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Abstract

Background: Genomes are inherently inhomogeneous, with features such as base
composition, recombination, gene density, and gene expression varying along chro-
mosomes. Evolutionary, biological, and biomedical analyses aim to quantify this
variation, account for it during inference procedures, and ultimately determine

the causal processes behind it. Since sequential observations along chromosomes are
not independent, it is unsurprising that autocorrelation patterns have been observed
e.g., in human base composition. In this article, we develop a class of Hidden Markov
Models (HMMs) called oHMMed (ordered HMM with emission densities, the corre-
sponding R package of the same name is available on CRAN): They identify the number
of comparably homogeneous regions within autocorrelated observed sequences.
These are modelled as discrete hidden states; the observed data points are realisations
of continuous probability distributions with state-specific means that enable order-
ing of these distributions. The observed sequence is labelled according to the hidden
states, permitting only neighbouring states that are also neighbours within the order-
ing of their associated distributions. The parameters that characterise these state-spe-
cific distributions are inferred.

Results: We apply our oHMMed algorithms to the proportion of G and C bases
(modelled as a mixture of normal distributions) and the number of genes (modelled
as a mixture of poisson-gamma distributions) in windows along the human, mouse,
and fruit fly genomes. This results in a partitioning of the genomes into regions by sta-
tistically distinguishable averages of these features, and in a characterisation of their
continuous patterns of variation. In regard to the genomic G and C proportion, this
latter result distinguishes oHMMed from segmentation algorithms based in isochore
or compositional domain theory. We further use oHMMed to conduct a detailed
analysis of variation of chromatin accessibility (ATAC-seq) and epigenetic markers
H3K27ac and H3K27me3 (modelled as a mixture of poisson-gamma distributions)
along the human chromosome 1 and their correlations.

Conclusions: Our algorithms provide a biologically assumption free approach
to characterising genomic landscapes shaped by continuous, autocorrelated patterns
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of variation. Despite this, the resulting genome segmentation enables extraction
of compositionally distinct regions for further downstream analyses.

Keywords: Genome segmentation algorithm, Hidden Markov Model, Ordered hidden
states (convex emission densities), Markov Chain Monte Carlo sampler, Autocorrelation,
Variation in GC proportion, Isochores, Compositional domain theory, Gene density, R
package

Introduction
Hidden Markov models (HMMs) are often described as the workhorse of modern bio-
logical sequence analysis [e.g., 13]. While originally used for speech recognition [e.g.,
23, 48], they are now central to any field that utilises advanced statistical methods. The
first biological application of HMMs was to genome segmentation, in particular to seg-
mentation of genomes according to the level of the bases guanine and cytosine (G + C)
vs adenine and thymine (A + T), i.e., segmentation according to GC-rich and GC-poor
regions [7, 45].

Generally, HMMs assume an observed sequence that is driven by an un-observed, i.e.,
a hidden, sequence that in turn is generated by a Markov process. In order to explain the
observed sequence, the hidden process and the way in which it generates the sequence
of observed data points must be modelled and the parameters of this model inferred.
Genome segmentation algorithms in particular infer the marginal probability that each
position along a chromosome or stretch of DNA, which corresponds to the observed
sequence, belongs to one of a moderately sized number K of hidden states, which alter-
nate to form a hidden sequence of states. Traversing the genome on the level of this hid-
den sequence and considering how to model it, the transition matrix T xx describes the
probability of remaining in the same hidden state or switching to another based solely
on the most recent state. This dependency on only the most recent previous state makes
the model of the hidden sequence a Markov Chain. The sequence of hidden states must
be related to the observed sequence, since every data point along the observed sequence
is assumed to be emitted conditional on the assigned hidden state at the corresponding
place in the hidden sequence. How this relationship is modelled differs between algo-
rithms, but the assignment of each observed genomic region to a hidden state is univer-
sally known as “annotation” In the most classic HMM algorithms, the observed series of
data points is assumed to be drawn from a discrete R dimensional alphabet according
to the matrix of emission probabilities Ex xr that govern how likely it is for each letter
of this alphabet to be emitted by every hidden state. However, they can also be mod-
elled as realisations of a continuous distribution with state-specific parameters such that
e.g., the overall distribution of the emitted data conform to a Gaussian mixture model
le.g., 23, 49, 21]. Conditional on both T and either E or the parameters of the emis-
sion densities, the likelihood of the observed data can then be calculated together with
the marginal probability of the state at each position using dynamic programming [7,
13], which means that recursive forward and backward passes of an algorithm are per-
formed until parameters that yield a well-fitting model have been inferred. The Baum-
Welch algorithm [1, 13], a variant of the expectation-maximisation algorithm, can often
be employed to find a local maximum of the likelihood, corresponding estimates T, E,
and the initial probability of states 7. Alternatively, Bayesian approaches typically use
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Markov Chain Monte Carlo (MCMC) methods, e.g., the Gibbs sampler, to obtain a sam-
ple from the joint posterior distribution, from which all marginal posterior distributions
follow [e.g., 3, 50, 20, 21].

Our method—oHMMed (ordered HMM with emission densities)—assumes continu-
ous emissions. In one case, the emission is a normal mixture that corresponds to the
observed density of the data points. In the other, the emission density is a gamma mix-
ture initially; however, rate parameters of poisson distributions are subsequently drawn
from the individual gamma distributions, yielding an observed density of gamma-pois-
son mixtures (where the data points are discrete counts). Our core assumption for both
variants of emissions is that the observed sequence data exhibit appreciable autocorrela-
tion. In order to model this pattern within our HMM framework, the emission densities
are parameterised so that they become convex functions within their natural range. This
is done by first assuming one shared parameter among the hidden states (the standard
deviation for normal distributions, and the shape parameter for gamma distributions),
while the other varies between the states (the mean for the normal distributions, and
the rate parameter for the gamma distributions). The state-specific parameters can then
be used to sort the states by increasing mean of their emitted distributions. Restricting
transitions to neighbouring states within the thereby imposed order induces a tridiago-
nal transition matrix T that governs the autocorrelation pattern (and makes the Markov
Chain of hidden states reversible). Utilising a Markov Chain Monte Carlo (MCMC) algo-
rithm, oHMMed provides a best-fit annotation of the observed sequence, correspond-
ing estimates of the transition rate matrix, and estimates of the state-specific and shared
parameters of the emitted distributions.

