Biometrical Journal

| RESEARCH ARTICLE @D 0

'.) Check for updates

WILEY-VCH

Biometrical Journal

v

Adaptive Multiple Comparisons With the Best

Haoyu Chen"?3 | Werner Brannath* I

Andreas Futschik®

'Wetmeduni Vienna, Wien, Austria | ?Vienna Graduate School of Population Genetics, Vienna, Austria | *Johannes Kepler University Linz, Linz, Austria |

4Kompetenzzentrum fur Klinische Studien, Universitit Bremen, Bremen, Germany

Correspondence: Andreas Futschik (andreas.futschik@jku.at)

Received: 30 August 2023 | Revised: 19 April 2024 | Accepted: 29 April 2024

Funding: This project was supported by the Austrian Science Fund (FWF; DK W1225-B20).

Keywords: adaptive subset selection | evolve and resequence | Gupta’s rule | multiple comparison | multiple decision | R-values | Schweder-Spjotvol estimator

ABSTRACT

Subset selection methods aim to choose a nonempty subset of populations including a best population with some prespecified

probability. An example application involves location parameters that quantify yields in agriculture to select the best wheat variety.

This is quite different from variable selection problems, for instance, in regression.

Unfortunately, subset selection methods can become very conservative when the parameter configuration is not least favorable.

This will lead to a selection of many non-best populations, making the set of selected populations less informative. To solve this

issue, we propose less conservative adaptive approaches based on estimating the number of best populations. We also discuss

variants of our adaptive approaches that are applicable when the sample sizes and/or variances differ between populations. Using

simulations, we show that our methods yield a desirable performance. As an illustration of potential gains, we apply them to two

real datasets, one on the yield of wheat varieties and the other obtained via genome sequencing of repeated samples.

1 | Introduction

Choosing the best population(s) concerning an unknown param-
eter is of interest in a wide range of subject areas. In agriculture,
for instance, farmers and corresponding researchers are often
interested in choosing a subset of the most productive wheat
brands from a broad variety of choices. In biological sciences,
identifying a subset of genomic candidate positions in evolve and
resequence experiments that contain the true target of selection
can be interesting for researchers. It is also a problem in system
designs such as inventory systems (Hsu and Nelson 1988) as well
as clinical trials where some treatment arms need to be selected
for further investigation.

Subset selection (Chang and Huang 2001) rules and multiple
decision procedures (Bechhofer 1954) are methods to solve this
problem. The proposed methods can, however, be quite conser-

vative if the parameters of interest are not close to the so-called
least favorable configuration (LFC). The LFC is the parameter
configuration that minimizes the probability that a truly best pop-
ulation will be selected given some chosen procedure. Calibrating
a method under the LFC can lead to the selection of many non-
best populations. In this paper, we propose adaptive methods that
make such methods less conservative.

Consider a set of k > 1 independent populations {7, 7,, ..., 7.}
with corresponding sample data (X;,X.,...,X;), for which we
aim to find a subset of best. Depending on the situation, the
distribution of the sample data and its parameters may vary as
well as the definition of the best parameter values.

In this paper, we will focus on the scenario where the populations
are normally distributed X; ~ N(6;, aiz), and define “best” as the
population(s) with the largest location parameter 6. Let ® be the
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parameter space of 8, and let ®; € @ be the subset of parameters
such that population 7; is among the best populations. Typically,
there exists at least one best population, hence ® = UfZIG)i. Some
selection rule based on continuously distributed test statistics
(T,,T,,...,T;) computed using sample data (X;,X,,...,X;) from
each of the k populations is used. Assuming sample sizes and
variances are equal between populations, Gupta’s rule (Gupta and
Panchapakesan 1972) is a common choice, with the test statistic
under the unknown and equal variance case is

n _ _
Te, i= vn <maxx, —x,.>, (1)
1 s j J

where s is the pooled sample standard deviation. A population is
then determined as one of the best if its test statistic T; is smaller
than some predetermined critical value c;. The critical value is
selected such that the probability of correct selection (PCS) is
controlled:

PCS(@) = Pg(Ti < Ci) >1-a, Vo e ®i’ (2)

where « is the level of significance, which is analogous to the idea
of the level of significance in suitably chosen hypothesis tests. The
matching hypotheses to be tested can be found in Supplement
Section S.2 (the prefix “S.” refers to sections/figures in the
Supporting Information). Unfortunately, the exact computation
of the PCS requires the knowledge of the true underlying
parameters. Therefore a so-called LFC that minimizes PCS(6) in
0 needs to be identified in practice to ensure the control of PCS
under all possible parameter values. Let @, - be the parameter
set satisfying the LFC, and Fg) is the cumulative distribution
function of T; under parameter 6. Then we require that

(i) (i)
Fei (x) > FSLFC (x), Vx eR ?3)

for any parameter vector 6; € ©®; and 6, - € O, for all choices
of i.

