (C. neoformans) with K. pneumoniae
in co-culture with macrophages, demonstrating that K. pneumoniae cell
numbers increase, whereasC. neoformans loads decrease. This suggests that
the bacterium can fully maintain active metabolism and cell division,
whereas the fungus must sense the emerging stress environment but

requires more time to cope, perhaps owing to the longer generation time.
Although the fungus adjusts translation, it can adapt by regulating processes
related to catabolism, cellular regulation, translation and signaling43. Like-
wise, our data showed the bacteria strive to maintain an active metabolism
by keeping themain routes ensuring their energy needs, including the TCA
cycle, engaged.While these routes are important for providing by-products
to meet cellular demands, these by-products also lead to redox-active
compound production. In response to this milieu,A. fumigatus redirects its
metabolism to satisfy additional energy requirements under the emerging
stressful condition.

The main energy routes activated by A. fumigatus are beta-oxidation,
glyoxylate and GABA shunts, gluconeogenesis, and ethanol metabolism
(Table S1 and Figs. 5, 6). In the present analysis, the entire pathway of beta-
oxidation was induced. The enzymes PCK and FBP1, representing rate-
limiting steps in the glyoxylate shunt and the gluconeogenesis pathway,
were also upregulated. Likewise, the GABA shunt pathway was activated
reflecting circuit rearrangements to generate carbon and nitrogen sources,
in this instance, through abypass outside the classical TCA. Since theGABA
shunt is energetically less favorable for the cells44, it is difficult to imagine its
operation in the absence of stress conditions. However, in a BFI environ-
ment, it is conceivable that this operation occurred due to glucose depletion
and the ensuing need for alternative energy sources to maintain cellular
demands and to support fungal adaptation.

Moreover, key regulators responsible for reshaping Afu metabolism,
such as Cat8/FacB, and Ctf1A, were upregulated in our analysis
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Fig. 5 | Schematic overview of the main strategies employed by A. fumigatus in
response to the interaction withK. pneumoniae.Glucose starvation and inhibitory
molecule production due to overgrowth ofK. pneumoniae activates the catabolismof
fatty acids as a source of acetyl-CoA supply. As a consequence, beta-oxidation and
the glyoxylate cycle are induced, feeding the TCA cycle and keeping it activated. In
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taken up by fungal cells and are transferred into the methionine and cysteine

metabolism. The by-products can regulate ethanol production, which also supplies
acetyl-CoA units to the TCA cycle.Methionine and cysteinemetabolism can control
amino acid production, regulate translation kinetics, enhance oxidative protection
and boost gliotoxin production. Red letters indicate induced genes/proteins, pro-
ducts and processes, while purple letters reflect low-level induction. The translation
deregulated process is indicated in blue letters. Dashed arrows reflect acetyl-CoA
transport between cellular compartments.
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(Supplementary Table 1). These regulators act under the conditions of
glucose depletion and allow for the de-repression of catabolite suppression
by promoting alternative carbon source utilization. Moreover, the Cat8/
FacB is responsible for ethanol and acetate utilization and, in consequence,
feeding and regulating aspartate, glutamate, TCA and glyoxylate metabolic
processes as well as secretion of secondary metabolites45.

Notably, ethanol metabolism is enhanced upon interaction with K.
pneumoniae. It has been demonstrated that ethanol levels are increased in
the lungs of murine models for invasive pulmonary Aspergillosis46. This
substantiates the notion that ethanol serves as a potential carbon source for
A. fumigatus during infection and other stressful conditions. Moreover, by-
products of ethanol catabolites have an effect on bacterial partners by
affecting growth, biofilm formation, virulence and drug resistance35.

Ultimately, changes in Afu metabolism and carbon routes can lead to
changes in the cell wall composition, architecture and hydrophobicity.
These potentially affect drug resistance, virulence, immune recognition and
evasion47–50 and the fungal–bacterial interaction itself 51. Indeed, BFI
betweenA. fumigatus andK. pneumoniaehasbeen shown to trigger changes
in fungal cell wall genes, including chs3, exg1 and mpkC16. These observa-
tions are corroborated by the present data revealing cell wall components
such as chitinases and glucanases as DEGs (Supplementary Table 1).