The inherent ordering of hidden states by a single parameter bestows oHMMed with
several distinguishing properties: Firstly, it avoids the problem of “label switching” that
plagues most MCMC methods [32]. Even comparison of output of the same algorithm
run multiple times is not straightforward when this occurs; with oHMMed, however,
the labels of the states relative to each other are clearly defined and facilitate “label
matching” between runs or algorithms. Secondly, the number of estimable parameters is
reduced. As expected, we can show that this improves algorithm behaviour and guards
against over-fitting. Thirdly, we are able to propose intuitive diagnostic criteria for
selecting the appropriate number of hidden states (which is typically assumed as given
in classic forward-backward and Baum-Welch algorithms). This is noteworthy because
development of model selection criteria for HMMs is complex and no consensus criteria
exist [6, 9, 62].

Overall, o0HMMed is specifically designed to segment autocorrelated sequences into
states that have statistically significant differences in mean emissions; these can then
be compared meaningfully since they differ only in this metric. This simple and oth-
erwise assumption-free approach is generally applicable whilst remaining agnostic to
any causal biological forces; in fact, these can be studied further and without bias
after oHMMed segmentation. Previously, general biological autocorrelation patterns
have been modelled by incorporating HMM components into more complex econo-
metric and socioeconomic time series models [21]; these describe the observed pat-

tern of stochastic variation (as a “random walk”) with recurring sections where the
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fluctuations are different means (termed “regime changes”) (see e.g., Markov Switch-
ing Models [29] or Changepoint Models, reviewed in [56]).

Recall that the first biological application of HMMs was to the variation of GC
proportion along genomes [7, 45]. Even before this, mammalian chromosomes had
been described as a “mosaic” of long chromosomal regions of relatively homogene-
ous GC-content termed “isochores” [12]; these regions are on the order of hundreds
of kb to Mb in length. Traditionally, five states of increasing GC proportion within
fixed (predetermined) ranges are assumed as part of “isochore theory” [e.g., 8, their
Fig~1], and these five states have been delineated in the genomes of various species,
including even invertebrates, using specifically formulated binary decision rule seg-
mentation algorithms [5]. Note that the variance in the distribution of GC proportion
is also considered to differ between states, e.g., in humans the states of higher aver-
age GC proportion are more variable [8]. The validity of “isochore theory” has been
fiercely debated [36, 37], especially since “isochores” themselves have been inconsist-
ently defined in terms of their length and level of homogeneity. This prompted the
formulation of “compositional domain theory” [15, 16], which posits that the genomic
landscape of GC proportion consists of both homogeneous and non-homogeneous
regions that can be found by recursive algorithms that maximise the difference in
GC proportion between adjacent chromosomal segments using F-tests. In humans,
roughly two-thirds of the genome can thereby be classified as consisting of homo-
geneous segments, but the vast majority are too short to be considered “isochores”
[16]. While this dispute around “isochores” has largely been put aside without clear
resolution, there is an overall agreement that varying and considerably autocorre-
lated genomic GC proportions are evident in mammalian sequence data on multiple
spatial scales, particularly broader ones: Transitions from regions with high GC con-
tent to regions with low GC content generally proceed through a sequence of regions
with intermediate GC content i.e., transitions seem to occur predominantly between
neighbouring states (see Fig. (1b) in [19] and Fig. (4) in [10]). While the scientific
community has not reached a consensus as to the cause of this distinct broad-scale
pattern of variation [33, 47], most population geneticists attribute the inhomogene-
ity of GC proportions per se to spatial fluctuation of biased gene conversion [14, 19],
which is the preferential use of G and C alleles by DNA repair mechanisms. (Note
that even so, the observed pattern of variation requires additional explanation.) It
has been shown that GC-biased gene conversion can contribute to locally accelerated
evolutionary rates [24] and lead to fixation of deleterious alleles [35], thereby impact-
ing genetic inferences and leading to genetic disorders. Thus, being able to identify
genomic regions under weaker vs stronger GC-biased gene conversion is still consid-
ered important. Our method, specifically oHMMed with normal emission densities,
offers an agnostic, probabilistic method to annotate genomes by statistically distinct
average levels of GC proportion: It provides a biologically assumption-free character-
isation of the continuous pattern of variation, and identifies similar regions that can
be extracted for further analysis. We demonstrate this on the genomes of humans,
mice, and fruit flies, e.g.,using windows of 100kb so as to capture the same observed
broad scale variation that led to the past base composition theories (see [53] for an
explicit study on the scale of the variation in GC content).
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Further, we demonstrate usage of oHMMed with gamma-poisson emission densities
by annotating the genomes of these same species according to their gene content. Anno-
tations of this kind are useful since information on genomic variation in gene density,
or similarly on the density of enhancers regulating gene expression or epigenetic marks
may guide inference in studies of biological functions, e.g., regulation of gene expression,
cellular differentiation, tissue homeostasis, and response to pathogens. Since gene con-
tent is known to correlate with GC proportion [57], we further assess this correlation in
our study species using oHMMed output.