When using Gupta’s rule, the LFC occurs when all populations
are best, i.e. 6, =6, = --- = 6. Under the LFC, the distribution
function of T, is

FO' (x)= / / &+ $Wgdydu (@)

OLrc

where @ is the distribution function of a standard normal, ¢ its
density, and g(u) is the density function of )1,/ Vk(n —1).
Here y, is a chi distribution with z degrees of freedom, which
denotes the distribution of the square root of a chi-square random
variable. When the variance is known, the distribution function
can be obtained by setting the degrees of freedom to infinite (see
Supplement Section S.1).

Based on this, Hsu (1984) proposed a measure called R values that
is analogous to p values as evidence of “Rejecting” a population:
_ ()
R =1-F; (T).
A population 7; is then selected as best if R; > a. When the

populations have an equal sample size and variance, Gupta’s
rule is analogous to Dunett’s test in multiple-hypothesis testing.

Gupta’s test statistic can be seen as a transformation of the
maximum test statistic in Dunnett’s test. More details on this can
be found in Supplement Section S.2.

Although this would be possible, usually there is no further
multiple-testing correction applied to the set of R values. Applying
for instance a familywise-error correction such as Bonferroni-—
Holm on the R;, would additionally control the probability of
selecting all best populations in case there are multiple best
populations. However, it would make the procedure also much
more conservative, especially with many best populations.

To be informative, selected subsets should contain as few non-
optimal populations as possible. Controlling the PCS under the
LFC can however lead to conservative results (Hsu 1984), result-
ing in a much larger than desired PCS under the true parameter
value and several non-best populations in the selected subset,
especially if the true parameters are far away from the LFC.

A similar problem also exists in the field of multiple hypothesis
testing, where methods such as the Bonferroni procedure are used
to control the family-wise error rate (FWER). Such procedures
can also become conservative unless all null hypotheses are true.
To solve this issue, Langaas, Lindqvist, and Ferkingstad (2005)
have proposed approximate procedures based on the estimate of
true nulls, given that the number of hypotheses is large. Finner
and Gontscharuk (2009) further derived theoretical properties of
this plug-in estimate concerning the control of FWER. Alterna-
tive ways of true null estimations have also been proposed by
Storey (2002) and Schweder and Spjetvoll (1982), given that the
marginal p values corresponding to the true nulls are uniformly
distributed. Further, Hoang and Dickhaus (2020) have suggested
the usage of randomized p values to remedy the above uniform
assumption, given that the p values are independent.

Similar approaches have not been considered in the context
of subset selection. Under the LFC, the marginal R values
from the best populations are also uniformly distributed, like
p values under the null hypothesis. The conservativeness of
subset selection methods increases with population size and
distance of parameters from LFC. Considering the connection
between Gupta’s rule and Dunett’s test mentioned previously, we
reduce this conservatism through a similar adaptive approach to
multiple hypothesis testing. Given that the number of populations
k is large, we propose an estimate K on the number of best
populations. Note that this estimate can also be influenced by the
population sizes and variances as well as the number of popula-
tions that are close to the best. Based on this estimate, adaptive
R values are obtained to decide whether a population should
be selected. An alternative estimate based on the randomization
method of Hoang and Dickhaus (2020) is also explored.

We also investigate scenarios when the sample sizes differ
between populations. This can cause issues in subset selection
as it makes the distribution function of the test statistic under
LFC no longer exactly computable. Gupta has suggested a few
ways (Gupta and Huang 1974, 1976), both of which are uniformly
more conservative. We introduce instead a simpler alternative
approach based on Tukey’s conjecture (Hayter 1984) that does
not require a change in the distribution function while also being
less conservative. When variances between populations are also

2of11

Biometrical Journal, 2024

:sdiny) SUOMIPUOD) PuE SWId L Ay 998 “[$707/80/91] U0 AIRIQET SUIUQ AD[IAN “UILA TEISIOAIUL) QYISIUIZIPIULIEULINOA KQ ZHZO0EZOZ UIQ/Z001°01/10P/WOY KoM AIeIqiouI[u0;/:sdNy WOy Papro[umod 9 “bZ0T 9E0F1TS T

o100 KoIAY

QSUSOIT SUOWIO)) dANEaI)) d[qear[dde ayy £q PauIdA0S a1k SI[INIE V() SN JO SI[NI J0J AIRIqIT dUI[UQ AS[IA UO (



unequal, the Behrens-Fisher problem (Kim and Cohen 1998) will
arise. We will use Welch’s (Best and Rayner 1987) approximate
solution to solve this, but other approaches such as the one by
Patil (1969) also exist.