In addition to changes in alternative carbon sources to meet energy
needs, Afu also responds by activating stress-adapted metabolic processes,
linking primary and “secondary”metabolism. As outlined before, bacterial
metabolism induces the production of pro-oxidant compounds. To cope
with the stressful milieu, PPP and sulfur pathways are activated, both
offering pleiotropic functions, enablingA. fumigatus tomaintainfitness and

homeostasis. PPP has been shown to provide acetyl-CoA for the TCA cycle
and respond to ROS stimuli52 and can link fatty acid utilization to sulfur
metabolism53. Our data show that Afu upregulates 2-deoxy-D-ribose
5-phosphate metabolite, as well as phosphogluconate dehydrogenase
(AfuA_6g08730, AfuA_5g01250, AfuA_5g10280), a putative
6-phosphogluconolactonase (AfuA_1g02980), and the transcription reg-
ulator MetR upon BFI (Supplementary Table 1). In this regard, our data
imply that MetR is a potential regulator acting upstream of the methionine
cycle, PPP, cysteine and sulfur pathways.

Regarding sulfur metabolism and sulfur-derived compounds, it has
been widely accepted that they are crucial for the viability, virulence and
iron homeostasis of Aspergillus spp.54, as exemplified by S-containing
molecules such as vitamin thiamine or S-adenosylmethionine55,56. Of
note, sulfur is also required for producing ergothioneine and glutathione,
and it is involved in gliotoxin biogenesis57. Moreover, sulfur plays a role
in iron homeostasis and sensing via the glutaredoxin GrxD58. Upon BFI,
we show the upregulation of gliotoxin biogenesis and the protective
antioxidant defenses, including the modulation of catalase and super-
oxide dismutase genes. In addition, our data reveal the upregulation of
siderophore biosynthesis protein (AfuA_1g04450), involved in ferricro-
cin and hydroxyl-ferricrocin production. Both siderophores play a role in
iron storage and transport through the hyphae or conidia in fungal cells59.
The production of gliotoxin after A. fumigatus interaction with K.
pneumoniae was recently reported17. Our data are consistent with pre-
vious studies showing that gliotoxin is not solely acting as a toxic and/or
antioxidant molecule, it can also play a significant role in regulating
primary metabolism by affecting methionine cycle60.

Fig. 6 | Schematic overview of adjustments in the metabolism of A. fumigatus
upon interaction with K. pneumoniae. Our data suggest that MetR might act
upstream of sulfur metabolism, PPP andmethionine cycle by regulating these pathways
directly or indirectly. Further adjustments are achieved by the connection between
TCA, GABA metabolism and beta-oxidation. It is highly conceivable that gliotoxin-
related products are associated with feedback regulation of the methionine cycle
(indicated by black dashed arrows). Similarly, some carbon–sulfur compounds might
regulate the TCA cycle (indicated by black arrow). The transcriptional regulators Cat8
and Ctf1 are shown to regulate the beta-oxidation cycle, which in turn can feed the TCA
cycle (solid black arrows). TCA and GABA metabolism work together to provide
energy sources and to regulate key amino acid production. The PPP pathway is also
associated with the TCA cycle and amino acids biosynthesis (solid black arrow).
Ethanol by-products might influence beta-oxidation and histone acetylation, which