Finally, we use oHMMed with gamma-poisson emission densities for a more explora-
tory investigation of the variation of epigenetic marks along the human chromosome
1; specifically, these marks were sampled from human B cells. We consider three such
marks: The first is the output of ATAC-seq (Assay for Transposase-Accessible Chroma-
tin using sequencing) analysis [61].This is a type of assay that identifies and amplifies
accessible regions of DNA, aka regions of DNA that are not tightly wrapped around his-
tones (this wrapping results in closed chromatin that cannot be read by the transcription
machinery). We will simply call the resulting read counts that make up our data ATAC
counts. Importantly, these accessible genomic regions harbour enhancers, insulators,
and silencers that determine the finer level of control within the regulatory landscape.
The histone modifications deposited as part of the up- and down-regulation of genes
are typically subjected to analysis via ChIP-seq (chromatin immunoprecipitation with
sequencing) [41, 43], which identifies peak enriched regions of specific histone modi-
fications. Together, more general ATAC-seq analysis and ChIP-seq analysis of precise
modification targets can be utilised to assess deviations in the regulatory mechanisms
between different cell lines, and how these shift as part of cell differentiation or are
altered in disease processes [26, 43].On a broader level, ChIP-seq analyses of core his-
tone modifications within the same cell lines can be combined, e.g., using the multivari-
ate HMM method ChromHMM [18], to segment the genome into differently functional
chromatin states, e.g., weak transcription, transcription, poised promoter, flanking pro-
moter. Stacking these analyses across multiple cell lines and issue types produces a com-
prehensive annotation of the genome [58]. We will consider only two specific histone
modifications in human B cells here: H3K27ac and H3K27me3, antagonistic acetyla-
tion and methylation marks at the N-terminal position 27 of the H3 histone respectively
[44]. The mark H3K27me3 is deposited as part of the polycomb repressive complex, an
important mammalian gene silencing mechanism [28, 52]. Recruitment and mainte-
nance of polycomb repression is highly context dependent [55], but in the appropriate
chromatin environment positive feedback loops can maintain larger repressive domains
[30]. There is some evidence that GC-rich DNA is conducive to polycomb recruitment
[59]. In detecting H3K27me3 enriched regions, methods must therefore be able to
find regions spanning hundreds of kb [41]. By contrast, the opposing enhancing mark
H3K27ac is know to be enriched in sharp peaks near transcription start sites [41]; how-
ever, clusters of peaks known as super-enhancers [31]are highly associated with disease
variants. There has recently been evidence that H3K27me3 peaks can cluster similarly
[4]. For our purposes, this means that read counts of both marks may exhibit biologically
relevant autocorrelated spatial patterns that vary by spatial scale, although they must be
negatively correlated with each other across all scales. We therefore decide to analyse
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the epigenetic marks in 100 kb windows (to capture the broader dynamics of ATAC
counts and the larger domains formed by both histone modifications) and 1 kb windows
(to capture the sharper H3K27ac peaks). The results for the 100 kb windows can then be
related to our previous genomic results to further illuminate the genomic context of the
epigenomic landscape.

Opverall, this article therefore: (i) introduces oHMMed, a new class of HMMs for auto-
correlated sequences, (ii) demonstrates its usage on the well known patterns of genomic
base composition and gene content, (iii) and utilises it for a novel study of spatial varia-
tion in human epigenetic markers on different spatial scales (100 kb and 1 kb).

Materials and methods

Materials: genomic sequences

Human

The Homo sapiens GRCh38 reference genome was obtained from the UCSC Genome
Browser [34]. The autosomes were subdivided into non-overlapping 100 kb windows. For
each window with at least 90% successfully sequenced bases (i.e., > 90 kb non-N bases),
the GC proportion was calculated. The number of protein coding genes was determined
for the retained windows using GENCODEv21 [22] via the UCSC Genome Browser [34].
Genes were included in a window if the gene coordinates partially or completely overlap
with the window coordinates, i.e., genes that overlap into neighbouring windows were
not excluded.

Mouse

The Mus musculus GRCm39 reference genome was obtained from Ensembl108 [11].
The autosomes were subdivided into non-overlapping 100 kb windows. For each window
with at least 60% successfully sequenced bases (i.e., > 60 kb non-N bases), the GC pro-
portion was calculated. Additionally, the number of protein coding genes was counted
for each window as before.

Fruit fly

The reference genome of Drosophila melanogaster (version r5.57) was obtained from
FlyBase(2022-05) [25]. Since the genome is much shorter than that of the mammals
above, the autosomes were subdivided into non-overlapping 10 kb windows. For each
window comprising more than 90% successfully sequenced bases (i.e., > 9kb non-N
bases), the GC proportion was calculated. Again, the number of protein coding genes
was determined for each window as before.

Materials: epigenetic sequences

The sequences of counts of the epigenetic marks ATAC, H3K27me3, and H3K27ac
are samples from human B cells. These were obtained from the paired-end alignments
(.bam files) on the GRCh38 reference genome provided by ENCODE [17]; the identi-
fiers are ENCSR603LVR for ATAC, ENCSR077YUA for H3K27ac, and ENCSR179LAY
for H3K27me3. For each mark, we used only chromosome 1 and aggregated counts into
both 100 kb and 1 kb windows that matched the coordinates of the windows for the pre-

viously obtained human genome data.
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Methods: Hidden Markov models with constrained transition probabilities and emission
densities

General notation

Assume a vector 0 of random variables, where each entry 0; represents an unknown or hid-
den state at position / along the genome, where 1 </ < L. Each 6; may assume one of K
states indexed by i, with 1 < i < K. The random vector is a Markovian sequence with an
invariant K x K transition matrix T, where elements Pr(6;,1 | 6;) govern the step-by-step
probabilities of going from a specific state to the next as the genome is traversed. Depend-
ing on the state probabilities at every position along the genome 1 <[ < L, a realisation
(data point) y; is sampled from a (continuous) probability density function. These are col-
lected in the vector of realised emissions y.

Convex emission densities

They key assumption behind oHMMed is that the hidden states can be ordered in a way
that is reflected in their emissions. To illustrate: assume two states 6;, 6; with (i, ) € [1, .., K]
and i < j, and two emissions (y;, y;) € y with y; < y;. Then the relationship:

Pr(i16) _ Pr0y16) 1)
Pr(y;|6;) ~ Pr(y;[6:)’

Pr(y 16;)
Pr(y|6))

should be convex. For strictly positive densities, we can take the logarithm here and

should hold, and hold with equality only on a null set. In other words, the ratio

define a convexity condition that must be fulfilled for an ordering of states to be
possible:

d

@(log(my 16,)) —log(Pr(y |6)) <0, for i<j. )
Normal Emissions Consider any two of K total states that each emit normal distribu-
tions; in particular y; is drawn from N (u;,o2) and yj is drawn from N(,uj,02) where
wi < j;. The above convexity condition holds:

d
— (log(Pr(y | pis0)) —log(Pr(y | ij,0)) <0

dy
— = u)/0® =~ — /o’ ®
Hi = W

Note that the shared standard deviation o between states is a necessary assumption here.

Gamma Emissions Consider any two of K total states that each emit a gamma distribu-
tion; in particular y; is drawn from G(a, ;) and y; is drawn from G(e, 8;) where ; < B;.
The above convexity condition holds:

d
2y (108 @, B) —log(Pr(y |, ) =<0
-1 -1
¢ —Biy < ? - By W
y y
Bi = B
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Here, the shared shape parameter « between states is a necessary assumption.

