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A One Health framework for exploring
zoonotic interactions demonstrated through
a case study
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Annemarie Käsbohrer 1

The eco-epidemiology of zoonoses is often oversimplified to host-pathogen
interactions while findings derived from global datasets are rarely directly
transferable to smaller-scale contexts. Through a systematic literature search,
we compiled a dataset of naturally occurring zoonotic interactions in Austria,
spanning 1975–2022. We introduce the concept of zoonotic web to describe
the complex relationships between zoonotic agents, their hosts, vectors, food,
and environmental sources. The zoonotic web was explored through network
analysis. After controlling for research effort, we demonstrate that, within the
projected unipartite source-source network of zoonotic agent sharing, the
most influential zoonotic sources are human, cattle, chicken, and some meat
products. Analysis of the One Health 3-cliques (triangular sets of nodes
representing human, animal, and environment) confirms the increased prob-
ability of zoonotic spillover at human-cattle and human-food interfaces. We
characterise six communities of zoonotic agent sharing, which assembly pat-
terns are likely driven by highly connected infectious agents in the zoonotic
web, proximity to human, and anthropogenic activities. Additionally, we
report a frequency of emerging zoonotic diseases in Austria of one every six
years. Here, we present a flexible network-based approach that offers insights
into zoonotic transmission chains, facilitating the development of locally-
relevant One Health strategies against zoonoses.

Zoonoses are caused by pathogens naturally transmissible between
humans and wild or domestic animals. Places where humans and ani-
mals or animal products interact create interfaces that facilitate zoo-
notic agent transmission. Notably, approximately 99% of endemic
zoonotic infections in humans originate from domesticated animals,
within anthropogenic environments, either directly or indirectly
through contaminated food or vectors1. Morand, et al.2 provided sta-
tistical evidence supporting the positive relationship between the
duration of domestication and the diversity of zoonotic agents that

humans share with each domestic species, which was initially hypo-
thesised by McNeill3. In addition, over 60% of human emerging infec-
tious diseases (EIDs) are zoonotic4. Although direct zoonotic spillover
from wildlife is rare and wildlife-to-human transmission typically
occurs through indirect transmission1, more than 70% of these zoo-
notic emergences are caused by pathogens with a wildlife origin4.
However, the full host breadth of endemic and emerging zoonotic
agents, as well as their animal and environmental reservoirs are rarely
identified nor mapped.

Received: 26 February 2024

Accepted: 24 June 2024

Check for updates

1Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine
Vienna, Vienna, Austria. 2Complexity Science Hub, Vienna, Austria. 3Centre of Pathobiology, Department of Biological Sciences and Pathobiology, University
of Veterinary Medicine Vienna, Vienna, Austria. e-mail: amelie.desvars@vetmeduni.ac.at

Nature Communications |         (2024) 15:5650 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-7671-696X
http://orcid.org/0000-0001-7671-696X
http://orcid.org/0000-0001-7671-696X
http://orcid.org/0000-0001-7671-696X
http://orcid.org/0000-0001-7671-696X
http://orcid.org/0009-0007-9813-3854
http://orcid.org/0009-0007-9813-3854
http://orcid.org/0009-0007-9813-3854
http://orcid.org/0009-0007-9813-3854
http://orcid.org/0009-0007-9813-3854
http://orcid.org/0000-0002-8826-5606
http://orcid.org/0000-0002-8826-5606
http://orcid.org/0000-0002-8826-5606
http://orcid.org/0000-0002-8826-5606
http://orcid.org/0000-0002-8826-5606
http://orcid.org/0000-0003-3082-6885
http://orcid.org/0000-0003-3082-6885
http://orcid.org/0000-0003-3082-6885
http://orcid.org/0000-0003-3082-6885
http://orcid.org/0000-0003-3082-6885
http://orcid.org/0000-0003-2966-2713
http://orcid.org/0000-0003-2966-2713
http://orcid.org/0000-0003-2966-2713
http://orcid.org/0000-0003-2966-2713
http://orcid.org/0000-0003-2966-2713
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49967-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49967-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49967-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49967-7&domain=pdf
mailto:amelie.desvars@vetmeduni.ac.at


In most zoonotic disease systems, interactions occur among
multiple animal host species, environmental sources (including
invertebrate vectors), and involve multiple infectious agents5. There-
fore, exploring disease dynamics in these multi-source, multi-agent
systems necessitates considering the complex ecology of the interac-
tions, e.g., the host-pathogen community assemblages, the existence
of environmental reservoirs, and the involvement of vectors5–7.
Unfortunately, this complexity is often ignored due to the lack of
comprehensive datasets, making it challenging to embrace a trans-
disciplinary perspective. Furthermore, network approaches to infec-
tious diseases and spillover risk have largely focused on the analysis of
the host-pathogen relationships2,8–11, neglecting other sources of zoo-
notic infection, such as contaminated environment or food. A com-
prehensive understanding of circulating zoonotic agents, their hosts,
vectors, food and environmental sources, and the key interfaceswhere
spillover events may occur is essential for developing effective inte-
grated One Health monitoring, prevention, and control of zoonoses12.