might in turn impact on translation efficiency (indicated by black dashed arrow).
Orange rectangles or orange circles reveal possible sources for amino acid metabolism
in A. fumigatus. Steps modulated within each pathway are indicated by red, blue and
yellow dots according to their modulation revealed by transcriptomics, proteomics and
metabolomics, respectively. Black dashed arrows indicate putative regulation or influ-
ence of one pathway or by-products on another pathway or a putative transcription
factor regulation of paths that might cross. Direct regulation is shown by solid black
arrows. hmt homocysteine S-methyltransferase, pdcA pyruvate decarboxylase, ald
aldehyde dehydrogenase, adh alcohol dehydrogenase, gst glutathione S-transferase, gliP
non-ribosomal peptide synthetase, gliC cytochrome P450 monooxygenase, gliT glio-
toxin sulfhydryl oxidase, gliF cytochrome P450 monooxygenase, gliA glioxin trans-
porter, gliZ Zn2Cys6 binuclear transcription factor.
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Finally, our data shed light on the plasticity ofA. fumigatusmetabolism
when exposed to interaction with bacteria. Although, we are well aware
about potential limitations that apply to the in vitro model and the media
selection used to address the BFI, mainly due to the absence of human
immune defense, the conditions chosen here, suggest extraordinary com-
plexity and dynamics in BFI. Thus, we feel that adding additional factors
might result in datasets that cannot be handled properly. Artificial intelli-
gence approaches may be the way to go in future experiments, but we felt
quite strongly that our initial setup should adhere as much as possible to
standardized and reproducible in vitro conditions. Of course, the “optimal”
medium to perform BFI experiments would be lung-mimicking condi-
tioned media61 or exudates from patients suffering from co-infections.
However, such approaches would have severe limitations and confounding
effects owing to variations in the immune defense present in distinct human
samples. The data presented reveal howmetabolic networks are adapted by
A. fumigatus during BFI, demonstrating the metabolic plasticity of patho-
gens in mixed biofilms that impose severe stress conditions and nutrient
limitations. The observations also pose some important questions, requiring
future efforts. For example, canhighly adaptedA. fumigatusbetter evade the
host immunedefense and thus becomehypervirulent?Could the differences
between pathogenic or stress-adapted metabolism of A. fumigatus explain
discrepancies observed between BFI in vitro and in vivo? Importantly, our
findings disclose possible targets amenable for clinical intervention to
combat BFI. These include transcription factors that regulate hallmark
responses aswell asmetabolitepathways emergingupon the interaction that
might be exploited for diagnostic and ultimately therapeutic improvements.

Methods
Strains and growth conditions
Aspergillus fumigatusATCC 204305 andK. pneumoniaeATCC 700603 are
the strains used in this study. A. fumigatus was maintained in malt extract
agar (MEA, SIGMA) plates for 3–4 days at 37 °C. Spores were collected into
1xPBS+ 0.1%Tween20, thenfiltratedbyusing a40 μmcell strainer. Spores
were storedat 4 °C forup to1week for subsequent use in the experiments.K.
pneumoniae strains were maintained in Luria-Bertani (LB) agar plates and
grown for 12–16 h in liquid LBmedium at 37 °C with agitation at 180 rpm.
The co-cultures of A. fumigatus and K. pneumoniae were carried out
adhering to conditions reported elsewhere16. Basically, an equal cell num-
bers of A. fumigatus and K. pneumoniae (106 cells/mL) were used in co-
culture experiments. For proteomic, transcriptomic and metabolomic
analyses, single pathogen cultures and co-cultures of A. fumigatus and K.
pneumoniae were grown as biofilms, with static incubation in 35 × 10mm
tissue culture dishes (CytoOne, Starlab GmbH, Ahrensburg, Germany). K.
pneumoniae was added after pre-germination of A. fumigatus spores, per-
mitting the formation of hyphae for up to 12 h.Growthwas allowed for 24 h
at 37 °C in 3mL medium. YNBP minimal medium (1.7 g/L yeast nitrogen
base (YNB) without amino acids, 5 g/L ammonium sulfate, 25mM phos-
phate buffer pH 7.0 (KH2PO4+K2HPO4), 2.5mM N-acetyl-glucosamine,
0.2% glucose, 0.1% maltose) was used for proteomic and metabolomic
analyses, whereas sterile-filtered yeast extract peptone dextrose (YPD)
medium (10 g/L yeast extract, 20 g/L peptone, 2% glucose) (Formedium,
Norfolk,UK)wasused for transcriptomic analysis. The rationale of selecting
different growth media for transcriptomics analysis was to assure optimal
growth conditions for each species and to recover RNA amounts that are
sufficient and suitable for RNA-seq.