Besides the selection of populations, there has been additional
work in the area. Such work has been summarized in Finner et al.
(2021), where, for instance, the computation of confidence sets for
the difference to the best population(s) in terms of the parameter
value is discussed. Partition testing as well as approaches based
on decision paths is also explained. These methods are able to
provide additional insight into the ordering of populations in
terms of their parameters.

Using simulation results, we show that our method has desirable
performance under a wide range of parameter values. It also has
a very broad field of applications. As examples, we apply it to find
a subset of the most productive wheat variety using data from
Kansas State University (2022) as well as a subset that includes the
true selective target in evolve and resequencing studies (Barghi
et al. 2019). In both cases, our proposed adaptive approach gives
satisfying results. Our proposed methods are implemented in an
R package (R Core Team 2021) available at https://github.com/
xthchen/adass.

2 | Adaptive Selection Methods

Ideally, R values, R;, should follow a uniform distribution if
population 7; is best. Analogous to p values in hypothesis testing,
the PCS would then be equal to the desired value:
PCSO)=Py(R,>a)=1—a, 0<ac<l. (5)
While this is true if 6 € @y, for other sets of parameter values,
we obtain a higher than desired PCS, and thereby a too large set of

best populations. Let 6 € ® N O} and 7; be the best population,
we have

PCS = Py(R, > &) = Po(1 - Fy, (T)) > )
= Pe(Ti < [Fe,] - oc))

= F)([Fee] "0 -)
>1-a, (6)

where the last inequality is true due to the definition of the LFC
in (3). Therefore if 6 is very far away from the LFC, PCS can be
considerably above 1 — «.

To obtain R values that are closer to the uniform distribution on
the set ®;, we propose an alternative way of computing R values.
Our approach uses the estimated number of best populations
K. We will denote K as the “effective number” of populations.
The selection is then reduced to a smaller subset containing only
K populations instead of k, resulting in a smaller multiplicity
correction. Notice that the parameter space changes, when the
number of populations decreases. Nevertheless, LFC still occurs
when all populations are best, just with a smaller total number of
populations. Hence using the equal and unknown variance case

as an example, the distribution function of T, under LFC now
becomes

OLrc

FO (x)= / / O (xu + )0)gw)dydu,

where g(u) is the density of xz(,_1)/V R(n — 1). This will reduce
conservativeness both due to the reduction in multiple testing as
well as the true parameter becoming closer to its corresponding
LFC after the removal of k — K presumably non-best populations.
We call the R values produced using the above distribution
function adaptive R values.

2.1 | Adaptive Selection

The Schweder-Spjotvoll estimator (Schweder and Spjetvoll 1982)
has been commonly used in the field of multiple hypothesis
testing to estimate the proportion of true nulls. In the context
of subset selection, this is analogous to estimating the propor-
tion of best populations 8. The Schweder-Spjotvoll estimator is
computed as follows:

s 1-GQ)

b=="7

where G(-) is the empirical cumulative distribution function of
the p values, 4 € [0,1) a tuning parameter, and § the estimated
proportion of true nulls. When applying it in the context of subset
selection and R values, we rewrite it to the following form:

l{R; > A}

KD @

Bi=
where | - | is the cardinality of the set. We then set our estimate
on the number of effective populations as

KA = max[kﬁ’\i, 2].

Here we are setting the estimate to be at least two in order to have
at least one comparison in between.

In Storey (2002), a slight modification of the previously shown
estimator has been suggested which we adopt here for the
population selection task. Given the same tuning parameter 1, we
can rewrite the modified estimator as

R l{R; > A} +1

ﬁ,lmod = k(l — /1) (8)

Here the additional +1 in the numerator artificially inflates the
estimated effective number of populations. This will give a more
conservative result, but the impact will be small when the number
of populations is large. The approach can therefore help to control
PCS under LFC, especially when the number of populations
is small. The theoretical properties of our proposed estimator
can be found in Supplement Section S.3, which shows that our
estimator is asymptotically unbiased and consistent given that
some assumptions are met.

In theory, the adaptive selection (AS) method can be applied
iteratively to reduce the effective number further. However, from
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https://github.com/xthchen/adass

our simulations, this approach can become too anticonservative
under the LFC, with limited improvement compared to the AS
method when far from the LFC.

2.2 | Randomized Adaptive Selection

The Schweder-Spjotvoll estimator is originally derived under the
assumption that the p values from the true nulls are uniformly
distributed. In the case of subset selection, as shown in (6), this
is only true when we are under LFC and the joint distribution
of the test statistics is continuous. Lemma 1 in Supplement
Section S.3 shows that when we are not under the LFC, the
estimator will have a positive mean bias, resulting in a more
conservative outcome.