Zoonotic and emerging diseases pose a significant threat to both
human and animal health13,14, they cause substantial economic losses15,
and may have far-reaching consequences on multiple aspects of the
society16. The enhancement of monitoring efforts and data collection
in both domestic and wildlife hosts is essential for effectively pre-
dicting the establishment of reservoirs, understanding the facilitators
of zoonotic spillover, and preventing such spillover at source17. How-
ever, the ecology and diversity of circulating zoonotic agents are tied
to multiple factors, including the local availability of potential animal
hosts and vectors, their spatial distribution, density, population
dynamics, and community composition18,19. In addition, the spillover
force of infection depends on cultural and socio-economic determi-
nants, including human agricultural practices, feeding and hunting
habits, and behaviour20,21. This underscores the pressing need for the
development of analytical tools to optimise surveillance strategies that
are tailored to the regional or national context. While global datasets
may be available8,22–24, data granularity and completeness are generally
suboptimal for smaller-scale investigations. Furthermore, there is a
scarcity of national studies focusing on zoonotic interfaces that
encompass animals, vectors, environmental, and food matrices. Brid-
ging this gap is crucial for developing effective, locally relevant
strategies25 to monitor and mitigate potential changes in spillover risk
that could impact human and animal health.

Austria has a growing population of nine million people. Its fauna
encompasses approximately 45,870 species, of which 626 are verte-
brates, including 110 mammalian and 418 avian species26. Moreover, of
3.9 million Austrian households, 35% own pets. The country also counts
~1.8 million cattle, 2.5 million pigs, and over 100 million poultry are
slaughtered annually. Additionally, around 133,000 hunting permits are
issued each year27. These numbers underline the importance of the
human-animal interfaces at the national scale. Given the potential for
zoonotic disease transmission at these interfaces and the ensuing risk to
human health, Austria adheres to a combination of European and
national regulations, guaranteeing a framework for coordinated epide-
miological surveillance and responses. However, concentrating mostly
on notifiable diseases, monitored and reported only for specific species,
official figures tend to overlook non-regulated zoonotic agents circu-
lating in the territory that could pose a risk to public health.

In this study,we extracteddata fromscientific papers andnational
laboratory reports spanning 47 years of publications, to generate a
real-world network describing the web of zoonotic interactions in
Austria and characterise the various interfaces throughwhich zoonotic
spillovermayoccur.We introduce the concept of “zoonoticweb” (akin
“food web”)28 as a network representation of zoonotic actors at
human-animal-environment interfaces (i.e., [host-vector-environment-
food]-zoonotic agent network), intended for use in One Health
approaches. We treated it as a bipartite network and transformed it
into a one-mode projection representing the network of zoonotic

agent sharing among zoonotic sources, weighting relationships
(edges) between zoonotic sources (nodes) by the number of zoonotic
agents they shared. We explored this network using different network
centrality metrics and a community-based approach. In addition, we
examined zoonotic disease emergence patterns in Austria and pin-
pointed research trends and gaps on zoonotic agents at the
national level.

Results
Dataset of zoonotic interactions in Austria, 1975–2022
The search identified 2186 publications. After 542 duplicates were
removed, 1644 publications were screened with 1269 excluded at the
title/abstract screening stage as they were not eligible (see Supple-
mentary Fig. 1 for a breakdown based on exclusion criteria). This left
375 publications, of which 16 could not be retrieved, so 359 full-text
articles were assessed for eligibility, with 229 meeting the criteria for
final inclusion. In addition, 17 publications were found in excluded
review articles, leading to a total of 246 publications that were ulti-
mately included in this study (168 scientific articles, 13 reports, and 65
theses).

The final dataset is a *.csv. file with 2128 rows and 48 data fields.
Each row represents one investigated zoonotic agent along with the
results of the investigation in the animal host(s), vector(s), and envir-
onmental or food matrix(-ices). All included publications were pub-
lished between January 1975 and August 2022. We evidenced a 17.8-
fold increase in the number of publications on zoonoses in Austria
between the first (1975–1997) and the second half (1998–2022) of the
study period (Supplementary Fig. 2). In addition, therewas variation in
study distribution among federal states (Supplementary Fig. 3). To
contextualise this result, it was compared with global data: a PubMed
search using the terms (zoono* OR “zoono* disease*“) from 1975 until
23 August 2022 (without restricting the search to Austria) generated a
total of 64,282 results and revealed an increase of the same order (~ 18-
fold). However, a PubMed search using the term “health” in the same
period yielded 5,791,763 results, indicating a mere 6.8-fold increase in
health publications globally. This result suggests a disproportionate
rise in zoonotic disease research, both at the national and international
levels, compared to general health studies.

Research trends
Between 1975 and 2022, 227 unique zoonotic agents were investigated
in Austria (not all of them could be resolved at species level). Ten
genera collectively accounted for 41% of the selected literature: Sal-
monella, Escherichia, Listeria, Echinococcus, Orthoflavivirus, Brucella,
Toxoplasma, Campylobacter, Trichinella, and Leptospira (Supplemen-
tary Table 1). Most zoonotic agents were studied in wildlife hosts,
which accounted for 76.9% of the 221 animal species investigated.
Furthermore, during the study period, the majority of investigations
into food products concentrated on animal-origin products whereas
plant-based foods (including fruits, vegetables, spices/herbs, and
grains) accounted for 5.6% of the examined foodstuffs. Finally, across
the selected publications, seven environmental matrices (including
food and processing plants, public lavatory, sandbox, slaughter knife,
soil, and water) and 21 invertebrate taxa (mosquitoes: 47.8%; ticks;
39.1%; sand flies, gastropods, and fleas: 4.3% each) were investigated.