Transcriptomics and bioinformatics workflow
Upon 24 h growth in biofilmmode, cells of single pathogen cultures and co-
cultures of A. fumigatus and K. pneumoniae were collected in centrifuge
tubes by refrigerated (4 °C) centrifugation at 3000 × g. Cells were then
washed two times with 1x PBS and collected into 2mL fast prep tubes with
coldwater.The supernatantwas removedandcell pelletswereused forRNA
isolation. Pellets were resuspended in 1mL Trizol (SIGMA) for 5min at
room temperature. A scoop of 0.3 g RNAse-free glass beads (SIGMA) was
added to the sample and further incubation for 5min at room temperature

was performed. Followingmechanical disruption by FastPrep for 2 × cycles
6.0m/s, 45 s, samples were spun down at 4 °C for 15min using 16,912 × g.
The upper phase was transferred into new microtubes and 200 µL chloro-
form were added. The tubes were shaken vigorously by hand for 15 s with
subsequent incubation for 3min at room temperature. Samples were spun
down at 16,912 × g for 15min at 4 °C, and the aqueous phase was trans-
ferred into a fresh microtube. A volume of 500 µL of cold isopropanol was
added and samples were incubated on ice for 20min, followed by cen-
trifugation at 16,912 × g for 30min at 4 °C. The supernatant was discarded,
and pellets were washed with 1mL of cold 70% ethanol, and subsequently
centrifuged at 16,912 × g for 5min at 4 °C.Most of the ethanol was removed
and another centrifugation step was performed to remove the remaining
ethanol. Pellets were air-dried for 1min and the resulting RNA was dis-
solved in 20 µL RNAse-free water (Invitrogen). The concentration of RNA
samples was determined, and 15 µg were used for DNAse digestion. The
enzyme DNAse I (Roche), the appropriate buffer and Ribolock RNAse
inhibitor (Fermentas) were used. Samples were incubated for 30min at
37 °C, and RNAse-free water was added to each sample. Purification of
100 µL RNAwas performed by using the RNeasy kit (Qiagen) according to
the respective manufacturer instructions. The quality of the RNA samples
was checked on a Bioanalyzer using RNA 6000 Nanochips (Agilent). A
control PCR assay was performed to check for the absence of residual DNA
in the samples. Thereafter, RNA samples were processed for cDNA
synthesis using 1 µg RNA by the RevertAid Reverse Transcriptase (Fer-
mentas). Prior toRNAsequencing, anmRNA librarywas prepared by using
a RiboZero epidemiology kit (NEB Ultra) for rRNA depletion. Sequencing
was performed in 50 bp single-endmode on aHiSeq 4000 instrument at the
NGS VBC Facility.

For annotation purposes, the strain Klebsiella pneumoniae subs.
pneumoniae MGH 78578 (https://www.genome.jp/kegg-bin/show_
organism?org=T00566) was used, as it is better annotated than the
experimentally used strain Klebsiella quasipneumoniae (K. quasipneumo-
niae) ATCC 700603 (https://www.genome.jp/kegg-bin/show_organism?
org=T04389). Additional information on annotations was also retrieved
from UniProt. Prior to the analysis of the co-cultures, the genomes of A.
fumigatus and K. pneumoniae were retrieved from NCBI and merged. For
this, Aspergillus fumigatus Af293, genome version s03-m05-r06 and K.
quasipneumoniae ATCC 700603, NCBI_Assembly GCF_001596075.2,
sequence-region NZ_CP014696.2 1 5284734 were used. Quality control
(QC) of raw sequencing reads was done using fastQC v0.11.8 160 (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). TrueSeq (Illumina)
adapters were trimmed using the Cutadapt v1.18 tool (https://cutadapt.
readthedocs.io/en/stable/). Reads were mapped onto genomes of the
merged strain Af293 s03-m05-r06 and ATCC 700603 GCF_001596075.2
genomes using NextGenMap v0.4.1262. Reads mapping to rRNA loci were
removed. Read counts were determined with HTSeq count v0.6.1p1 using
the union mode63 and reference annotations for Af293s03-m05-r06 ATCC
700603GCF_001596075.2, respectively. Pairwise comparison of differential
expression analysis of single pathogen cultures with co-cultures was
employed using edgeR v3.40.2 using R v4.2.264. Benjamini–Hochberg
adjusted p values were used to determine DEGs65. PCA using normalized
read counts (CPM) was done using the R stats package v3.4.4. Hierarchical
clustering was performed using the “pheatmap” package in R66. Gene
ontology (GO) analysis was performed by using KEGG Mapper for K.
pneumoniae and AspGD (Aspergillus genome database) GO Slim Process
Mapper and FungiFun, GO classification ontology in A. fumigatus. Sum-
marization of GO terms was carried out using REVIGO67. Gene set
enrichment analysis was performed with the “clusterProfiler” package in R.