Transition probabilities

In addition to assuming that the hidden states can be ordered, we restrict transitions
to neighbouring states within this ordering. This results in a tridiagonal KxK transition
matrix T, since Pr(¢; | 6;) > 0 only for j in (i — 1,4,i + 1), while Pr(9; | 6;) = 0 otherwise.
Note that the transition matrix thus has 2K — 2 estimable parameters. Further, we let the
prior probabilities of the hidden states correspond to the stationary distribution of the
transition matrix T, which we denote as the row vector « with entries 7; = Pr(6;_; = i).
It follows that the system is in detailed balance, i.e., fulfills the equations:

Pr(0)y =) Pr(@ =il61=))= Pr(6)_1 =) Pr()=jl6_1=1) )
Pr(0; =1i,0,_1=j) =Pr(6)_1 =i,6, =)).

Note that this corresponds to the structure of double-stranded DNA sequences, where
the 5’ end of one strand corresponds to the 3’ end of the other.

MCMC algorithm

The assignment of each position along the genome to a hidden state is determined by the
forward-backward passes of a HMM algorithm (see Additional file 1: Section “Forward
backward HMM algorithm”). After each pass, the transition rates and parameters of
the emission densities per state must be estimated and their fit evaluated. Baum-Welch
expectation-maximisation algorithms, which are often employed for parameter estima-
tion with HMMs [e.g., 13], require independent maximisation of = and T. Therefore, we
develop a Markov Chain Monte Carlo algorithm, in particular a Gibbs sampler, that esti-
mates the posterior distributions of the transition rates and parameters of the emitted
distributions given the current annotation and the observed data. The samplers are fully
characterised in Additional file 1: Section Al for normal and Additional file 1: Section
A2 for gamma-poisson emissions. We also provide a graphical description of the dif-
ferent versions of the oHMMed algorithms in the respective files, which may facilitate

understanding of the algorithm structure.

Implementation

Our algorithms are available as the R package oHMMed on CRAN [38], with the source
files also deposited on GitHub [39]. Explicit usage recommendations [40] can also be
found as a manual on GitHub, which include pointers on setting partially informative
priors and initial values for the estimable parameters. We also describe the accompa-
nying suite of diagnostics for assessing convergence and model fit. Note that o0HMMed
performs 10 iterations of the Gibbs sampler in roughly 1.06 seconds on a sequence of
length 2%, and that the speed decreases linearly with sequence length (details in the

usage recommendations on GitHub [40]).

Results and discussion
Empirical transition rates
At the outset, it must be ensured that data conform to oHMMed assumptions. We illus-

trate in depth how to compare the mean differences in average GC proportion and in
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Fig. 1 Histograms of pairwise differences in average GC proportion (left column) and average gene content
(right column) for neighbouring windows along the observed genomic sequences (grey histograms) and
along random permutations of the genomic sequences (white histograms) for humans (A and D), mice
(B and E), and fruit flies (C and F) respectively

protein coding gene content of consecutive windows along the genomes of our study
species to the same differences in random permutations of these windows to check for
autocorrelation (see Fig. 1). The variance of differences for the genomic GC proportion
in humans, mice, and fruit flies respectively is 62 = (0.000673,0.00055,0.00103) com-
pared to 62 = (0.00469,0.00552,0.0021) for the permuted genome sequence, with
the ratios being highly significant in all cases (F-test with p-value p < 2.2¢e71°). Simi-
larly, we report variance differences of 62 = (1.14,1.73,2.54) in the number of pro-
tein coding genes in consecutive genomic windows of the three species compared to
62 = (2.43,5.01,4.29) in the random sequence, attaining the same level of significance
for these ratios. Overall, we find evidence for an underlying autocorrelation structure in
the observed sequences of both base composition and gene content in all species. Note,
however, that this pattern is particularly pronounced in the genomic GC proportion of
humans and mice (see Fig. 1A, B). We perform similar checks on the sequences of epige-
netic marks, and find that the difference in variance between counts in consecutive win-
dows is considerably lower than expected for randomly arranged windows (F-test with
p-values always below p < 9.7e~2!) However, we omit the in depth reporting here so as

not to be overly repetitive.

Segmentation of the human genome

GC Proportion After running oHMMed with normal emission densities on the human
genomic GC proportion in 100 kb windows several times assuming K = (2,..,,8) hid-
den states, we chose to segment the GC content into K = 5 states (all runs with 1500
iterations and a 20% burn-in). This is a compromise between two aspects of the infer-
ence procedure that we have chosen as diagnostics: The first is model fit. Adding

Page 9 of 24
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more states one by one starting from K = 2 will - at least initially—lead to an increas-
ing posterior log-likelihood as the overall emitted distribution becomes more flexible.
However, there should be a number of states after which the increase in log-likeli-
hood plateaus, pointing to a candidate number of hidden states. The second aspect
of the decision concerns whether the difference between means of the emissions gen-
erated by neighbouring states are statistically different. For the human GC propor-
tion, the posterior log-likelihoods start to plateau after about K = 5 (Fig. 2A) and the
means are well separated, i.e., the 68% confidence intervals (means plus/minus one
standard deviation) barely overlap (see Fig. 2C). In fact, only first and second states
clearly overlap at this level, and the second and third do so marginally; however, this
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Fig. 2 Summarised diagnostics for annotation of the human genome by average GC proportion using

oHMMed with normal emission densities. A shows the mean (black) and median (grey) log-likelihood of fully

converged runs of the algorithm with different numbers of hidden states, with the dashed horizontal line

marking the selected number of hidden states, which is five. The difference between the mean and median
for six hidden states is the effect of autocorrelation in the traces of the estimated parameters. In B, boxplots of
the posterior (i.e, inferred) mean GC proportion of the run with the five hidden states are presented. C shows
the observed overall density (black) of the GC proportion superimposed on the posterior (inferred) density,

with the inferred means per chosen number of states plus the 68% confidence intervals drawn in vertical
lines. The final D shows the QQ-plot of the observed density vs. the posterior density (here termed the

theoretical distribution). Full descriptions of the diagnostics available for oHMMed can be found in our usage

recommendations on GitHub [40], and the code for this visual summary is available as an R script named
‘oHMMedOutputAnalyses.R"[39] on GitHub
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interpretation of the plots is conservative and the means are still statistically distin-
guishable by a standard (one-sided) t-test at the 95% confidence level (part of standard
oHMMed output). From Fig. 2C, the continuous variation of observed GC content
among windows is also evident: Discretisation into K = 5 states introduces discon-
tinuities, in particular between the wider-spaced means. Increasing K would have
resulted in an increasing overall likelihood (Fig. 2A) and better fitting overall distribu-
tion of emissions compared to the distribution of observed GC proportion along the
genome (see Figs. 2C, D) at the cost of increasing the overlap between neighbouring
states to the point of non-significant t-test outcomes. Decreasing K would have the
opposite result.

