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Abstract
The insulin-like growth factor 1 (IGF-1) is a pleiotropic hormone that regulates essential life-history traits and is known 
for its major contribution to determining individual ageing processes. High levels of IGF-1 have been linked to increased 
mortality and are hypothesised to cause oxidative stress. This effect has been observed in laboratory animals, but whether it 
pertains to wild vertebrates has not been tested. This is surprising because studying the mechanisms that shape individual 
differences in lifespan is important to understanding mortality patterns in populations of free-living animals. We tested this 
hypothesis under semi-natural conditions by simulating elevated IGF-1 levels in captive bearded reedlings, a songbird species 
with an exceptionally fast pace of life. We subcutaneously injected slow-release biodegradable microspheres loaded with 
IGF-1 and achieved a systemic 3.7-fold increase of the hormone within the natural range for at least 24 h. Oxidative damage 
to lipids showed marked sexual differences: it significantly increased the day after the manipulation in treated males and 
returned to baseline levels four days post-treatment, while no treatment effect was apparent in females. Although there was no 
overall difference in survival between the treatment groups, high initial (pre-treatment) IGF-1 and low post-treatment plasma 
malondialdehyde levels were associated with enhanced survival prospects in males. These results suggest that males may 
be more susceptible to IGF-1-induced oxidative stress than females and quickly restoring oxidative balance may be related 
to fitness. IGF-1 levels evolve under opposing selection forces, and natural variation in this hormone’s level may reflect the 
outcome of individual optimization.
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Introduction

Mortality is a pivotal demographic parameter that pro-
foundly influences fitness and is central to our understand-
ing of the patterns contributing to individual differences in 
longevity. Within the realm of genetic and physiological 
mechanisms shaping animal longevity, the insulin/insulin-
like growth factor 1 signalling (IIS) pathway stands out as 
a key regulator. This evolutionarily conserved pathway, 
present throughout the animal kingdom, has demonstrated 
associations with longevity in diverse species, including 
worms, insects and vertebrates (Bartke 2017). The primary 
ligand of the IIS pathway in vertebrates, the peptide hor-
mone insulin-like growth factor 1 (IGF-1) has an antago-
nistic pleiotropic effect on different fitness components: it 
stimulates growth and reproduction but increases mortality 
(Dantzer and Swanson 2012). Conversely, a repressed activ-
ity of the IIS pathway augments self-maintenance or survival 
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functions, resulting in an extended lifespan (Kenyon 2010; 
Lind et al. 2019).

Despite the robust patterns observed, the direct 
mechanisms by which a repressed IIS activity extends 
lifespan are not fully understood. The prevailing hypothesis 
is that the positive effects of blunted IIS signalling are 
partly due to increased resistance to oxidative stress 
(Holzenberger et al. 2003; reviewed by Tatar et al. 2003; 
Kenyon 2010; Dantzer and Swanson 2012). However, the 
relationship between IGF-1 and oxidative status is somewhat 
paradoxical. On the one hand, IGF-1 activates enzymatic 
antioxidant defences (most notably, glutathione peroxidase) 
and therefore is considered to have protective roles against 
oxidative stress, at least in rodents (Sukhanov et al. 2007; 
Higashi et al. 2010; Aksu et al. 2013; Ayadi et al. 2016; 
Montivero et al. 2021; Arjunan et al. 2023). On the other 
hand, IGF-1 is intricately linked with cellular metabolism 
and growth and may cause increased production of reactive 
oxygen species (Papaconstantinou 2009).

This disparity may, in part, be attributable to the fact 
that resistance to oxidative stress may not be equally 
experienced by males and females. In fact, sex-specific 
effects of IGF-1 regarding its protective or adverse roles 
have been documented in laboratory model organisms. 
For instance, improved stress resistance and longevity due 
to reduced IGF-1 signalling are much more profound in 
female mice than male mice (Holzenberger et al. 2003). 
High serum IGF-1 levels also induce bone loss in female 
mice only, while in males the effect is the opposite (Elis 
et  al. 2011). Sex-specific effects of IGF-1 may also be 
observed in the regulation of the immune response (Pinto-
Benito et  al. 2022), which may contribute to a general 
sex difference in immunity, with potential implications 
for divergent longevities (May 2007; Vincze et al. 2022). 
Despite its importance, the underlying mechanisms of 
sexual differences in physiology and their repercussions 
for mortality patterns remain often unknown and warrant 
further research.