Proteomics
Upon 24 h growth in biofilm mode, pellets of single pathogen cultures and
co-cultures of A. fumigatus and K. pneumoniae were collected and washed
with 1x PBS. The protein extraction was based on mechanical disruption
with lysis buffer followed by TCA precipitation. Briefly, two volumes of ice-
cold lysis buffer [8M urea, 20mM Tris, 20mMDTT] and a scoop of glass
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beads were added to the samples, with ensuing fast prep for two cycles at
6.0m/s for 45 s. After centrifugation for 10min at 16,912 × g at 4 °C, the
upper phase was transferred into new microtubes. The TCA precipitation
was based on Cold Spring Harbor Protocols46, with some modifications. A
mix of 13.3% TCA (w/v) (Merck), 0.093% 2-mercaptoethanol (v/v) and
acetone (ice-cold) was added to the samples and overnight incubation at
4 °C was performed. Precipitates were recovered by centrifugation using
maximum speed (25,000 × g) for 15min at 4 °C, and supernatants were
discarded. Pellets were washed in 0.07% 2-mercaptoethanol (v/v)+ 80%
acetone (ice-cold) followed by centrifugation at maximum speed
(25,000 × g) for 10min at 4 °C, and supernatants were discarded. This step
was performed twice. Finally, protein pellets were air-dried at room tem-
perature for 5min, and frozen at −80 °C until use.

Frozen pellets were dissolved in 50 µL of 8Murea/50mMammonium
bicarbonate (ABC) solution. The protein concentrationwas estimated using
a tryptophan fluorescence assay68. After reduction (10mM dithiothreitol,
30min at room temperature), alkylation (20mM iodoacetamide, 30min at
roomtemperature in thedark), andquenchingof excess iodoacetamidewith
5mM dithiothreitol (10min at room temperature in the dark), the sample
was diluted into 4M urea with 50mM ABC before adding 1 µg of endo-
proteinase Lys-C (Wako) for protein digestion. The digestion was per-
formed at room temperature for 2 h, and the samplewas further diluted into
1M urea with 50mM ABC, and 2 µg Trypsin (Trypsin Gold, Promega)
were added. After overnight incubation at 37 °C, the samples were acidified
with 1% trifluoroacetic acid (final concentration) and the peptide solution
was desalted using a stage-tip protocol with Empore SPE C1869. Peptides
were separated on an Ultimate 3000 RSLC nano-flow chromatography
system (Thermo Fisher) using a pre-column for sample loading (Acclaim
PepMap C18. 2 cm × 0.1mm, 5 μm, Thermo Fisher), and a C18 analytical
column (Acclaim PepMap C18.50 cm × 0.75mm, 2 μm, Thermo Fisher),
applying a segmented linear gradient from 2% to 80% solvent B (80%
acetonitrile, 0.1% formic acid; solvent A 0.1% formic acid) at a flow rate of
230 nL/min for 120min. Elutedpeptides were analyzed on aQ-ExactiveHF
Orbitrap mass spectrometer (Thermo Fisher), which was coupled to the
column with a nano-spray Flex ion-source (Thermo Fisher) using coated
emitter tips (NewObjective).Themass spectrometerwas operated in adata-
dependent mode, survey scans were obtained in a mass range of
380–1500m/z, at a resolution of 120k at 200m/z and an AGC target value
of 3E6. The 20 most intense ions were selected with an isolation width of
1.6 Da, fragmented in theHCD cell at 27% normalized collision energy and
the spectra recorded at a target value of 1E5 and a resolution of 15k. Peptides
with a charge of+1 or >+6 were excluded from fragmentation, the peptide
match feature was set to preferred, the exclude isotope feature was enabled,
and selected precursors were dynamically excluded via repeated sampling
for 40 s.