For the selected five states, we inferred means of 0.360,0.391,0.430,0.4834,0.567
respectively, and a shared standard deviation of 0.174. The proportion of genomic
windows assigned to each state splits to 0.261, 0.320, 0.256, 0.125, 0.038. On average,
29, 9, 5, 3 and 4 successive 100 kb windows fall within the same hidden state for increas-
ing GC proportions respectively.

Generally, segmentation of the human genome into 5 states at this scaling aligns with
past literature [8, 10], with "isochore theory” dictating a split of comparatively homo-
geneous DNA regions > 300kb into classes with predefined mean GC proportions of
< 0.38, 0.38-0.42, 0.42-0.47, 0.47-0.52, > 0.52 based on both the variation of mean and
standard deviation of G + C alleles. Note that each of these categories contains one of
our inferred means. Relative proportions of human DNA in these classes are cited as
0.19, 0.37, 0.31, 0.11, 0.03, with the lowest two classes often merged; this differs some-
what from our inference.

Our method additionally infers a transition rate matrix of

0.961 0.039 0 0 0

0.032 0.883 0.085 O 0
0 0.108 0.777 0.115 O
0 0 0.232 0.682 0.086
0 0 0 0.286 0.714

between the hidden states. This, together with our inferred means, reflects the often ref-
erenced mosaic structure of hominid genome sequences: Broad troughs of regions with
low GC content that transition into regions with means that are almost comparable, and
narrow rugged peaks of regions with high GC with more frequent transitions into neigh-
bouring states with increasingly differentiated means (Figs. 2B, 6A). An exception to this
landscape is the left arm of chromosome 1, which exhibits a wide region of high GC
content (see Fig. 6A).

Gene Content We used oHMMed with gamma-poisson emission densities to segment
the human genome according to the number of protein coding genes per consecutive
window several times assuming K = (2,..,5) hidden states (all runs with 40000 itera-
tions and a 12.5% burn-in). Our diagnostics suggest K = 3 hidden states, since this is
where the increase in log-likelihood compared between the runs begins to taper off and
discrimination between the state-specific means is statistically possible (see Fig. 3). A
reasonable fit to the observed histogram of overall counts is achieved by the (smoothed)
theoretical curve inferred by this model (see Fig. 4); there is some overestimation of the
occurrence of zero counts and underestimation of the single counts.
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Fig. 3 Here we show the first part of the summarised diagnostics for oHHMed with gamma-poisson
emission densities as employed on counts of the average number of protein coding genes along the

human genome. Panel A shows the mean (black) and median (grey) log-likelihood of fully converged runs

of the algorithm with different numbers of hidden states, with the dashed horizontal line marking the
chosen number—which is three. In panel B, boxplots of the posterior (i.e. inferred) mean gene densities of
the inference run with three hidden states are presented. Panel C shows the observed distribution of gene
counts with the inferred means superimposed as vertical lines. These are significantly different on the 95%
confidence level as per one-sided poisson rate test (part of standard oHMMed output). Once again, full
descriptions of the diagnostics available for cHMMed can be found in our in our usage recommendations on
GitHub [40], and the code for this visual summary plus the corresponding rootogram is available as an R scrip
t named "‘oHMMedOutputAnalyses.R"[39] on GitHub
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0.2

Number of Occurrences
Fig. 4 Asthe final part of the summarised diagnostics for oHMMed with gamma-poisson emission densities
and three hidden states as applied to the protein coding genes in humans, we present the above rootogram:
The bars represent the observed frequency of counts (square root transformed), and they have been shifted
so that the top of each bar aligns with the (smoothed) distribution inferred by oHMMed. Deviations can
therefore be assessed by checking the distance of the lower end of each bar to the x-axis

The landscape of protein coding genes is not as varied as that of the GC proportion:
Longer regions of both low and high gene counts occur with a slight over-abundance
of the former; all show similar propensity to transitioning to neighbouring states (see
Fig. 6B), as is further evidenced by the inferred transition rate matrix:

0.960 0.040 O
0.048 0.938 0.014
0 0.062 0.938

Note that this translates to an average of 31, 20 and 19 subsequent windows being
assigned the same state in order of increasing gene content. The inferred means of
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them in decreasing shades of grey. Essentially, this is a discretised representation of the positive correlation
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Fig. 6 In each of the above panels A-C, the human chromosomes 1-3 (demarked by alternating dark and
light grey horizontal bars) are plotted for different oHMMed analyses: In A, the average GC proportion in
every 100 kb window is coloured by the oHMMed-inferred GC state. The three lower states are in blue and
the two higher ones in green, with the shades lightening with higher GC proportion. In B, the number of
protein coding genes for every 100 kb window are shown in colours corresponding to the oHMMed-inferred
gene density states: yellow, orange, and red mark increasing gene density states. Note that in both A and B,
the black lines trace the posterior (inferred) means returned by oHMMed with normal and gamma-poisson
emissions respectively. These position-specific posterior means are the sum of estimated means times the
respective probabilities of each state, thus combining both estimated mean values and the algorithm’s
certainty of the assigned state. In C, Spearman’s correlation for the two posterior means is shown in rolling
windows of 40 collated 100 kb windows
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0.094, 0.751, 2.80 per state with the proportions of windows assigned to them being
0.499, 0.412, 0.089 respectively indicate that genes are generally sparse with mostly only
one or none at all per window.

Correlation Although the GC proportion and the density of protein coding genes
appear to vary on a different scale, counting the number of occurrences of each of the
5 GC states within the 3 states for gene density reveals a clear positive correlation (see
Fig. 5A), and compare [5, Fig. 7]. In fact, the position-specific posterior means of the
GC content and the gene density, i.e., taking the sum over the inferred means times
the probabilities of being assigned to the respective state at each position along the
genome, have a highly significant (p < 2.2¢71°) positive Spearman correlation coeffi-
cient of 0.608. Running versions of this correlation can be applied to screen for anom-
alous regions (see Fig. 6C, and note the negative correlations around most telomeres).