In Austria, there has been a noticeable upward trend in scientific
interest regarding zoonotic bacteria, viruses, and eukaryotes (Fig. 1a),
with bacteria garnering the most attention. We observed an upward
trend across all compartments, as recognised by the traditional One
Health triad, i.e., animal, human, and environment, followed by a
subsequent decrease in the number of studies investigating animals
(from 2015) and humans (from 2010). The environmental aspect
(including environmental media, plant-based food, and vectors) was
not considered in studies on zoonotic diseases in Austria until 1997 but
subsequently demonstrated the most gradual increase in scientific
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interest (Fig. 1b), primarily driven by a rise in investigations on vectors
(Supplementary Fig. 4).

Zoonotic web actors and interfaces
Overall, between 1975 and 2022, the literature reported 197 zoonotic
agents in Austria that were directly or indirectly evidenced in natural
infections, including an unusual case of a dog hair described as a
zoonosis (this “agent” was not considered in the network analysis)
(Supplementary Fig. 5). Among them, 187 (94.9%) were directly or
indirectly detected in 155 distinct vertebrate hosts, including human,
111 wildlife, eight livestock, and 36 companion animal (including exotic
pets) species (Supplementary Table 2). The highest zoonotic agent
richness was observed in Primates (88, with 87 zoonotic agents
reported in humans), Carnivora (59 zoonotic agents), Artiodactyla
(59), Galliformes (24), and Rodentia (23) (Fig. 2). In 78.6% (777 out of
989) of the positive results in hosts, direct detection was achieved and

represented the preferred method for bacteria and eukaryotes across
all investigated host taxonomic classes. Conversely, viral circulation
was primarily evidenced by indirect methods detecting antibodies
(Table 1).

At the environment-zoonotic agent interface, 24 (12.2%) zoonotic
agents were detected in 12 different invertebrate (vector) species.
Surprisingly, despite the detectionof theUsutu virus (USUV) in various
bird species, horses, and humans across the reviewed studies, it was
not reported in arthropod vectors, a necessary component of its bio-
logical cycle (Supplementary Table 3). In addition, 11 (5.6%) zoonotic
agents, including bacteria (Listeria monocytogenes, Salmonella sp.,
Escherichia coli, and Mycobacterium sp.) and eukaryotes (Cryptospor-
idium, Giardia, and Toxocara) were reported in six types of environ-
mental media, including surfaces and tools in food processing
environments as well as “natural” matrices (e.g., water, sandboxes)
(Supplementary Table 4). Finally, at the food system-zoonotic agent
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Fig. 1 | Trends in research interest on zoonotic agents in Austria, 1975–2022.
a Trends in research interest measured by the number of investigations invol-
ving different superkingdoms of zoonotic agents. b Trends in research inter-
est measured by the number of investigations involving each compartment, as
recognised in the traditional One Health view. Dots represent the number of
investigations per year; solid lines show a fitted trend (loess regression); shaded
areas represent the corresponding 95% confidence interval. Only publications that

investigated naturally occurring zoonotic infections were considered. Plant-based
foodstuffs, invertebrate vectors, and any environmental matrices (including from
food processing plants) were grouped under the compartment “environment”
while food products of animal origin were considered within the “animal” com-
partment. Note that a single publication may present more than one investigation,
i.e., investigating multiple zoonotic agents belonging to different superkingdoms
and/or multiple compartments.
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interface, 15 (7.6%) zoonotic agents were detected in 31 categories of
food. Meat and meat products yielded the majority of positive results
(55.8%) while plant-based foods comprised only 2.5% of zoonotic
agent-positive food products. Zoonotic agents identified in food were

mainly of the genera Listeria (36.6% of positive foodstuffs), Escherichia
(22.8%), and Salmonella (22.5%). Out of the 21 identified zoonotic
agents in foodstuffs, all were bacteria except for three parasites (Ani-
sakis, Echinococcus, and Trichinella spiralis) (Supplementary Fig. 6).
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Fig. 2 | Zoonotic agent distribution and richness across Austrian hosts,
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Zoonotic web structure
Figure 3 depicts the zoonotic web and interfaces (see Supplementary
Fig. 7 for conventional bipartite network visualisation). The network
contained 396 nodes, i.e., actors (zoonotic sources and agents), with
658 edges (representing infections), and an average number of 1.66
interactions per actor. The giant connected component of the zoo-
notic web included 387 actors (97.7% of the nodes) with 652 edges
(99.1% of the edges). In addition, the zoonotic web comprised three
small components: the first illustrated relationships between Ence-
phalitozoon cuniculi and its hosts Arvicola amphibius (Eurasian water
vole) and Oryctolagus cuniculus (rabbit); the second showed Myco-
bacterium chelonae, Mycobacterium marinum, and Mycolicibacterium
fortuitum with their common host Salmo trutta fario (river trout);
finally, the third depicted the infection of mosquitoes of the genus
Uranotaenia with Alphamesonivirus 1.