Acquired data were searched with MaxQuant 1.5.5.170 against the
UniProt reference databases for A. fumigatus (Neosartorya fumigata—
strain ATCC MYA-4609) and Klebsiella pneumoniae (strain ATCC
700721/MGH 78578) and a custom database of common lab con-
taminants. We used the default parameters with full trypsin specificity,
and with oxidation (M) and N-term acetylation as variable, and carba-
midomethylation (C) as fixed modifications. Label-free quantification
and “match-between-runs” functions were enabled, all data were filtered
at 1% false discovery rate for peptide spectrum matches, proteins, and
modified sites. Data were imported into Perseus for further analysis71.
Version 1.5.0.15 was used for the analysis of A. fumigatus and the version
1.6.0.7 for the analysis of K. pneumoniae. Data of protein groups were
log-transformed and filtered for at least two quantified data points per
group before imputation of missing values (from normal distribution,
with a downshift of 1.8 and a width of 0.3 standard deviations). As the
coverage of Klebsiella proteins in the co-culture samples was much lower
due to the lower abundance, the normalization procedure of MaxQuant
was not sufficient. We therefore performed re-normalization by median-
centering and then imputed missing values of Klebsiella proteins from a
simulated normal distribution, as described above, but based only on the

distribution of the Klebsiella protein group intensities. LIMMA statistical
analysis was performed in R for non-imputed and imputed datasets,
respectively. p values were adjusted for multiple testing with the
Benjamini–Hochberg procedure in the LIMMA package.

Functional annotation was performed using imputed LFQ data,
including only the significant proteins (LIMMA< 5%FDR). Bioinformatics
Resources software72,73 was used for the protein functional annotation. The
version 6.8 was used for A. fumigatus and the version 6.7 was used for K.
pneumoniae analysis. The total number of proteins is related to the median
protein counts for each reference genome, retrieved from NCBI on 10th
April 2020. The functional categorization was performed according to GO
terms and the Kegg pathway. The RevigoWeb server (http://revigo.irb.hr/)
was used for the summarization of GO terms67.

Metabolomics
Upon 24 h growth in biofilm mode, 1 mL of medium was removed from
each Petri dish, and the remaining supernatant plus the entire number of
cells from single pathogen cultures and co-cultures of A. fumigatus and K.
pneumoniae were collected into centrifuge tubes. To prepare for the cell
pellet extraction, 9 mLof a cold solventmixture [MeOH:ACN:H2O] (2:2:1,
v/v) (methanol: acetonitrile: Milli-Q water) were added to the tubes. Sam-
ples were shaken vigorously for 30 s and incubated in liquid nitrogen for
1min. Samples were then thawed at room temperature and sonicated in a
water bath Bioruptor (Diagenode) at maximum power, 10 cycles,
30 s+ 30 s rest in a water/Mili-Q water/ice bath. Incubation in liquid
nitrogen and sonication were repeated three times. For protein precipita-
tion, sampleswere incubatedat−20 °C for 1 h. Thereafter, cellswere shaken
vigorously for 1min and spun down at maximum speed (3000 × g) for
15min at 4 °C.A volumeof 1mL supernatantwas collected intomicrotubes
and spun down for 15min at 15,682 × g at 4 °C. The supernatants were
transferred into fresh microtubes and evaporated by drying at room tem-
perature in a vacuum concentrator. The dry extracts were pooled, recon-
stituted in 150 µL of [ACN: H2O] (1:1, v/v) and mixed with a pipette.
Sampleswere sonicated in awater bathBioruptor (Diagenode) atmaximum
power, 10 cycles, 30 s+ 30 s rest in a water/Milli-Q water/ice bath. Samples
were then spun down for 15min at 15,682 × g at 4 °C to remove insoluble
debris, and the supernatants were transferred into fresh microtubes. All
samples were stored at −80 °C until further LC–MS analysis.