To solve this issue, Hoang and Dickhaus (2020) proposed an
approach of transforming p values through randomization such
that the distribution of p values from the true nulls becomes closer
to uniform. We apply this to R values in a similar spirit:

R.
R;and — Ujl{Rj >ch+ ?jl{Rj <c}, ©9)

where U; is drawn from a standard uniform distribution U[0, 1]
and 1{-} is the indicator function. The choice of parameter
¢ € [0,1] influences the distribution of R;a“d greatly. Extreme
parameter choices of ¢ =0 and ¢ =1 lead to R™ = U; and
R;"‘“d = R, respectively. Since neither choice is optimal, a trade-
off point needs to be found such that the R values from the best
populations are close to uniformly distributed, while maintaining
small R values for the non-best. When using R"™" instead of R, our
estimator for 8 becomes

R > 2

T k(1-2) (10)
with A the same tuning parameter with the same restrictions as in
(7). For some fixed 4, the additional tuning parameter c is chosen
such that the mean bias of §,, E4[8,] — 8, is minimized while
remaining positive. We show in Supplement Section S.4 that the
following choice of ¢ provides an approximate solution of this
criterion:

k
¢ = argmax Z [xll(Rj >c)+ 1(% < /1) 1(R; < c)].

c =1
The estimated effective number of populations is then

K, = max[kB,,2].

2.3 | Tuning Parameter 4

It has been shown in Schweder and Spjetvoll (1982) that the
choice of 1 has a large impact on the estimator of both methods
mentioned above. A large 1 will result in a large Var(K), while
smaller choices of 4 increase bias. Under our subset selection
setup, we found that larger choices of A generally give more
anticonservative results, resulting in uncontrolled PCS when the
populations are closer to the LFC (see Section 4.1). To tune this

parameter, a few existing methods have been summarized by
Langaas, Lindqvist, and Ferkingstad (2005). We will outline one
of the viable methods we employ below.

Since the choice of A is a trade-off between bias and variance,
we aim to minimize the mean square error (MSE). A choice of
A (Storey 2002) that minimizes the MSE of the estimate of K
satisfies

arg;nin MSE(K(A)) = arginin E [(K(/l) - K)Z],

where K is the true number of best populations. This can be
estimated using a bootstrap approach (Efron and Tibshirani
1993):

MSEK (1)) =

| =

S
Z(K*fu) -K)?,

where the S resampling estimates K*/(1) are produced through
the bootstrapping of R values. The true number of best pop-
ulations K is however unknown. Given that the assumptions
in Supplement Section S.3 are met, Lemma 1 in the same
section shows that

E4[K(A)] > min K1) > K.
Ae(0,1)

Hence, we can use miny ¢y R(2) as a plug-in estimate for K.
The estimated MSE is computed as:

MSER (1)) =

| =

5 2
;‘ <KW) - JB&%K(“> N GT))

This method of tuning A4 can be used in both the AS and
randomized adaptive selection (RAS) methods. The approach
requires the assumptions outlined in Supplement Section S.3
to be met and therefore requires the number of populations to
be large. In such a situation, the tuning process may become
computationally intensive, especially when applied to the RAS
method due to the need to tune the additional parameter c.

3 | Populations With Unequal Sample
Sizes/Variances

Previously, we limited ourselves to scenarios where all popu-
lations have equal sample sizes and a common true variance.
Modified subset selection methods have been proposed in the
literature when this is not the case. (See, for instance, Chen,
Dudewicz, and Lee 1976 or chapter 12 in Gupta and Pan-
chapakesan 2002 for a summary of selection rules in such a
situation. See also Supplement Sections S.6 and S.7 for alternative
selection rules and multiple hypothesis testing approaches such
as Dunnett’s T3 test.)

It has been proven by Hayter (1984), that the Tukey-Kramer
procedure is uniformly more conservative when the sample sizes
or variances of the populations are unequal. More specifically,
Hayter (1984) proved the following:
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Theorem 1. For independently distributed Y; ~ N(0,07), 0 <
0; < oo and some fixed q > 0, the following probability is strictly
minimized for all i, j when o; = 0;.

P[|Yj—Yi| <qy/o; +07, Viandj].

As an alternative to the unequal sample-size methods proposed
above, we explore whether the above result on Tukey’s conjecture
carries over to subset selection. More specifically, we investigate
via simulations whether the LFC in the equal sample size (equal
variance) scenario (4) provides a conservative null distribution in
the unequal variance case.

For unequal sample sizes, we explore the following test statistics
together with the null distribution (4):

Trgy, i= (X,-X,), j=argmaxX,, (12)
m

where n; denoted the sample size of population i and the
harmonic mean of the two population sample sizes is used.
Note that this test statistic is identical to the equal sample size
case shown in (1) if the sample sizes are equal (n; = n;). Our
simulations in Section 4.4 suggest that the results by Hayter (1984)
carry over to our situation.