Segmentation of mouse and fly genomes

The genomic landscape of the mouse is generally more homogeneous and compact
than that of humans, with comparatively narrower troughs and less rugged peaks in
the variation of GC proportion and a wider range in gene counts per window. Seg-
mentation results in regular, distinct genomic regions (K =5 for the GC propor-
tion and K = 4 for the gene content, with the same number of iterations and burn-in
percentage as previously; see Additional file 2: Section “Segmentation of the Mouse
Genome”), and a cleaner discretised correlation pattern (see Fig. 5B).

In the much more condensed genome of the fruit fly, clean segmentation based on
smaller genomic windows is achieved with fewer hidden states; the results are pri-
marily indicative of chromosomal structure. Specifically, we infer K = 4 for the GC
proportion and K = 2 for the gene content (again with the same number of iterations
and burn-in percentage; but see Additional file 2: Section “Segmentation of the Fruit
Fly Genome” for details). Despite comparatively less quantifiable variation in either
feature, positive correlation between them is still apparent (see Fig. 5C).

Segmentation of human Chr1 by epigenetic marks

We applied oHMMed with gamma-poisson emission densities to the epigenetic
marks along human chromosome 1, with counts parsed into both 100kb and 1kb win-
dows. Importantly, we decided to remove telomere- and centromere- adjacent regions
from our analyses since these genomic regions have their own unique dynamics. For
the 100 kb data, this amounted to 200 removed windows from the chromosome ends
and 204 additionally removed windows from the left and 203 from the right side of
the centromere (process performed by visual assessment of the distribution of the
counts of the remaining windows for outliers); the same number of windows times
100 were removed for the 1kb data. The procedure of running the oHMMed algo-
rithm on the resulting sequences was the same as described in the previous subsec-
tions for the genomic data. Therefore, we will focus on the biological outcomes in the
main text and show the core results pertaining to the running of the algorithms in the
Additional file 4.
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Fig. 7 The above barplots visualise the cross-tabulation of the annotation of the human chromosome 1 by
GC content (x-axis) with the annotation by gene density, ATAC, H3K27ac, and H3K27me3 respectively (y-axes).
More specifically, we count the number of 100 kb windows assigned to each state per feature on the y-axes
within regions assigned to each GC content state (x-axis), and show them in decreasing shades of grey.
Essentially, this is a discretised representation of the correlation between the GC content and the respective
other genomic and epigenomic features

Results for the broad scale 100 kb windows

oHMMed analysis indicated that # = 4 hidden states are appropriate for the ATAC,
H3K27ac, and the H3K27me3 counts (see Table S1 in Additional file 4). The epige-
netic landscape of ATAC and H3K27ac counts exhibit a pattern familiar to us from
the genomic landscapes (see Tables S2, S3 as well as Figure S1 in Additional file 4):
Long regions of less accessible chromatin, with fewer epigenetic modifications, are
punctuated by shorter peaks corresponding to more accessible chromatin/enrich-
ment of modification marks. In the case of H3K27ac, the states with increasing counts
are also increasingly transient. The landscape of H3K27me3, however, is fascinatingly
different (see Table S4 as well as Figure S1 in Additional file 4): It consists to a large
part of the most highly enriched state, which is inherently variable but forms a sort
of hilly plateau. This is interrupted by the less highly enriched regions, whose length
decreases with enrichment level. Notably, the state with the lowest average number of
counts is comparatively devoid of signal compared with the lowest state of the other
marks. Note that these results for H3K27me3 are actually pleasantly in-line with
the fact that it is known to have broad enrichment peaks, as described in the sec-
tion “Introduction”; by comparison, H3K27ac varies primarily on a shorter scale and
amongst lower enrichment levels and, while the windows in the highest enrichment
state may harbour clusters of known super-enhancers, it is beyond our scope to inves-
tigate this further here.

Comparing epigenetic marks amongst each other and within the genomic context,
we find the expected negative correlation between the antagonistic marks H3K27ac
and H3K27me3, which is borderline statistically significant, as well as equally bio-
logically plausible, strongly significant correlations between ATAC, H3K27ac, and
gene density (since only transcriptionally accessible genomic regions can harbour
active genes); see Figure 8A. These correlations further imply a negative correlation
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between H3K27me3 and ATAC as well as between H3K27me3 and gene density. In
analysing the correlations separately within every oHMMed-inferred GC state in
Figure 8B-F and Figure 7, we find the following pattern: Regions of low GC con-
tent, which are largely devoid of protein coding genes, contain higher levels of the
silencing H3K27me3 than any other epigenetic mark. These regions appear generally
inactive, and all marks are positively correlated. Then, as the GC content increases
across states, so do the histone modifications and the gene density, and the previously
described correlations appear and become more statistically significant with increas-
ing GC content. In the highest GC state, there appears to be very little data and the
correlations thus become weaker and less significant. Thus, we validate the impor-
tance of the genomic context in analysing histone modifications.

Results for the fine scale 1 kb windows

oHMMed analysis here indicated that » =5 hidden states are appropriate for the
ATAC counts, and n = 7 were suitable for the H3K27ac and the H3K27me3 counts (see
Table S1 in Additional file 4). Straight away, we would like to note that the segmentation
according to 1 kb windows picks up very different signals to segmentation according to
100 kb windows, and it is not apparent how to easily relate the two spatial scales. Essen-
tially, the 1 kb segmentation tracks many more slight changes in the landscape, describ-
ing the regions of low epigenetic activity in greater detail. The finer epigenetic landscape
of ATAC counts is the most variable amongst the three marks; the third ATAC state,
which corresponds to slightly accessible chromatin (judging by the inferred mean),
forms the only true stable ATAC domain (see Table S2 as well as Figure S2 in Addi-
tional file 4). For H3K27ac, the oHMMed algorithm partitions out regions practically
devoid of enrichment for the lowest state; the states corresponding to regions with low
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enrichment levels are the most stable, and states of increasing enrichment then become
increasingly more variable (see Table S3 as well as Figure S2 in Additional file 4). The
finer epigenetic landscape of H3K27me3 is defined by comparatively longer stretches of
the same state than are present for the other marks (see Table S4 as well as Figure S2 in
Additional file 4). The first inferred state for H3K27me3 also corresponds to regions in
which histone modifications are essentially absent, and it forms occasional troughs in
the landscape. However, every level of enrichment of H3K27me3 is well-represented by
decently stable regions in the genome, particularly the state corresponding to the sec-
ond highest enrichment level. Overall, we therefore again see that H3K27me3 varies in a
more modulated manner across larger spatial scales than the other marks.