However, the role of IGF-1 in coordinating fitness and 
oxidative stress has almost exclusively been performed in 
the laboratory and studies in wild animals are surprisingly 
scarce (reviewed by Dantzer and Swanson 2012; Lodjak and 
Verhulst 2020). It is still contentious whether a high IGF-1 
titre triggers oxidative damage, and this hypothesis has never 
been tested in any wild species (Dantzer and Swanson 2012; 
Lodjak and Verhulst 2020).

The aim of our study was to address this knowledge gap 
by exploring the consequences of short-term elevated IGF-1 
levels on oxidative damage in male and female individuals 
of a wild bird species. We conducted an experiment with 
juvenile bearded reedlings (Panurus biarmicus), a common 
Eurasian passerine, previously used in several behavioural 
(e.g. Romero-Pujante et al. 2002; Hoi and Griggio 2012) and 

physiological studies, including that of IGF-1 (Tóth et al. 
2018, 2022; Mahr et al. 2020; reviewed by Lendvai 2023). 
Plasma IGF-1 levels were experimentally increased by using 
a novel and minimally invasive manipulation technique 
that consisted of a single subcutaneous injection of IGF-1 
encapsulated in slow-release biodegradable microspheres 
(treatment group) or dispersion medium without IGF-1 
(control group) (Meinel et al. 2001; Mahr et al. 2023). To 
this end, we chose malondyaldehide (MDA) as a surrogate 
measure of oxidative damage due to its stability as a 
byproduct of lipid peroxidation, quantifiable nature allowing 
for comparisons across samples, and widespread use in 
scientific research. Malondialdehyde (MDA) is a carbonyl 
compound that results from the peroxidative degeneration 
of membrane lipids, and thus, it is a widely used marker 
of oxidative stress (Del Rio et al. 2005). MDA and other 
carbonyl compounds have longer half‐life than reactive 
oxygen species and can cross membranes to cause damage 
to cell macromolecules distant to their place of formation 
(e.g. Monaghan et al. 2009; Pamplona and Barja 2011; Sohal 
and Orr 2012). MDA has been shown to scale inversely with 
maximum lifespan in a comparison across birds (Vágási 
et al. 2019). Considering the unknown significance of even 
a temporary upsurge of oxidative damage, we also monitored 
long-term fitness consequences by recording the mortality 
of individual reedlings in captivity over 16 months after the 
start of the experiment.

Material and methods

Study species, experimental setup, mortality

The bearded reedlings (16 females and 25 males) were 
caught with mist nets at Hortobágy-Halastó (N47.6211, 
E21.0757) between July 28 and 30, 2017. Only juveniles 
(i.e., individuals that hatched in the year of capture) were 
used in this study: the age and sex were determined based 
on plumage and bill colouration (Robson 2020). Upon 
capture, birds were ringed with an individually numbered 
metal ring, and their body mass was recorded (± 0.1 g). 
Birds were initially housed in groups of four individuals 
in cages (100 × 30 × 50 cm) placed in an outdoor aviary 
(3.65 × 3.35 × 2.75 m). However, two cages contained three 
and two birds, respectively, which was necessary because 
of the odd number of individuals and avoid animals being 
kept individually. Food and water were provided ad libitum 
throughout the study. The birds were fed a mixture of 
freshly grated carrots, apples, quark, hard-boiled eggs, an 
insectivorous bird food and ground cat food as a protein 
supplement, live mealworms daily and occasionally small 
crickets, grasshoppers and immature Turkestan cockroaches.
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After at least ten days of acclimation, the individuals 
were randomly assigned to receive either IGF-1 or a control 
treatment. Treatments were started in a staggered manner 
over two weeks, meaning that the four-day treatment period 
was started on different calendar days for different birds (the 
order within each cage was randomised), to minimise the 
number of experimental birds and thus handling time on 
any particular day. Controlling for the experimental order 
in the analyses had no effect on the results. On the morning 
of the treatment (day 0), we took a baseline blood sample 
(mean handling time: 190 ± 100 SD sec time measured from 
entering the aviary) from each target individual and recorded 
their body mass. Total blood volume was approximately 70 
µL, and the average plasma volume collected was 37 µL. 
Subsequently, we injected subcutaneously 100 µL dispersion 
containing either slow-release PLGA (poly(lactide-co-
glycolide)) microspheres loaded with recombinant human 
IGF-1 (PeproTech, UK) (treatment; 2.2 mg microspheres 
containing 272 ng/mg IGF-1) or only the dispersion medium 
(control). Due to the high structural similarity between 
human and avian IGF-1, the human peptide has been 
successfully used in birds (McGuinness and Cogburn 1991; 
Lodjak et al. 2017; Lendvai et al. 2021).