An alternative test statistic we can employ when sample sizes are
unequal is the following:

x,-x)| 13)

The population(s) that maximizes this expression is not neces-
sarily the one with the largest mean. This test statistic is less
conservative than (12). According to Supplement Section S.12,
there are minor violations in PCS under the LFC for the non-
adaptive method. For the adaptive methods, we observe slight
violations even when far from the LFC. We will therefore focus
on (12) in the main paper.

For the scenario where both sample sizes and variances are
different between populations, and where the sampled variance
of population i is s?, we use the following test statistic, while
maintaining the same distribution function shown in (4):

Trgs, i= (X -X,), Jj =argmaxX; (14)
j

Note that due to the Behrens-Fisher problem (Kim and Cohen
1998), the degrees of freedom need to be approximated. We
employ the Welch’s approximate solution (Best and Rayner
1987):

(s2/n; + 52 /)

Y, . =
b s}.‘/n}?(nj -D+s!/n’(n; - 1)

s)

for this purpose. Similar to (13), we can use the maximum
test statistic to reduce conservativeness. However, as mentioned
previously, this can lead to an uncontrolled PCS even for the
nonadaptive method.

To obtain asymptotic unbiasedness, we allow the effective
number of populations to be larger than the total number
of populations in Supplement Section S.3. When the sample
sizes and/or variances are unequal between populations, this
increase in population size causes problems with the degrees
of freedom computation. For conservativeness, we propose to
increase the degrees of freedom as if the additional populations
have the smallest population size and largest variance among
all populations. Our simulation in Supplement Figure S1 shows
that the changes in degrees of freedom have little impact on the
results.

4 | Simulation Examples

To illustrate the performance of our proposed adaptive method,
we carry out a simulation study. We will employ the two
adaptive methods suggested in Section 2, namely AS and RAS,
and compare them to the nonadaptive selection (NAS) case.
Unless otherwise mentioned, we simulate 100,000 iterations
per scenario. We assume 100 populations, with the best pop-
ulations having a mean of 0 and the non-best populations
having a mean of —2. The aim is to select a subset of nor-
mally distributed populations that have the largest true location
parameter. We will only consider scenarios with a PCS of
higher than 0.5 since a lower value is usually not desirable.
In Sections 4.1-4.3, we consider the case of a known common
variance. Scenarios with unknown variances, as well as scenarios
with unequal sample size and/or variance, can be found in
Section 4.4.

4.1 | Probability of Correct Selection

We obtain the distribution of PCS for best populations by
plotting the desired level of significance o against P(R; <
alf € @;). Ideally, as mentioned in Section 2, the R values
from the best populations should be uniformly distributed,
corresponding to the diagonal black line in the plots shown
below. If the distribution function is below the diagonal
line, we are too conservative, obtaining a higher-than-desired
PCS.

Two scenarios are considered in Figure 1. The left panel shows
the case where we are far from the LFC, with only 10% of the
population being best. The right panel shows the cases where
we are under the LFC. In the left panel, we see that all adaptive
methods reduce conservativeness considerably compared to the
basic subset selection method. With the same tuning parameter,
randomizing the R values will further reduce conservativeness
slightly. In the right panel, the basic subset selection method
is exact, with both variants of adaptive methods having some

5of11

:sdiny) SUOMIPUOD) PuE SWId L Ay 998 “[$707/80/91] U0 AIRIQET SUIUQ AD[IAN “UILA TEISIOAIUL) QYISIUIZIPIULIEULINOA KQ ZHZO0EZOZ UIQ/Z001°01/10P/WOY KoM AIeIqiouI[u0;/:sdNy WOy Papro[umod 9 “bZ0T 9E0F1TS T

o100 KoIAY

QSUSOIT SUOWIO)) dANEaI)) d[qear[dde ayy £q PauIdA0S a1k SI[INIE V() SN JO SI[NI J0J AIRIqIT dUI[UQ AS[IA UO (



05

NAS
AS12=05
RASA=05

!

0.3 0.4
L !

0.2

1 - PCS of best populations

0.

T T T T T T
0.0 0.1 02 03 0.4 05

Level of significance (a)

05

NAS
AS)=05
RAS.=05

03 0.4
L I

0.2

1 - PCS of best populations

0.