Extracted samples and the pooled QCwere diluted 1:5 with 80%ACN
for hydrophilic interaction liquid chromatography (HILIC) analysis and 1:5
with 50%ACNfor reversed-phase (RP) analysis. Sampleswere separated on
a SeQuant ZIC-pHILIC HPLC column (Merck, 5 µm, 100 × 2.1 mm) or a
Phenomenex Gemini column (C18, 3 µm, 110 Å, 150 × 2mm) with an
UltiMate 3000 RS UHPLC system (Thermo Scientific, Bremen, Germany).
The gradient ramp-up time forHILICmeasurements was 20min from90%
A (ACN) and 10%B (20mMNH4HCO3) to 60%B and hold for 8min. The
total run time was 40min at a flow rate of 100 µL/min. The starting mobile
phase composition for RP measurements was 0.1% FA (A, 99%) and 0.1%
FA in ACN (B, 1%). The ramp-up time was 20min to 60% B and hold for
5min. Total run time was 35min at a flow rate of 100 µL/min. Metabolites
were ionized by electrospray ionization in polarity switching mode after
HILIC and in positive polarity after RP separation. Spectrawere acquired by
data-dependent high-resolution tandem mass spectrometry on a
Q-Exactive Focus (Thermo Fisher Scientific, Germany). Ionization poten-
tialwas set to+3.5/−3.0 kV, the sheetgasflowwas set to 20, andan auxiliary
gas flow of 5 was used.

Metabolite annotation was supported by the software Compound
Discoverer 2.1 (Thermo Fisher Scientific). Compound annotation was
conducted by searching the mzCloud database with a mass accuracy of
3 ppm for precursor masses and 10 ppm for fragment ion masses as well as
ChemSpider with a mass accuracy of 3 ppm searching KEGG, Human,
Escherichia coli, or Yeast Metabolome Database. Data were exported into
Excel files. Different LC–MS experiments were represented and divided
according to the separation mechanism (HILIC, RP) and polarity (+/−,
only applicable for HILIC). All metabolites were sorted according to their
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molecular weight. Metabolites that were annotated with mzCloud (MS2

match at least 60%)were exported to the Excel file without filter adjustment
and with a visible name. Identification was based on comparison of mea-
sured MS2 spectra in mzCloud. Metabolites containing at least one Chem-
Spider identification (CSID)—through molecular weight matching (max.
tolerance 3 ppm)—were listed separately after mzCloud compounds and
were filtered as follows: (i) group coefficient variant (Group CV) not
exceeding 25% for −HILIC and 50% for +HILIC and RP in at least one
sample group, (ii) log2-fold change either less than−1 or greater than+1 in
at least one sample group, and (iii) further information on a specific com-
pound was retrieved from ChemSpider online (http://www.chemspider.
com/) using the CSID numbers. Annotation was performed bymzCloud or
ChemSpider, dependingon the indicationof a name,CS, “CSor Similar to:”,
and if “Similar to:”was indicated, mzCloud found a similar structure. If the
name field remained empty, neither mzCloud nor ChemSpider could
identify the molecular weight. There was no similarity search in −HILIC.
Some metabolites were annotated identically, but had a different reten-
tion time, and could not be distinguished by the evaluation program.
They most likely represented isomers or in-source fragments from other
metabolites.