The analysis of the zoonotic web showed a right-skewed dis-
tribution of the node degree centrality (the number of links a node
has), revealing few nodes with a high number of connections whereas
most of the nodes had one. Among the hosts, the nodes Homo sapiens
(human, degree centrality, k = 87), Bos taurus (cattle, k = 38), Canis
lupus familiaris (dog, k = 29), Felis catus (domestic cat, k = 21), Vulpes
vulpes (red fox, k = 19), Sus scrofa (pig, k = 17), Gallus gallus (chicken,

k = 15), Ovies aries (sheep, k = 13), Sus scrofa (w) (wild boar, k = 11), and
Nyctereutes procyonoides (raccoondog, k = 10) exhibited high zoonotic
agent richness. Among the vectors, the node Ixodes exhibited the
highest degree centrality (k = 16), with multiple connections to Rick-
ettsia, Borrelia, and Babesia species. In contrast, the node Culex
showed a low degree centrality (k = 2), with links to West Nile virus
(WNV) and Orthobunyavirus Tahyna. Among nodes representing food
sources, the highest degree centrality was observed for the nodes
cattle meat and meat product, animal (unspecified) meat and meat
product (each k = 8), and animal (unspecified) dairy (k = 6). The degree
centrality of nodes representing environmental matrices showed
relatively low values, ranging between 1 and 4. Among the zoonotic
agents, the nodes USUV (k = 38), Salmonella enterica (k = 33), WNV
(k = 30), Salmonella (k = 24), Escherichia coli (k = 19), Listeria (k = 17),
Listeria monocytogenes (k = 17), verotoxigenic Escherichia coli (VTEC)
(k = 16), Campylobacter jejuni (k = 15), Toxoplasma gondii (k = 15),
Influenza A virus (k = 12), Campylobacter coli (k = 11), enterohaemor-
rhagic E. coli (EHEC) (k = 11), Leptospira, Staphylococcus aureus, and
Campylobacter (each k = 10) revealed a greater zoonotic source plas-
ticity (range) in Austria. Furthermore, with an average degree of 3.90,
viruses had a greater zoonotic source plasticity than bacterial (3.77) or
eukaryotic (2.28) zoonotic agents.

Table 1 | Breakdown of zoonotic agent detection methods showing the number of detections by host taxonomic class and
zoonotic agent superkingdom, Austria, 1975–2022

Host taxonomic class Zoonotic agent superkingdom Detection
method

Number of detections

Actinopteri Bacteria direct 3

Aves Bacteria direct 104

Aves Bacteria indirect 1

Aves Bacteria indirect and direct 4

Aves Eukaryota indirect 1

Aves Viruses direct 40

Aves Viruses indirect 61

Aves Viruses indirect and direct 3

Lepidosauria Bacteria direct 48

Mammalia (human) Bacteria direct 154

Mammalia (human) Bacteria indirect 37

Mammalia (human) Bacteria indirect and direct 2

Mammalia (human) Eukaryota direct 46

Mammalia (human) Eukaryota indirect 18

Mammalia (human) Eukaryota indirect and direct 2

Mammalia (human) Viruses direct 9

Mammalia (human) Viruses indirect 21

Mammalia (human) Viruses indirect and direct 2

Mammalia (human) Other1 direct 1

Mammalia (non-human) Bacteria direct 178

Mammalia (non-human) Bacteria indirect 30

Mammalia (non-human) Bacteria indirect and direct 13

Mammalia (non-human) Eukaryota direct 138

Mammalia (non-human) Eukaryota indirect 27

Mammalia (non-human) Eukaryota indirect and direct 11

Mammalia (non-human) Viruses direct 11

Mammalia (non-human) Viruses indirect 16

Mammalia (non-human) Viruses indirect and direct 3

Testudinata Bacteria direct 4

Testudinata Eukaryota direct 1

The class Mammalia is further disaggregated for humans and non-human mammals.
1 This entry corresponds to the case when dog hair was evidenced under the skin of a human patient.
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Network of zoonotic agent sharing
We generated a unipartite scientific research effort-adjusted network
of zoonotic sources (i.e., accounting for research biases), based on
zoonotic agent sharing. This network depicts patterns of zoonotic
transmission potential between sources, with edges representing the
likelihood that a given zoonotic source will transmit one or more
zoonotic agents to another source relative to other sources in the
network29. Thus, for one zoonotic agent, connected sources belong to
the same potential transmission chain29,30 (Fig. 4a). In this network,
node rankings using the four centrality metrics (degree; strength, i.e.,
the sum of the weights of edges to/from a node; betweenness, i.e., the
number of shortest paths that go through a node; and closeness, i.e.,
the average distance to all other nodes)31 showed positive correlation
(0.26 < Kendall’s Tau < 0.77, p < 0.001 in all cases, Supplementary

Table 5). Degree and strength centrality reflect co-occurrence patterns
of zoonotic agents among sources9. In contrast, betweenness and
closeness centrality provide insights into indirect interactions through
other sources32. The nodes Homo sapiens (human), Gallus gallus
(chicken), Bos taurus (cattle), and animal (unspecified) meat and meat
product were the most influential nodes in the network, appearing in
the top 10 actors by the four centrality metrics. In addition, the nodes
Ovies aries (sheep) and cattle meat and meat product could also be
considered influential, ranking in the top 10 actors by three (out of
four) centrality metrics (Table 2). Notably, the nodes Equus caballus
(horse) and various nodes representing bird species exhibited high
degree and strength centrality, attributable to their shared interac-
tions with the twoOrthoflaviviruses,WNV andUSUV. Interestingly, the
nodes Sus scrofa (wild boar), Testudines (turtles), Canis lupus familiaris
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Fig. 3 | Network representation of the zoonotic web in Austria, 1975–2022. This
representation uses the D3 forceLink layout, providing a detailed visualisation and
offering epidemiological insights into naturally occurring zoonotic interactions in
Austria. The zoonotic web is a bipartite network, where each node (circle) repre-
sents an actor in the zoonotic web, with one set of nodes representing zoonotic
agents (black nodes) and the second set representing zoonotic sources that belong
to different categories: vertebrate hosts (red nodes), vectors (yellow nodes),
foodstuffs (blue nodes), and environmentalmatrices (green nodes). A link between
a zoonotic agent i and a vertebrate host j indicates that agent i was directly or
indirectly detected in host j; a link between a zoonotic agent i and a vector j signifies
that agent iwas identified in vector j, implying that vector jmay transmit agent i to a
vertebrate host through a bite or mechanically; a link between a zoonotic agent i
and an environmental matrix j indicates the presence of agent i in environment j,