0.0

T T T T T T
0.0 0.1 0.2 03 04 05

Level of significance (a)

FIGURE 1 | Results showing 1 - PCS of best populations against the level of significance a. Both scenarios contain 100 populations each of sample

size 1 and known unit variance. In the left panel, 10 populations have a mean of 0, with the other having a mean of —2. In the right panel, all populations

have a mean of 0.
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FIGURE 2 | Results showing1- PCS of best populations against the
true number of best with & = 0.05. The scenario contains 100 populations
each of sample size 1 and known unit variance. We set the best populations
to have a mean of 0, while the non-best have a mean of —2. Here the level
of significance is fixed to 0.05, while we change the percentage of best
populations.

minor inflation in the PCS, with the inflation being slightly more
prominent for the RAS method.

The number of populations is rather large in Figure 1. In
Supplement Section S.8, we show a scenario where there are only
10 populations with the other parameters remaining identical. In
this setting, adaptive methods perform significantly worse.

To further explore the behavior of adaptive methods, we show in
Figure 2 the effect of changing the percentage of best populations.
Here we fixed the level of significance « to 0.05, shown as a black
horizontal line, and varied the percentage of best between 5% and
100%. Note that 100% best would denote the LFC, and any value
considerably above the black line indicates inflation in PCS. As
shown in the figure, all methods show reduced conservativeness
when approaching LFC. The nonadaptive method controls PCS

uniformly as expected, while all adaptive methods show inflation
between 0.01 and 0.02 when close to the LFC.

4.2 | Power and Subset Size

One would expect less conservative methods to have higher
power when far from the LFC. Figure 3 confirms this for our
proposed adaptive methods. Furthermore, the power of the RAS
method is slightly above that of the AS method, in line with its
smaller PCS shown in Figures 1 and 2. Here, we borrow the phrase
“power” from multiple hypothesis testing and define it as the
probability of an R value of a given non-best population being
smaller than some chosen level of significance a.

In Supplement Section S.9, we illustrate by how much this gain
in power reduces the size of the selected subset by reducing the
number of included non-best populations.

4.3 | Tuning Parameter 4

In Sections 4.1 and 4.2, we considered two variants of our pro-
posed adaptive method and showed their potential to significantly
reduce conservativeness and increase power. However, the extent
of this improvement for both methods is highly dependent on the
tuning parameter 4. We show the effect of changing the tuning
parameter A in Supplement Section S.10.

So far, we used a uniform choice of 1 = 0.5 for noniterative and
A1 =0.2 for iterative methods. In our simulations, this choice
provided a good trade-off between conservativeness reduction
and PCS control. However, the optimal choice of 4 depends on
quantities such as the number of populations and the proportion
of best. It can therefore be beneficial to apply the automatic
tuning method outlined in Section 2.3 despite the increase in
computational cost.

In Figure 4, we compare the performance of automatic tuning
against a simple choice of A = 0.5 when using the RAS method.
When we are far from the LFC (left panel), the automatic tuning
method is less conservative. On the other hand, the PCS is not
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“MSE tuned” denotes automatic tuning as described in Section 2.3.

as tightly controlled under the LFC (right panel). Supplement
Section S.11 provides results for the AS method.

4.4 | Unequal Sample Size and/or Variance

In this section, we consider scenarios with unequal sample sizes
and variances. We also compare our proposed test statistics (12)-
(14) with older proposals by Gupta and Huang (1976) outlined in
Supplement Section S.6.

In Figure 5, we randomly choose the sample size for each
population between 5 and 10 and assume a known variance of
one. Among the nonadaptive methods, our proposed approach
(12) performs better than Gupta’s modification. The distribution
of the R values from both adaptive methods is even closer
to uniform, regardless of whether we are far or close to the
LFC.

For a scenario with unequal variances, we additionally draw
the variance of each population from UJ[0.5,1.5]. As shown in
Figure 6, we are more conservative when far from LFC compared
to the known variance case. The difference between adaptive
and nonadaptive scenarios remains large, however. The PCS is
controlled even under the LFC.

5 | Real-World Applications

In this section, we apply our proposed methods to real-world
datasets. Our first example deals with finding the most productive
variety of wheat in terms of yield. The second is from population
genetics. There are other potential applications such as multiarm
clinical trials, where our proposed methods might be used to
determine which arm to drop during intermediate stages.

5.1 | Application in Choosing Wheat Variety

It is often challenging for farmers to choose a crop variety with
maximal yield and profit. Given some control in variables such
as environmental conditions and soil type, crop yields from the
same variety can often be seen as normally distributed. After
adjusting for other covariates, subset selection can be used to
eliminate inferior variants. Compared to classical subset selection
methods, our proposed adaptive rules can be expected to be
less conservative.

Here we will apply our method to the winter wheat varieties,
using datasets provided by the Kansas State University Agri-
cultural Experiment Station and Cooperative Extension Service
(Kansas State University 2022). Annually, yields of wheat from
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different varieties planted at various farms and fields across the
state of Kansas are measured in terms of the number of bushels
per acre. To control for types of irrigation and season, we will
focus our approach on dryland winter wheat only.