The PLGA microparticles were designed to release 
exogenous IGF-1 over several days and have been shown 
to be a suitable method for this species (Meinel et  al. 
2001; Luginbuehl et al. 2013; Lendvai et al. 2021; Mahr 
et  al. 2023). To produce the PLGA-microparticles, we 
conducted microencapsulation of recombinant human 
IGF-I using a solvent extraction method from a W1/O/W2 
dispersion. The internal aqueous phase (W1), comprising 
IGF-1, 10 mmol/L sodium succinate, 140 mmol/L sodium 
chloride (pH 6.0), and bovine serum albumin as a stabiliser, 
was emulsified with a solution of PLGA in dichloromethane 
(O) through ultrasonication. This W1/O dispersion was then 
introduced into a 5% (w/v) aqueous PVA solution (W2) to 
create, under mechanical stirring, a W1/O/W2 dispersion. 
For solvent extraction, the W1/O/W2 dispersion was 
diluted with de-ionised water and stirred using a magnetic 
stirrer. The resulting microspheres were collected on a 
regenerated cellulose (RC) membrane filter and dried at 
room temperature overnight under reduced pressure. The 
microspheres had an IGF-1 loading of 272 ng IGF-I mg/
microspheres. Treated birds received a total of 600 ng IGF-1 
per injection, with 100 μL of the dispersion administered 
subcutaneously between the shoulders. The control birds 
followed the same protocol, except they were only injected 
with 100 μL of the dispersion medium. The dispersion 
medium consisted of 1.5% (m/m) carboxymethylcellulose, 
5% mannitol and 0.02% polysorbate 80 in sterile saline 
solution.

Immediately after the treatment, the birds were returned 
to their cages. Additional blood samples (using the same 

procedure as above) and body mass measurements were 
taken after 24 h and 96 h (day 1 and day 4 post-treatment) to 
assess the short-term physiological effects of the treatment. 
Once all birds had undergone day 4 post-treatment sampling, 
birds from half of all cages (chosen randomly) were released 
back to the aviary, where the cages were placed, while 
the other half were released into another outdoor aviary 
(3.7 × 3.5 × 2.2 m). Both aviaries contained dense bundles 
of reed and cattail, and a water pool of ~ 1 m2 surface 
area to mimic a natural environment. Sufficient branches 
for perching and small boxes for hiding and resting were 
provided to enrich the environment. Food (as described 
above) was provided ad libitum in both aviaries.

At three months post-treatment, between November 20 
and 22, 2017, all birds were recaptured to take another blood 
sample for testing long-term repeatability of circulating 
IGF-1 levels. Birds were then released back into the 
aviaries for an additional 13 months (i.e., 16 months in 
total). Bearded reedlings are short-lived passerines with 
high juvenile mortality (Peiró 2013). Therefore, the entire 
study period was sufficiently long to detect enough mortality 
events for statistical analyses.

Mortality events were recorded on a daily basis. While 
the immediate cause of mortality remains unknown (autopsy 
and post-mortem pathology were not performed), most of 
the birds died in apparently good condition, without any 
visible injuries, suggesting intrinsic physiological causes of 
juvenile death. Body mass did not differ between treatment 
and control groups at any time point (all p > 0.2). Birds 
gained significant amount of mass during acclimation 
(1.3  g ± 0.22  s.e.m., p < 0.001) that remained constant 
during the short-term phase of the study (day 0–4) and 
gained additional mass (0.9 g ± 0.26 s.e.m., p < 0.001) by 
November, three months later, indicating good conditions 
and no adverse effects of captivity in the aviaries. The 
sexes did not differ in body mass gain at any time point (all 
p > 0.1). After 16 months in captivity, on December 8, 2018, 
all surviving birds (31%, n = 13; 7 controls and 6 treated 
individuals) were released at the site of capture.