potentially leading to infection of a vertebrate host upon contact; and a link
between a zoonotic agent i and a foodmatrix j indicates that agent iwas detected in
food j, which may result in the infection of a vertebrate host through ingestion.
Node size represents the actor’s degree centrality. The node degree centrality for
each zoonotic source corresponds to the zoonotic agent richness, i.e., the number
of taxa directly or indirectly evidenced from the zoonotic source. The node degree
centrality for each zoonotic agent corresponds to the zoonotic source range, i.e.,
the number of sources from which the agent has been directly or indirectly evi-
denced, reflecting its “host” or “zoonotic source”plasticity. The bottom-right graph
illustrates the degree distribution for the “zoonotic agents” and “zoonotic sources”
partitions, the latter being disaggregated based on source categories. Interactive
version at: https://vis.csh.ac.at/zoonotic-web/dashboard.html.
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(dog), Felis catus (domestic cat), Apodemus flavicollis (yellow-necked
field mouse), Nyctereutes procyonoides (raccoon dog), and the tick
Ixodes ranked high by betweenness centrality, suggesting that they
may act as bridges between host communities33,34. Besides the most

influential nodes, two hosts, Sus scrofa (pig) and Canis lupus familiaris
(dog), as well as two food matrices, animal (unspecified) ready to eat
product and pig meat and meat product, ranked in the top 10 actors by
closeness centrality. Closeness centrality identifies nodes that are
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Fig. 4 | Networkof zoonotic agent sharing, createdby connecting twozoonotic
sources when they share at least one zoonotic agent. The network is unipartite,
and each node (circle) represents a zoonotic source that belongs to a source
category: vertebrate host, vector, food, or environmental matrix. Node size
represents the zoonotic source’s degree. The weight (width) of an edge between
two zoonotic sources represents the number of zoonotic agents shared, adjusted

for the scientific research effort. aTransmission-potential network among zoonotic
sources. Node colours depict zoonotic source categories. Zoonotic hosts are
additionally colour-coded based on taxonomic classes to offer further biological
insights. b Communities of zoonotic sources based on zoonotic agent sharing as
determined using the Leiden algorithm. Node colours represent the communities.
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“close” tomany other nodes31; therefore, zoonotic sourceswhich share
numerous zoonotic agents with numerous sources would have high
closeness centrality33. Summary statistics for the four-node centrality
metrics per category of zoonotic sources are shown in Table 3. Many
nodes in the network showed a betweenness equal to zero. Except for
betweenness centrality, there were significant differences in the aver-
age values of the centrality metrics between the four zoonotic source
categories (Supplementary Table 6).

Zoonotic agent sharing communities
We identified six communities (clusters of zoonotic sources sharing
similar agents) in the zoonotic agent sharing network (Fig. 4b). Com-
munity 1: primarily comprised of central hosts having higher values of
centrality in the unipartite zoonotic agent sharing network and gen-
erally living in proximity to humans or having frequent interactions
with humans, including livestock, companion animals (dog, cat),
synanthropic species (Norway rat, domestic mouse), game species
(red fox, cervids), but also captive primates. Notably, Aedes mosqui-
toes and ticks (Hyalomma, Ixodes) were part of this community.
Community 1 was characterised by a high diversity of zoonotic agents,
with 175 taxa shared among 51 zoonotic sources that composed the
community. Community 2: encompassed diverse reptiles (snakes,
lizards, and turtles) and amphibians, including non-traditional pet
(NTP) species, along with the wild boar; the main zoonotic agent
shared within this community was S. enterica. Community 3: consisted
of various avian taxa, including birds of prey, ducks, waterfowl,
gamebirds, chickens, and pigeons. Note that hosts in this community
were broadly designated, lacking specific scientific nomenclature. The
primary shared zoonotic agents in community 3 were E. coli and
Influenza A virus. Community 4: included various food products and
environmental matrices related to food production, but also public
lavatory and Meleagris gallopavo (turkey). The main zoonotic agents
shared within community 4 were foodborne, principally Salmonella,
Listeria monocytogenes, and VTEC. Community 5: mostly clustered

Table 2 | Top 10 most influential actors in the network of zoonotic agent sharing (i.e., considering hosts, vectors, food, and
environmental matrices as zoonotic sources) ranked by node centrality metrics

Node / Degree centrality Node / Strength centrality Node / Betweenness centrality Node / Closeness centrality

1. Homo sapiens (human)1 / 149 1. Homo sapiens (human)1 / 993.3 1. Homo sapiens (human)1 / 0.732 1. Homo sapiens (human)1 / 3.92

2. Bos taurus (cattle)1 / 79 2. Bos taurus (cattle)1 / 457.3 2. Sus scrofa (wild boar)1 / 0.212 2. Bos taurus (cattle)1 / 3.70