The finer segmentation of epigenetic marks lends itself to interpretation within the
context of functional genome annotation; we will distinguish between windows that fall
solely into intergenic regions, gene bodies, promoters, as well as gene bodies and pro-
moters, since these categories were given in the data files from which we obtained the
marks themselves) (see Tables in Figure 9). Note that by comparison, 100 kb windows
will typically never contain just a promoter. Overall, there is once again a high positive
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Fig. 9 In lieu of barplots (which are sub-optimal in this case because of the extreme differences in counts
between cells), we here present tables that show the number of 1 kb windows per oHHMed-inferred
epigenetic marker state (columns) that fall within specific functionally annotated regions (rows). Panel A
shows results for ATAC, panel B those for H3K27ac, and panel C those for H3K27me3; in all panels, the cells in
the tables are coloured by darkening shades of purple for increasing counts
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Fig. 10 The above figures show Spearman’s correlation between the posterior means (which are the sum
of the estimated means times the respective state probabilities) among the epigenetic marks as well as
the functional annotation on human chromosome 1 in 1 kb windows; correlations that are significant on a
0.99 significance level are circled. In panel A, the overall correlations are shown. In panels B-F, correlations
between the marks are shown separately for regions with different functional annotations

correlation between ATAC and H3K27ac and a lower negative correlation between
these and H3K27me3; however, these correlations are not deemed significant, perhaps
because the fine scaling introduces too much variability (see Figure 10A). When assess-
ing the regions of different functional annotation separately, the strongest correlations
are evident in regions that contain promoters, with a strong and significant negative
correlation between H3K27ac and H3K27me3, and a high positive correlation between
ATAC and the former (see Figure 10C, E). This appears biologically intuitive, since his-
tone modifications should be located to regions proximal to promoters and these must
further be read by the transcription machinery in order to influence gene expression.
Weaker but otherwise similar correlations can be observed in windows that fall within
genes (see Figure 10D).

Comparison to HMM with unordered states
Recall that, in contrast to HMM algorithms with unordered states, the development of
oHMMed has: (i) reduced the variability of state-specific emitted densities from 2K to
K + 1 parameters, (ii) restricted the transitions between hidden states so that the transi-
tion rate matrix is tridiagonal resulting in a reduction from K? — K to 2K — 2 param-
eters, and (iii) used reversibility to determine the prior distributions of states instead of
specifying K — 1 parameters. Thus, rather than the full K(K + 2) — 1 estimable param-
eters, we are left with 3K — 1.

Despite greater flexibility, the unordered versions of the oHMMed algorithms per-
form either no better than oHMMed (in the case of normal emissions) or worse than
oHMMed (in the case of poisson-gamma emissions) in terms of the overall posterior
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log-likelihood and percentage of correctly assigned states when the algorithms are pitted
against each other on simulated sequences with inherent autocorrelation (see Additional
file 4: Section “Results: Summary and Interpretation”). While no model selection crite-
rion for comparing HMMs with fixed numbers of states but different numbers of param-
eters exist, it can be deduced that classic model selection criteria that penalise overall
model fit determined via maximum-likelihood by model complexity as determined via
the (effective) number of parameters (such as AIC, BIC, and DIC) would likely favour
oHMMed to guard against over-fitting.

More importantly, oHMMed is designed to prioritise segmentation into regions with
statistically different mean emissions. Indeed, it finds such partitions more readily than
its unordered counterpart, particularly on shorter sequences than typically used in full
genome analysis (again, see simulations in Additional file 4: Section “Results: Sum-
mary and Interpretation”). For the human genomic sequences analysed in this article,
which are very long, both methods yield similar estimates (see Additional file 4: Section
“Results: Hominid Data”).

It is also important to test oHMMed on sequences that clearly violate its model
assumptions, for example on sequences simulated using its unordered counterpart (see
Additional file 4). If hidden states have very different standard deviations, oHMMed
incurs a predictable bias in estimation of the state-specific means since it can infer only
one shared standard deviation and this is typically near the average of the true stand-
ard deviations. If the inferred standard deviation is comparatively high, o0HMMed may
effectively merge hidden states and infer fewer effective states than truly present in the
data. Overall, its unordered counterpart therefore consistently infers an overall better-
fitting model as determined by average posterior log-likelihood. (Recall again that there
is no suitable metric for comparison of these HMMs, but the difference in average pos-
terior log-likelihood is great enough that more refined measures should hardly change
the outcome). However, it is worth mentioning that deviant behaviour by oHMMed in
the cases we tested is no more frequent than mis-inference by its unordered counterpart
due to the larger number of estimable parameters. The latter clearly requires very large
data sets, high numbers of iterations, and full diagnostics to perform well, even in a con-
trolled setting.

Overall, we therefore recommend testing for autocorrelation as in section “Results and
discussion” before application of oHMMed, and only to do so if it is present. If, in post-
analysis, our recommended diagnostics indicate that hidden states have very different
standard deviations (the observed vs inferred density plots may show this, or the preva-
lence of fewer effective inferred hidden states than set in the algorithm), one should con-
sider using unordered algorithms. However, if this is not the case, o0HMMed is a robust
and accurate algorithm.

Conclusions

In this article, we developed algorithms for characterising the large scale variation in
genomic data. Part of the inspiration was provided by the clear visual indication that
the genomic GC proportion of hominids likens a continuous, reversible random walk
with a finite number of re-occurring changes in mean. Furthermore, when partition-
ing the genome into windows, anecdotal evidence abounds that [10]: “very large GC
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differences at borders [... are] rare, thus leading to the formation of blocks [...] from
closer [... GC levels]” The continuous nature of this observed pattern contrasts with
some formulations of the long-standing “isochore theory’, which postulates homo-
geneous stretches of (five, or sometimes four) discrete states (aka “isochores”) with
sharp boundaries between them. Based on “isochore theory”, the program IsoFinder
[42] and related methods [51] use a binary decision rule to sequentially “slice”
genomes into piece-wise constant sections of different means; they have been heav-
ily criticised for finding “isochores” that are not actually there [27]. A closer fit to
the observed continuous pattern of variation is provided by Fearnhead and Vasileiou
[21], whose Bayesian Online Changepoint model simultaneously infers all the points
within the observed sequence at which the underlying assignment of hidden states
changes from one to another through direct simulation. The algorithm infers a
smoothed mean GC content across the observed sequence by averaging over the like-
lihood of assignment to “isochore states”, and does so in a run-time that scales quad-
ratically with sequence length.