Physiological measurements

Plasma IGF-1 levels were measured without extraction by an 
in-house ELISA assay, as described elsewhere (Mahr et al. 
2020). MDA was measured by high-performance liquid 
chromatography, as detailed elsewhere (Vágási et al. 2019).

Statistical analyses

All statistical analyses were carried out in R version 
‘Bird Hippie’ (4.1.2.) (R Core Team 2021). We analysed 
treatment effects on circulating IGF-1 and MDA levels 
(both log-transformed) (n = 41 individuals) by generalised 
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mixed-effects models (GLMMs) with treatment, sex and 
sampling time (days 0, 1, and 4) and their interactions as 
fixed factors, and individual identity as random intercept 
as implemented in package ‘lme4’ (Bates et al. 2015). To 
analyse the main effects and interactions, we computed Type 
III analysis of variance using Satterthwaite’s approximation 
of degrees of freedom, as implemented in the package 
‘lmerTest’ (Kuznetsova et al. 2017). Based on these models, 
we compared predicted marginal means of the IGF-1 
treatment and control groups within each time point and 
sex and reported these results. These pairwise comparisons 
were implemented using the function ‘pairs’ in the 
package ‘emmeans’ (Lenth et al. 2023), and p-values were 
adjusted using the Tukey HSD method. The repeatability 
of IGF-1 level was estimated using the package ‘rptR’ 
(Stoffel et al. 2017). Survival analyses were carried out by 
Aalen’s regression (function ‘aareg’ in package ‘survival’ 
(Therneau 2009)) that allows for additive effects on the 
cumulative hazard function. Individuals alive at the end of 
the study and one individual that escaped from captivity 
were right-censored in the models. First, we analysed the 
effect of treatment and sex as factors on the survivorship. 
Second, we asked how IGF-1 and MDA measured on day 
0, 1 and 4 affected survivorship. We included aviary ID in 
all of the models either as a fixed factor or as ‘strata’ (i.e. 
calculating a different baseline hazard for each aviary), 
but this effect never approached statistical significance or 
altered the conclusions, therefore, it was removed from the 
models we report here. To avoid overparameterisation of 
the models, we modelled survival in several steps. First, we 
considered treatment, sex and their interaction as factors. 
Next, we included sex and its two-way interactions with both 
IGF-1 and MDA levels as covariates for the pre-treatment 
(day 0) and the post-treatment (day 4) periods, respectively. 
The model structure was then simplified to retain only 
significant interactions. Finally, based on the earlier models, 
we constructed a model containing sex and its interaction 
with either IGF-1 and MDA, found to be influential at the 
pre-treatment or post-treatment period.

Results

At the onset of the experiment, neither IGF-1 nor MDA 
levels were different between the treatment groups (IGF-1: 
t = 0.47, p = 0.640; MDA: t = 0.88, p = 0.382). While pre-
treatment MDA levels were higher in males than in females 
(t = 2.03, p = 0.049), it was not related to pre-treatment 
IGF-1 levels (t =  – 0.33, p = 0.741).

Hormone treatment increased IGF-1 levels (F2,74 = 27.13, 
p < 0.001) in both sexes (Fig. 1). Although males had over-
all higher levels of IGF-1 than females (F1,37 = 11.25, 
p = 0.002), the magnitude of increase in IGF-1 from day 

0 to day 1 was similar in males and females (day × treat-
ment × sex: F2,74 = 0.02, p = 0.978, Fig. 1). IGF-1 levels were 
similar in the two treatment groups before the manipula-
tion (i.e., day 0) in both sexes (females: p = 0.639, males: 
p = 0.674), but it was higher in the treated group than in the 
control group on day 1 after injection of the IGF-1-loaded 
microspheres (both sexes: p < 0.001, Fig. 1). By day 4, this 
difference between the two groups disappeared in both sexes 
(females: p = 0.835, males: p = 0.948, Fig. 1). Individual 
identity accounted for 17% of variance in IGF-1 not attribut-
able to fixed effects (conditional R2 = 0.66). Inter-individual 
variation in IGF-1 levels remained consistent throughout the 
study period, resulting in significant repeatability over three 
months (controlling for day, sex and treatment: R = 0.34 
(± 0.16 SE), 95% confidence interval: 0.06–0.66, p = 0.022, 
n = 29).