Differences in the relative amounts of metabolites produced at sig-
nificant levels in co-culture were compared to the corresponding single
pathogen culture. The group areas corresponding to single pathogen cul-
tures and co-cultures were determinedbyCompoundDiscoverer. The non-
quantitative nature of metabolomic analysis precluded a normalization
strategy. An adjustment of the data values was therefore performed, con-
sidering technical differences between the biological replicates and between
the samples (single pathogen cultures vs co-cultures). The maximum value
for the coefficient of variation (CV) was 164%, corresponding to the max-
imum dispersion of data across all samples, and reflecting the standard
deviation of the mean. To ensure that only relevant metabolites are con-
sidered, a cutoff for the log2-fold change (FC) > 1.0was applied. Initially, the
measured peak areas for single cultures of Klebsiella and Aspergillus were
compared to determine which pathogen is the potential producer of a
certain metabolite, and the values were subsequently compared with values
measured in the co-cultures. Molecules displaying a specific monoisotopic
mass were annotated according to their function by several online tools
including PubChem (https://pubchem.ncbi.nlm.nih.gov/), ChemSpider
(http://www.chemspider.com/), KEGG, BioCyc (https://biocyc.org/). The
functional categorization was performed for annotated compounds in
MetaboAnalyst 5.074 across KEGG pathways. The hypergeometric test was
used for pathways analysis. An overview of the metabolic analysis is pro-
vided in Supplementary Data 1.

Primer design and qPCR
For gene expression analysis by qPCR, target sequences ofA. fumigatuswere
retrieved from the Aspergillus genome database (http://www.aspgd.org/ or
https://fungi.ensembl.org/Aspergillus_fumigatus). Primer design was per-
formed by using the software PerlPrimer (version 1.1.21) (Open-source
PCR primer design, Parkville, Australia)75 and IDTDNA primer quest tool
(www.idtdna.com/primerquest/Home/Index), and the sequences are listed
in Supplementary Table 10. The qPCR experiments were performed with
SYBR greenmastermix (Applied Biosystems) in the Bio-Rad CFXMaestro
platform. The algorithm used for gene expression analysis was the relative
quantification ΔΔCT method76, using β-tubulin77 as the normalizer and A.
fumigatus single culture as the reference of modulation. The graphs were
generated using GraphPad Prism v.5 software (GraphPad). The results are
displayed as mean values from independent experiments and the standard
deviations. Significant values were determined using unpaired t-test. P
values < 0.05 were considered significant.

Statistics and reproducibility
DEGswere determinedusing edgeR v3.40.2 inRwithBenjamini–Hochberg
adjusted p values. Normalization of proteomics data was performed using
MaxQuant 1.5.5.1 and the LIMMA package in R, with p values adjusted for

multiple testing using the Benjamini–Hochberg procedure. For metabo-
lomic analysis, due to its inherent non-quantitative nature, normalization
wasnot applied.However, data valueswere adjusted to account for technical
differences between the three biological replicates and between samples
(single pathogen cultures vs co-cultures). The maximum CV was 164%,
reflecting the maximum dispersion of data across all samples, representing
the standard deviation from the mean. A hypergeometric test was used for
pathway analysis in MetaboAnalyst 5.0. For qPCR validation, we used the
relative quantification ΔΔCT method normalized to β-tubulin and A.
fumigatus single culture as reference for changes. Graphs were generated
usingGraphPadPrismv5 software. The results are displayed asmean values
from independent experiments, with standard deviations. Significant dif-
ferences were determined using an unpaired t-test with p values < 0.05 as
significant.

Data availability
The datasets can be found in online repositories. The RNA-seq data are
available at the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/
geo) under the accession number: GSE199079. The proteomics data from
this study are available at Pride database under the accession code
(PXD046439). Source data are provided with this paper as Supplemen-
tary Data 2.

Code availability
The code applied for dual-RNA-seqdata analysis is available onGitHub and
has been archived via Zenodo. It can be accessed through the following link:
https://doi.org/10.5281/zenodo.1394172978.
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