3. Gallus gallus (chicken)1 / 78 3. Gallus gallus (chicken)1 / 387.2 3. Bos taurus (cattle)1 / 0.122 3. Gallus gallus (chicken)1 / 3.61

4. Sus scrofa (wild boar)1, Animal (unspeci-
fied) meat and meat product3 / 59

4. Animal (unspecified)meat andmeat
product2 / 383.7

4. Gallus gallus (chicken)1 / 0.100 4. Animal (unspecified) meat and
meat product2 / 3.54

5. Equus caballus (horse)1 / 57 5. Cattle meat and meat product2

/ 281.0
5. Testudines (turtles)1 / 0.025 5. Sus scrofa (pig) 1 / 3.51

6. Asio otus (long-eared owl), Bubo bubo
(Eurasian eagle-owl), Bubo scandiacus
(snowy owl), Ciconia Ciconia (white stork),
Circus aeruginosus (westernmarsh harrier),
Coloeusmonedula (jackdaw),Corvus cornix
(hooded crow), Gypaetus barbatus (lam-
mergeier), Strix uralensis (Ural owl)1, animal
(unspecified) dairy2 / 56

6. Ovis aries (sheep)1 / 270.4 6. Canis lupus familiaris (dog)1 / 0.018 6. Ovis aries (sheep)1 / 3.46

7. Serpentes, Testudines, lizard
(unspecified)1 / 53

7. Animal (unspecified) dairy2 / 265.1 7. Felis catus (domestic cat)1 / 0.016 7. Cattle meat and meat product2

/ 3.42

8. Ovis aries (sheep)1 / 51 8. Gypaetus barbatus (lammergeier)1

/ 259.7
8. Animal (unspecified) meat and
meat product2 / 0.013

8. Animal (unspecified) ready to eat
product2 / 3.39

9. Sus scrofa (pig)1, cattle meat and meat
product2 / 50

9. Bubo scandiacus (snowy owl), Cir-
cus aeruginosus (western marsh har-
rier), Coloeus monedula (jackdaw), 1

/ 256.6

9. Apodemus flavicollis (yellow-
necked field mouse), Nyctereutes
procyonoides (raccoon dog)1 / 0.0103

9. Pig meat and meat product2

/ 3.38

10. Game meat and meat product2 / 44 10. Strix uralensis (Ural owl)1 / 256.3 10. Ixodes3 / 0.101 10. Canis lupus familiaris (dog)1

/ 3.32

The NCBI-resolved scientific and common names of the hosts are specified. Edge weights were adjusted to take into account the scientific research effort. The normalised values of the weighted
betweenness and closeness are presented.
1 Zoonotic source category: host; 2 Zoonotic source category: food; 3 Zoonotic source category: invertebrate vector.

Table 3 | Summary statistics of the node centrality metrics in
the research effort-adjusted network of zoonotic agent shar-
ing, per category of zoonotic sources

Min. 1st Qu. Median Mean 3rd Qu. Max.

Hosts (n = 152)

Degree centrality 1 19 32 30.05 37 149

Strength centrality 1.58 58.86 155.18 139.66 171.23 993.30

Betweenness
centrality

0 0 0 0.0087 0.0007 0.731

Closeness centrality 0.877 1.852 2.158 2.196 2.466 3.919

Vectors (n = 7)

Degree centrality 1 4 7 10.86 13.5 33

Strength centrality 3.88 7.235 19.85 35.53 40.04 130.41

Betweenness
centrality

0 0 0 0.0015 0.0030 0.0101

Closeness centrality 1.131 1.508 1.674 1.853 2.076 2.995

Food (n =31)

Degree centrality 2 16 23 25.68 33 59

Strength centrality 10.24 73.58 89.19 128.76 165.90 383.69

Betweenness
centrality

0 0 0 0.0005 0.0002 0.0134

Closeness centrality 1.676 2.255 2.583 2.654 3.159 3.542

Environment (n =6)

Degree centrality 3 6.25 13 12.17 16 23

Strength centrality 11.63 22.90 52.78 48.75 70.75 85.62

Betweenness
centrality

0 0 0 0 0 0

Closeness centrality 1.928 1.973 2.067 2.113 2.278 2.324
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WNV hosts and, to a lesser extent, USUV hosts, including various bird
species, the vectorCulex, andhorses. Community 6: representedUSUV
hosts and exclusively included bird species (Fig. 5, Supplementary
Table 7 and Supplementary Fig. 8).

Zoonotic agent sharing at human-animal-environment
interfaces
A total of 24,475 3-cliques were identified, of which 153 were One
Health 3-cliques. The distribution of the research effort-adjusted

number of zoonotic agents shared at human-animal-environment
interfaces (represented by the sum of the edge weights within One
Health cliques) displayed a right-skewed pattern (Fig. 6a), with a
median of 20.8. This suggested that, at most human-animal-
environment interfaces, the likelihood of a specific zoonotic source
transmitting one or more zoonotic agents to another source is rela-
tively low.We identified six One Health cliques that ranked the highest
based on the number of zoonotic agents shared (Fig. 6b). In five of
them, cattle (B. taurus) was involved, while in two of them, foodstuffs
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Fig. 5 | Shared zoonotic agents within each zoonotic source community.
Communities (represented by squares) were determined using the Leiden algo-
rithm run on the research effort-adjusted zoonotic agent sharing network. Circles
represent zoonotic agents. The size of each circle represents the degree centrality
of the node in the bipartite zoonotic web (i.e., the total number of sources from
which it has been directly or indirectly evidenced, reflecting its “host” or “zoonotic
source” plasticity). The circulation of a zoonotic agent within a community is

represented by a link between the community (square) and the zoonotic agent
(circle). Link width represents the number of zoonotic sources that share the
zoonotic agent within the community it is linked to. The colour scale shows the
number of zoonotic sources (the colour scale is correlated to both node size and
link width). Interactive version at: https://vis.csh.ac.at/zoonotic-web/
dashboard.html.
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from animal or plant origin were implicated. Environmental samples
from food processing facilities were present in three cliques.