The hormone treatment induced a significant difference 
between the treatment groups in MDA levels in a sex-spe-
cific manner, indicating that the IGF-1 treatment had oppos-
ing effects on MDA levels in males and females (day × treat-
ment × sex: F2,72 = 3.42, p = 0.038, Fig. 2). Post-hoc analyses 
revealed that before the treatment (day 0), there was no dif-
ference between experimental groups in their MDA levels in 
either sex (females: p = 0.382, males: p = 0.804). However, 
IGF-1-injected males had higher MDA on day 1 than control 
males (p = 0.002), but this difference disappeared by day 4 
(p = 0.316, Fig. 2). In contrast, while females appeared to 
show the opposite pattern, the difference in MDA between 
the hormone-treated and control groups did not reach sta-
tistical significance on either day 1 or day 4 (p = 0.172 and 
0.493, respectively). Individual variation explained 7.1% of 
variance in MDA not attributable to fixed effects (condi-
tional R2 = 0.26).

Survivorship over 16 months did not differ between the 
IGF-1-treated and control groups (z = 0.28, p = 0.773, Fig. 3) 
or between sexes (z = 0.15, p = 0.883) and the interaction 
of these two predictors was also non-significant (z = 0.50, 
p = 0.620). Birds with higher pre-treatment (day 0) IGF-1 
levels were slightly more likely to survive (z =  – 2.65, 
p = 0.008), while pre-treatment MDA and sex had no sig-
nificant effect in the model (MDA: z = 0.26, p = 0.799, sex: 
z = 0.42, p = 0.675). Neither peak (day 1) MDA and IGF-1 
levels nor sex affected survivorship (all p > 0.610). However, 
MDA on day 4 was associated with survivorship in a sex-
specific manner: relatively higher MDA levels on day 4 co-
occurred with higher mortality in males (z = 2.07, p = 0.039), 
while females showed the opposite pattern (z =   –  2.09, 
p = 0.037). IGF-1 on day 4 showed no such relationship 
with survival and remained non-significant in both sexes 
(females: z =   –  0.37, p = 0.711, males: z = 0.34, p = 0.737). 
Finally, we combined the significant effects of pre-treatment 
IGF-1 and post-peak MDA levels in a sex-specific model, 
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corroborating the conclusions for MDA, but the effect of 
pre-treatment IGF-1 was only significant in males (Table 1).

Discussion

IGF-1 is a pleiotropic hormone that has antagonistic effects 
on life-history traits (Dantzer and Swanson 2012; Lodjak and 
Verhulst 2020), but the adaptive value of among-individual 
variation in its plasma levels remains unknown. Higher 
IGF-1 titres might be associated with increased mortality 
in reptiles and mammals, though effect sizes differ between 
studies and according to the sex and age of individuals 
(Holzenberger et al. 2003; Andreassen et al. 2009; Sparkman 
et al. 2009; Milman et al. 2016; Garratt et al. 2017; Lewin 
et al. 2017). Phylogenetic comparative analyses also report 
a negative relationship between circulating IGF-1 levels 
and lifespan in birds and mammals (Swanson and Dantzer 
2014; Lodjak et al. 2018). Although the exact mechanism 
of such increased mortality remains uncertain, several 
studies suggested oxidative stress as a mediatory agent 

(Holzenberger et al. 2003; Tatar et al. 2003; Brys et al. 2007; 
Kenyon 2010; Dantzer and Swanson 2012).

Here, for the first time, we showed experimental support 
for the hypothesis that an elevation of circulating IGF-1 
levels may cause oxidative damage at short-term in birds 
originating from a wild population. This result is consistent 
with a previous correlational study where circulating 
baseline levels of IGF-1 were positively associated with 
MDA in adult house sparrows (Passer domesticus) (Vágási 
et al. 2020). However, the role of IGF-1 in oxidative stress 
is complex. While higher activity of the IIS pathway is 
associated with oxidative damage, concurrently, it also 
upregulates antioxidant defences. For example, a study 
on nestling pied flycatchers (Ficedula hypoleuca) found 
that daily IGF-1 injections increased the levels of the 
antioxidant enzyme glutathione peroxidase (Lodjak and 
Mägi 2017), which might reflect lowered oxidative stress 
and/or up-regulated antioxidant activity in response to 
oxidative stress. This upregulation of antioxidant defences 
may contribute to the protective effects of IGF-1 in specific 
tissues (especially in the neural system), so much so that 
in clinical settings, the therapeutic use of IGF-1 is also 
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Fig. 1   Injection with insulin-like growth factor 1 (IGF-1)-loaded 
microspheres resulted in a significant increase in circulating IGF-1 
levels measured 24 h later (day 1) in captive bearded reedlings, but 
these effects disappeared by day 4. Mean ± s.e.m. are shown, asterisks 