Yields reported by different farms for the same variety can then
be seen as observations from the same population. However,
since Kansas is a large state, environmental factors can still vary
and affect the productivity of wheat. Additionally, farms may
also employ different strategies when growing wheat, making
yields from different farms less comparable. Since multiple wheat
varieties are present at all farms (with the minimum number
of varieties being 13), we subtract from each of the yields
the mean farm yield. Further, since many varieties have been
cultivated at different numbers of farms, this is an unequal sample
size scenario.

We use the 2022 data to apply our methods. To reduce the effect
of any potential outliers, we only use wheat varieties planted at
more than six farms. After this filtering, 47 wheat varieties remain
that were planted across 15 farms. Assuming equal variance across
different varieties, we obtained a subset of best containing 11
varieties when aiming for a PCS of 95%. Using the AS method,

we were able to further reduce the subset size to 7. When the
equal variance assumption is dropped, we obtain slightly larger
subsets, but again a smaller one with the AS method (12 vs.
10). A reason for dropping the equal variance assumption is that
the land area each variety of wheat occupies at each farm is
unknown. Since yield is measured in terms of the number of
bushels per acre, wheat varieties with larger land areas will have
a smaller yield variance. As there are multiple observations from
different farms per variety, these differences may cancel out to
some extent, however.

Details on the varieties that have been selected as potentially best
by the different methods can be found in Table 1. This suggests
that our proposed adaptive method provides less conservative
subsets when applied to crop yields.

In theory, it is also possible to choose one farm and use data from
different years as samples for each wheat variety instead. This
reduces the impact of location and farming strategies of different
farms, but the impact of weather varying across years needs to be
taken care of. Also, many varieties of wheat are not consistently
planted on the same farm across multiple years, possibly due to
the introduction of new varieties or low productivity.
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TABLE 1 | Wheat varieties that are best under different approaches.

Equal variety Equal variety AS Unequal variety Unequal variety AS
KIVARI_AX KIVARI_AX KIVARI_AX KIVARI_AX
‘WB4401 ‘WB4401 WB4401 ‘WB4401
AP18_AX AP18_AX AP18_AX AP18_AX
GUARDIAN GUARDIAN GUARDIAN GUARDIAN
CP7266AX CP7266AX CP7266AX CP7266AX

STRAD_CL_PLUS
AP_EVERROCK
CRESCENT_AX
LCS_RUNNER
BOB_DOLE
LCS_VALIANT

STRAD_CL_PLUS
AP_EVERROCK

STRAD_CL_PLUS
AP_EVERROCK
CRESCENT_AX

STRAD_CL_PLUS
AP_EVERROCK
CRESCENT_AX

LCS_RUNNER LCS_RUNNER
BOB_DOLE BOB_DOLE
LCS_VALIANT
WB4595

5.2 | Application in Evolve and Resequence
Experiments

Evolve and resequence experiments (Turner et al. 2011) are
used to study adaptation over time under a controlled envi-
ronment. Genetic variants that are beneficial under such an
environment tend to become more abundant over time. Besides
such a systematic change, there are also random fluctuations in
allele frequencies that depend on the population size and are
known as “genetic drift.” Using high-throughput whole genome
sequencing techniques, researchers can obtain allele frequency
estimates at chosen time points during the experiment from
multiple independently evolving laboratory populations. Poten-
tial additional sources of variation are sampling and sequencing
noise. We ignore them here for simplicity.

Without the presence of selection, the true allele frequencies in
subsequent generations are modeled for a given single nucleotide
polymorphism (SNP) via binomial sampling from the previous
generation (Neuhauser 2004):

fi*' ~ Binomial(N,, f1)/N,

with N, being the effective population size. Under selection with
selection coefficient s, binomial sampling is carried out under

A+9)f;

1+sf! 16)

t,
fi =

instead of f!. For small s and f!, we have f;"/f! ~1+s, that
is, a relative increase of roughly s. Frequency changes at a
genetic position that are larger than expected from this random
process and additional noise, are seen as evidence of selection.
The adapted chi-square or Cochran-Mantel-Haenszel (CMH) test
(Spitzer, Pelizzola, and Futschik 2020) is often used to identify
such signals. Due to their spatial vicinity, SNPs close to a position
with a causal effect may also be affected by selection, an effect
called genetic hitchhiking (Barton 2000). Depending on the
distance from the selected locus, such positions often also lead
to significant test results, although they do not provide adaptive
benefits themselves.

One strategy to search for the causal SNP is to select a subset of
SNPs that contains the one i with the highest expected change
in allele frequency with a prespecified PCS. For this purpose,
we observe the allele frequency change X;; = f f/T) -f S.)), between
times 0 and T for SNP i from experimental replicate j.