Imported and emerging zoonotic agents
Between 1975 and 2022, Austria reported 48 importation events of
zoonotic agents, of which, 11 were bacteria, seven were helminths, one
was an arthropod, and two were viruses. These imported zoonotic
agents were documented as potentially originating from multiple
countries (Supplementary Table 8). In addition, we report the emer-
gence of eight zoonotic diseases in Austria between 1975 and 2022,
corresponding to a frequency of approximately one emerging zoo-
notic disease every six years. Notably, all of them were found to
emerge in the past 20 years. The etiologic agents and their respective
hosts, along with the year of discovery were: USUV (birds, 2001),

Rickettsia helvetica (Ixodes ricinus, 2005), Anisakis (human, 2009),
Brucella canis (dog, 2010),Rickettsia conorii subsp. raoultii (dog, 2015),
WNV (horse, 2016), Thelazia capillipaeda (domestic cat, 2018), and
Baylisascaris procyonis (racoon, 2019). We documented three types of
emergences: the first discovery outside the historical geographic
range, the first discovery in Austria, and the first autochthonous case
(Supplementary Fig. 9). Using the zoonotic web, we additionally esti-
mated the current source range of the eight emerging zoonotic agents,
revealing associations with 59 vertebrate hosts, including human, and
four genera of arthropod vectors (Supplementary Fig. 10).

Discussion
Cross-species transmission and emergence of zoonotic-origin diseases
occur at complex animal-human-environment interfaces, within
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dynamic social-ecological systems influenced by human behaviour,
demographic shifts, and global changes. These interfaces represent
significant OneHealth challenges. Here, wepresent the first attempt to
analyse nearly 50 years of data on naturally occurring zoonotic infec-
tions (or contaminations) in Austria, leveraging an original One Health
approach based on network theory. With approximately 80% of
detections in animals and all those in vectors, food, and environmental
matrices supported by direct evidence of zoonotic agents, we are
confident in the robustnessof our results. Thisworkdemonstrates that
most zoonotic agents are capable of infecting both human and diverse
animal species across various taxa, while evolving within multi-source,
multi-agent ecological communities, consistent with the established
principles in parasite community ecology35. We argue that the analysis
of the zoonotic web holds greater value when studying potential
zoonotic transmission chains compared to the commonly employed
host-pathogen network approach, as it offers a broader epidemiolo-
gical perspective and more analytical flexibility. Notably, we studied
the centrality of zoonotic sources, including hosts, vectors, foodstuffs,
and environmental matrices, within the network of zoonotic agent
sharing, and evidenced that certain sources play a disproportionate
role in the sharing of zoonotic agents. Specifically, we underscored the
crucial role of arthropod vectors and foodstuffs (typically omitted in
host-pathogen networks) in the risk of zoonotic disease emergence
and transmission through the zoonotic web, pinpointing potential
targets for One Health surveillance programmes.

Ten genera of zoonotic agents constituted 41% of the published
research on zoonotic diseases in Austria, with seven of them involving
agents subjected to compulsory surveillance and reporting in humans
and/or animals36. This outcome underscores an imbalance in research
interest, likely influenced by funding opportunities as well as global-
and national-level prioritisation, typically based on known incidence
and potential impact on human populations. Notably, diseases under
European regulatory surveillance, such as those responsible for food-
borne outbreaks or those posing a threat to global public health, like
the influenza A virus, tend to receive more attention. Such a bias may
lead to a skewed assessment of the overall zoonotic risk, especially
concerning potentially “neglected” zoonoses such as certain helminth
infections (e.g., dirofilariasis, dicrocoeliosis, hepatic capillariasis)37.
Moreover, research trends show that very few publications in Austria
address the environmental compartment, aligning with global
observations38.

From 1975 to 2022, Austria saw the emergence of eight zoonotic
agents, averaging one EID every six years. While there is often an
emphasis on viral emergence, particularly considering that RNA viru-
ses pose the most significant threat39, our findings offer a different
perspective.Withinour dataset, six out of eight emerging pathogens in
Austria were bacteria and helminths. Notably, two of the emerging
bacteria belong to the genus Rickettsia, aligning with the findings of
Jones, et al.4 This highlights the importance of broadening our focus
beyond viral threats and acknowledging the substantial role that bac-
terial and helminthic pathogens play in the landscape of emerging
diseases. Moreover, four emerging zoonoses are transmitted by
arthropod vectors (WNV, USUV, R. helvetica, R. conorii subsp. raoultii).
As a result of climate change and globalisation, there is a growing
likelihood of new arthropod species populations becoming estab-
lished inAustria, increasing the risk of future EID events40. Surprisingly,
despite SARS-CoV-2 being notifiable for both humans and animals41,42,
none of the COVID-19-related publications concerning human cases
refer to it as a zoonotic disease. Likewise, the sole publication inves-
tigating SARS-CoV-2 in Austrian animals did not mention its zoonotic
potential43.