denote significant (p < 0.05) differences between the treatment and 
control groups on day 1. The effect of treatment was similar in both 
sexes, but males had overall higher IGF-1 levels
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tested to prevent neurodegenerative disorders (Ayadi et al. 
2016; Arjunan et al. 2023). However, enhanced activity 
of the IGF-1 system is known to generate reactive oxygen 
species and may lead to lipid peroxidation in rodents 
(Papaconstantinou 2009; Elis et al. 2011) and systemic 
augmentation of IGF-1 is associated with an increase of 
all-cause mortality in humans (Andreassen et al. 2009).

This paradoxical position of IGF-1 in oxidative balance 
regulation may be partly due to sexual differences in its 
effect (May 2007; Elis et al. 2011). In this context, we 
demonstrate that the IGF-1-induced oxidative damage 
showed marked sexual differences: while the treatment 
equally increased IGF-1 in males and females, it induced 
transient oxidative damage in males only, while in females, 
there was no difference between the treatment groups and 
they tended to show the opposite pattern. Experimentally-
induced IGF-1 levels remained in the natural physiological 
range of this hormone in this species, as in previous 
studies, we found that some individuals had similarly high 
or even higher IGF-1 values than the day 1 experimental 
birds in this study (Mahr et al. 2020, 2023).

As IGF-1 concentration returned to pre-treatment 
levels at day 4, the difference in oxidative damage also 
disappeared between the groups. Microspheres were found 
to release encapsulated IGF-1 over several days in mice 
(e.g. Luginbuehl et al. 2013), and in a follow-up study in 
the bearded reedlings, we also found significant elevation of 
IGF-1 levels for up to 3 days post-injection. However, after 
temporary regression, another wave of release sustained 
elevated levels up to 7  days following the injection of 
IGF-1 loaded microspheres (Mahr et al. 2023). Whereas 
treatment effects disappeared by day 4 in the current study, 
it is remarkable that a single injection with microspheres 
achieved a sustained increase in IGF-1 for at least 24 h (and 
potentially more), which is considerably longer than the 
average half-life (32 min, regardless of the dose) of simple 
IGF-1 injections used in previous studies (McGuinness and 
Cogburn 1991).

Although MDA levels also returned to baseline by 
day 4, males that persistently had relatively higher post-
peak oxidative damage levels were more likely to die. 
Intriguingly, females showed the opposite pattern, where 
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Fig. 2   Injection with insulin-like growth factor 1 (IGF-1)-loaded 
microspheres resulted in a significant increase in cellular oxidative 
damage (malondialdehyde, MDA) measured 24  h later (day 1) in 
male, but not in female bearded reedlings. Mean ± s.e.m. are shown, 

asterisk denotes significant (p < 0.05) difference between the treat-
ment and control groups in males on day 1. The effect of treatment 
was sex-dependent and males had overall higher MDA levels
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relatively lower MDA levels were associated with higher 
mortality. Males had overall higher IGF-1 and MDA levels 
than females and were more susceptible to IGF-1-induced 
oxidative damage. Studies in mice and humans found the 
opposite pattern, where females seem more sensitive to 
variation in IGF-1 levels (Holzenberger et al. 2003; Van 
Heemst et al. 2005; Elis et al. 2011; Xu et al. 2014). This 
is remarkable because compared with mammals, in birds, 
males tend to have longer lifespans (Bronikowski et al. 
2022). Hence, our study indicates that the IGF-1- related 

physiology and oxidative damage may contribute to sex-
specific mortality patterns.