Since, for sufficiently large populations, the temporal changes
in allele frequency are approximately normally distributed with
variance depending on the initial allele frequency, this may be
phrased in terms of a Gaussian subset selection problem with
equal sample sizes and unequal variances.

To explore the performance of our method in such a setup,
we simulate data following an experimental design described in
Barghi et al. (2019). More specifically, we simulate m replicate
populations consisting of Ny, haplotypes from a window in the
genome. We then randomly choose one selected SNP with a
beneficial allele that occurs in hg, haplotypes. We assume that
the beneficial allele has a selective advantage of s = 0.05. The
frequency dynamic is then simulated for 60 generations, with an
effective population size of 500. The adapted CMH test is then
performed with a 0.05 level of significance, and the Benjamini and
Hochberg multiple testing correction is used. SNPs that provide
significant p values are then chosen as “populations” on which
subset selection is applied. For each population, a sample of m
observations is available due to m replicate populations. For the
adaptive approach, we employ the AS method with 4 = 0.5. We
set the level of significance to 0.05 to aim for a PCS of 95%.

Figure 7 provides simulated sizes of selected subsets assuming
m = 3, Ny,, = 10, and h, = 2. It turns out that the use of subset
selection leads to a substantial reduction in the number of
candidates for beneficial SNPs, with an additional reduction
when using the AS method. In this example, all methods always
included the selected target.

It should be mentioned that Gaussian subset selection works less
well (in terms of PCS control) for beneficial SNPs with high initial
frequencies, at least if the number of replicate populations is
small. This is because the causal SNP may in this case not have the
largest expected change in allele frequency (since f} increases by
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much less than a factor 1 + s in Equation 16 for large f7) as well
as the normal approximation working less well in the binomial
tails.

5.3 | Potential Application in Clinical Trials

Clinical trials are an essential component of the medical research
process that helps to determine the safety and efficacy of new
drugs or treatments. Traditional trials often only consist of a treat-
ment arm and a control arm to address a single question. More
novel methods such as basket and umbrella trials expand on this
design, having multiple treatment arms or addressing multiple
questions at the same time. This allows multiple hypotheses to be
tested simultaneously, offering enhanced efficiency and reduced
cost (Mills et al. 2019).

Compared to umbrella trials, platform trials offer further ability to
drop or add treatment arms after some interim analysis (Jaki 2015)
and have been extensively used recently (Alexander et al. 2018;
Fountzilas et al. 2022). The trial starts with multiple treatment
arms at the first stage, followed by an interim analysis. The
existing treatment arms are compared in terms of performance,
with the worst performing arms dropped, and potentially some
new arms added. These interim analyses can be repeated multiple
times during the trial. They may be carried out using a subset
selection rule. Indeed, one may use subset selection to drop non-
best populations for the next part of the analysis. If the number
of treatment arms is large, adaptive methods can also provide
further advantages in terms of power.

An alternative application is on basket trials, where two arms are
tested on multiple diseases. Here the aim is to identify the disease
on which the treatment performs most effectively. Such a disease
can then be defined as the best in a subset selection problem.
Adaptive methods might be especially useful if such trials have
many populations compared to platform trials.

6 | Conclusion

In this paper, we proposed adaptive methods based on Gupta’s
approach (Gupta and Panchapakesan 1972) that are significantly

less conservative under scenarios that differ noticeably from the
LFC. Our methods perform especially well when the number of
populations is large.

The RAS method has slightly higher power compared to the
AS method, but this comes at the cost of a higher PCS close
to the LFC scenarios. The RAS method also performs better
than the AS method when both use the automatic tuning
approach for the tuning parameter A, but at the price of a higher
computational cost.

Moreover, we apply our adaptive methods also to scenarios
when sample sizes and/or variances are unequal. Our proposed
approach based on Tukey’s conjecture is considerably less con-
servative than older approaches by Gupta and Huang, with no
additional inflation in PCS.

Our results on real data also demonstrate the potential of our
approach to solving practical problems. Our application to two
completely different areas, one in wheat productivity, and the
other in identifying targets of selection in evolve and resequence
experiments, shows the wide range applicability of subset selec-
tion and our proposed adaptive method. Further applications
in other areas such as system designs and clinical trials seem
promising, and we hope that our examples can serve as an
incentive to further explore applications in these areas.

Even though our work focuses mainly on modifications of
Gupta’s test statistic, adaptive subset selection could also be devel-
oped for other rules, further distributions, and definitions of best.
Chang and Huang (2001) for example proposed an alternative
rule that can be applied in the context of problems involving
heteroscedasticity but does not guarantee PCS control. In Nagel
(1970), methods are derived for a wide range of population
distributions including Gamma, Binomial, and Poisson.
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