Differently to all the above, the central aspect of oHMMed is definitive sequence
segmentation or annotation that is agnostic to the number of hidden states, as well as
to the causal forces of the observed sequence pattern. Despite using piece-wise con-
stant approximations to the data purely for methodological reasons, we are able to
model autocorrelation patterns by ordering hidden states according to the means of
their emission densities and restricting transitions to neighbouring states. By doing
so, oHMMed specifically captures the pattern of stochastic variation with underlying
regime changes observed in genomic sequences of GC proportions that is not spe-
cifically represented in “isochore theory” and provides a descriptive quantification of
these patterns, although it also recovers 5 states of statistically similar average GC
content. However, the assumptions made to model autocorrelation, which in itself
appears to be an empirically well-founded observation, necessitate equal variances
between state-specific emitted distributions, which is generally not given exactly. We
have shown that, if variances are quite different, oHMMed will either infer state-spe-
cific means with a predictable bias or merge states and fit the corresponding model.
However, deviations in variance between states that are not extreme will still lead to
sufficiently accurate results.

Note that the sequence data required as input for oHMMed algorithms must
already be partitioned into windows, which again distinguishes it from the other algo-
rithms. We believe that the window size should be chosen according to the biologi-
cal research question: For the sequences of genomic data in this article, the window
sizes were set to best illustrate the considerable patterned variation in GC proportion
and gene density along the genomes of the study species compared to their length.
Specifically, this means that the 100kb spatial scale analysed is comparable to that
of the length of “isochores’, although “compositional domain theory” argues that the
majority of regions that can be classed as having homogeneous GC proportions may
be shorter than our genomic windows [16]. We posit that specifically altering the size
of the genomic windows in the input data could form the basis of comparative stud-
ies of the genomic variation of GC proportion across different spatial scales, since the
causes and implications of variation may differ between these [53] and have to date



Vogl et al. BMC Bioinformatics (2024) 25:151 Page 21 of 24

not been fully uncovered. In order to do this, it is crucial to be able to extract distinct
genomic regions for subsequent analyses without getting embroiled in old debates.
We propose oHMMed as a powerful, assumption-free tool for this.

The window sizes for the epigenetic data were selected in part to illustrate how alter-
ing these can uncover different spatial dynamics and be incorporated into comparative
studies involving other genomic features: On the 100kb scale, which is known to be
appropriate for epigenetic marks with broad enrichment peaks such as H3K27me3, we
are also able to conjointly assess variation in the epigenetic landscapes and the genomic
landscapes of GC content and gene density. The 1 kb scale is appropriate for the sharper
peaks in the profiles of epigenetic marks, and enables a joint assessment with functional
genome annotations.

From an overall modelling perspective, ocHMMed falls within the traditional HMM
framework familiar to most bioinformaticians. The accompanying suite of diagnostics,
particularly for finding the appropriate number of hidden states, is straightforward and
intuitive. In fact, the lack of complexity makes oHMMed preferable over even a stand-
ard unordered HMM with the same underlying MCMC sampler in terms of model fit,
particularly when the emission densities are not normally distributed. Since its run-time
scales linearly with sequence length, application to long sequences is feasible.

Beyond oHMMed’s appeal in methodological tractability and descriptive analyses,
we would like to emphasise the interpretability of its output: Since hidden states can
be definitively compared by their mean emission densities (as it is the only metric they
differ in), segmentation of sequences into regions with statistically significant average
patterns of variation is possible. Recall that these states can therefore also be “label
matched” between runs, both on the same and on different data sets.

We would like to stress that oHMMed is a generalised method, which distinguishes
it from often more complex and fine-tuned methods developed for specific genomic
features (e.g., the GC proportion [42] or the recombination rate [60]). In this article,
we developed oHMMed with normal emission densities and applied it to the window-
based genomic GC proportion of humans, mice, and fruit flies; however, it could also
be employed for, e.g., sequences of average recombination rates per genomic window
(after normalising transforms), or window-based measures of epigenetic marker counts
with such broad enrichment peaks (spanning Mbs) that their distributions approach
normality (pending, of course, checks for autocorrelation in these features). Further, we
extended oHMMed to gamma-poisson emission densities, which we first applied to the
protein-coding genes of humans, mice, and fruit flies. We then utilised this version of
oHMMed to analyse the patterns of variation in the epigenetic data given by ATAC-seq
read counts and the ChIP-seq read counts of the markers H3K27ac and H3K27me3. It
could likely be run not only on the many other epigenetic markers and transcription fac-
tor binding sites that can be obtained via ChIP-seq analysis, but also on sequences of
window-based count data pertaining to other regulatory genomic features such as the
number of promoters, enhancers, or repressors.

Since oHMMed makes no biological assumptions and the inferred hidden states
can be ordered, it also facilitates analyses of associations between genome segmen-
tations performed according to different features. In this article, we initially simply



Vogl et al. BMC Bioinformatics (2024) 25:151 Page 22 of 24

show the positive correlation between genome annotations by GC proportion and
protein-coding gene content in 100 kb windows. This is done by simply cross-tabu-
lating the assignments of genomic windows to hidden states, as well as by correlating
the position-specific posterior means; running versions of the latter can be applied
to screen for regions of interest. More importantly, the fact that we used the same
algorithm and the same window sizes on the epigenetic data enabled us to assess the
correlations between ATAC counts, H3K27ac, and H3K27me3 within different base
composition contexts. There has been continued research into the intimate relation-
ship between the actual DNA sequences, the epigenetic layer of regulatory control,
replication timing, and the 2D and 3D genome organisation [2, 4, 46, 54]; such over-
arching studies may truly benefit from having a general segmentation algorithm such
as oHMMed that can be applied to all features of interest and facilitate interpretation
of their potential interactions.

Obviously, application of oHMMed is not restricted to genomic data: Any time
series data that exhibit the appropriate autocorrelation pattern and conform to the
required overall emission distribution can efficiently be segmented into statistically
distinct regions using oHMMed; other fields of application may include ecology or
indeed also econometrics. The oHHMed algorithms themselves can be extended to

include other convex emission densities.
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