Notably, higher baseline IGF-1 (but not MDA) levels 
measured before the treatment were associated with lower 
mortality (especially in males). This result was unexpected 
since higher IGF-1 activity has been linked to higher 
mortality in various species (see above). However, it is 
also noteworthy that individuals exhibit large, repeatable 
natural variation in IGF-1 levels, which may be the result 
of individual optimisation (recently coined as the Optimal 
Endocrine Phenotype Hypothesis) (Bonier and Cox 2020). 
In this context, most of the inter-individual variation 
of IGF-1 levels may reflect adaptive plastic responses 
to variation in environmental or internal conditions, 
where individuals express endocrine phenotypes that 
are optimal in their current conditions but which differ 
among them. Therefore, high-quality individuals (e.g., 
good health or nutritional status) may afford to bear the 
costs of elevated IGF-1 levels (e.g. in terms of oxidative 
damage, accelerated ageing or increased risk of cancer 
(Shanmugalingam et  al. 2016; Montoya et  al. 2022b; 
Nelson et  al. 2023)) while benefiting from its fitness-
enhancing effects (e.g. boosting fecundity or anti-
inflammatory responses) (Higashi et al. 2010) as expected 
for wild species exposed to forces of natural selection. 
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Fig. 3   Insulin-like growth factor 1 (IGF-1) treatment did not affect 
survivorship in bearded reedlings. The solid and the dashed lines rep-
resent the Kaplan–Meier survival curves for the IGF-1 treatment and 

control birds, respectively, and shaded areas denote the correspond-
ing 95% confidence intervals. Cross symbols show censored values. 
Treatment groups did not differ in survivorship

Table 1   Survival model predicts that the likelihood of mortality 
increases over time, but higher pre-treatment (day 0) insulin-like 
growth factor 1 (IGF-1) levels reduce mortality in males

Post-peak (day 4) levels of malondialdehyde (MDA), a marker of 
oxidative damage to lipids, increase mortality in males, while it has 
the opposite effect in females

Fixed effects Estimate ± s.e.m z p

Baseline hazard 0.187 ± 0.081 2.30 0.022
Sex (males) –0.155 ± 0.085 –1.81 0.070
Pre-treatment IGF-1 (day 0) 0.002 ± 0.001 1.64 0.100
Pre-treatment IGF-1 × sex (males) –0.004 ± 0.002 –2.46 0.014
Post-peak MDA (day 4) –0.075 ± 0.032 –2.36 0.019
Post-peak MDA × sex (males) 0.090 ± 0.034 2.64 0.008
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Therefore, despite the high levels of circulating IGF-1, 
the overall balance of its antagonistic effects may still be 
positive for high-quality individuals, who, by definition, 
have better survival prospects. However, it is crucial to 
recognise that the association between natural variations 
in pre-treatment IGF-1 or post-treatment MDA levels and 
observed mortality patterns is correlational, and a direct 
causal relationship cannot be concluded. Birds with diverse 
IGF-1 or MDA levels likely exhibit variations in numerous 
physiological aspects. For instance, a recent study on male 
Japanese quails (Coturnix japonica) reported a positive 
link between IGF-1 and immune response while finding 
no relationship between MDA and IGF-1 (Montoya 
et  al. 2023). IGF-1 levels may also reflect short-term 
nutritional status (Lodjak et al. 2023). We do not have 
information about the immune or nutritional status of 
the birds in the aviary. Furthermore, the intricacies of 
IGF-1 signalling involve complex processes, including 
interactions with various binding globulins that can alter 
hormone signalling (McMurtry et al. 1997; Reindl and 
Sheridan 2012; Allard and Duan 2018). Tissue-specific 
modulation of receptor densities or local IGF-1 production 
acting in autocrine or paracrine manners also add layers 
of complexity to regulation. Additionally, given IGF-1’s 
ability to bind to insulin receptors, potential alterations in 
glucose metabolism may also influence avian longevity 
(Montoya et al. 2018, 2022a). These intricate mechanisms 
could contribute to or obscure any relationship between 
baseline IGF-1 or MDA levels and mortality.

We measured survival in a semi-natural environment 
under ad libitum diet regime and shelter from predators 
but under exposure to inclement weather, parasites and 
other pathogens. Fluctuations in environmental conditions 
and stress stimuli is known to substantially reorganise the 
physiological network and, therefore, alter the adaptive 
value of a given endocrine phenotype (Vágási et al. 2020). 
IGF-1 levels showed high inter-individual variability and 
significant repeatability over three months, indicating that 
the circulating levels of this hormone may be a consistent 
individual phenotypic marker, subject to individual 
optimisation. Whether individuals with naturally high 
IGF-1 levels also realise fitness advantages under more 
challenging natural conditions remains to be investigated.
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