Within the zoonotic web, multiple zoonotic sources contribute to
the maintenance and spread of zoonotic agents. Studying the source-
source network of zoonotic agent sharing is necessary to reveal
indirect interactions32, where one source influences another through

shared agents. For example, if an agent is found in two sources, its
prevalence in one may affect the other. However, these indirect
interactions may lack epidemiological significance if, for instance,
immunological or physical barriers prevent agent transfer between
sources, such as when the sources do not share similar ecological
niches20. Besides, many sources found (sero)positive for a zoonotic
agent, may not, when taken individually, be able to maintain a sus-
tained persistence of the agent within the network44. Nevertheless, as
members of a zoonotic source community, interacting with main-
tenance and non-maintenance sources, they potentially play a role in
the zoonotic agent ecology45.

We observe that the zoonotic agent sharing network in Austria is
organised into six communities. Our results indicate that the com-
munity, including humans, the oldest domesticated species (e.g., dog,
cat, sheep, cattle, pig46), and synanthropic species (e.g., Norway rat,
house mouse) share the most zoonotic agents. This suggests that the
highest risk of zoonotic spillover originates from sources within this
community. These national-levelfindings alignwith results fromglobal
studies2,47. In addition, human-modified environments, such as sand-
boxes, cluster with humans, domesticated and commensal species,
highlighting the role of the shared ecosystem and environmentally
persistent stages in the ecology of certain zoonoses48. The determi-
nants of the zoonotic source community assembly and composition
remain a challenge in disease ecology5,49. We found evidence that a
limited number of highly connected zoonotic agents in the bipartite
zoonotic web, such as USUV, S. enterica, WNV, and Influenza A, may, at
least partly, drive zoonotic agent sharing community assemblage. The
grouping of most food products into one community, predominantly
sharing zoonotic agents typically associated with foodborne
infections50,51 (21/24 agents, 87.5%, including the five leading causes of
foodborne diseases in the EU: Campylobacter, Salmonella, Yersinia, E.
coli and Listeria50, as well as 10 serovars of Salmonella enterica subsp.
enterica), suggests that anthropogenic activities, particularly those
related to food processing and transformation52,53, may further influ-
ence the pattern of assembly within zoonotic source communities.
These findings suggest that a combination of local epidemiological,
ecological, human-related, and behavioural (e.g., relationship and
proximity to human)2 factors play a key role in shaping zoonotic agent
sharing community patterns.

Our findings underscore the presence of central zoonotic sources
in the network, demonstrating robust results across three to four
centrality metrics after controlling for the research effort. These cen-
tral zoonotic sources have a higher number of interactions with zoo-
notic agents, acting as hubs, or bridge different zoonotic source
communities in the network, acting as connectors54. In particular,
some livestock species (e.g., cattle, chicken), companion animals (e.g.,
dogs, cats, turtles), wildlife (e.g., yellow-necked field mouse, wild
boar), and vectors (Ixodes) play a crucial role as bridge hosts, through
which zoonotic agents can potentially spillover from maintenance
(generally wild) host populations or communities to target popula-
tions (generally domesticated species or humans) that are usually
“protected” through public health or biosecurity measures25,44,55,56.
Notably, Ixodes ticks are pivotal in the epidemiology and zoonotic
spillover of bacteria from the genera Rickettsia, Borrelia, and Babesia.
Furthermore, the two communities involving USUV and WNV hosts
illustrate the maintenance of zoonotic viruses within partially over-
lapping host communities. In this subsystem,mosquitoes of the genus
Culex play a central role, serving as primary amplification vectors for
WNV and USUV within each bird community. In addition, Culex mos-
quitoes act as bridge vectors between both avian maintenance com-
munities and between these communities and potential mammalian
hosts, including humans57. These results emphasise the importance of
both vector monitoring and testing for pathogens as essential com-
ponents for the early detection of emerging zoonoses and the estab-
lishment of early warning systems.
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We present a novel approach based on the identification and
quantitative characterisation of specific network structures, named
One Health 3-cliques, for estimating the likelihood of zoonotic spil-
lover at human-animal-environment interfaces. This method is flexible
and canbe applied to any zoonoticweb.Ourfindings demonstrate that
there is an increased co-occurrence of zoonotic agents at human-cattle
and human-food interfaces, suggesting an elevated likelihood of zoo-
notic spillover. Notably, human zoonotic infection through con-
sumption of contaminated food is a major public health risk, with
Listeria, Salmonella, and Escherichia being the most frequently repor-
ted agents in food products across the included publications. Our
results further emphasise the critical importance of monitoring zoo-
notic agents in food-processing environments.

A crucial challenge in formulating One Health surveillance and
primary prevention strategies (i.e., at source)17 for multi-source zoo-
notic agents, in particular emerging ones, is identifying what is the
reservoir of infection55, i.e., characterising, within a given context, the
“ecologic system in which an infectious agent survives indefinitely”58 and
from which it can be sustainably transmitted to the target
population44. The goal is to define what could be an optimal (high
specificity and sensitivity) sentinel59 to detect the circulation of a
specific zoonotic agent above an acceptable threshold posing a
potential transmission risk to the target population (typically human).
Identifying sentinels through network metrics should depend on the
topology of the network, the infectious agent to be monitored (e.g.,
endemic versus emerging, transmission route(s)), the (estimated)
infection rate, the target population, the objective of the surveillance
(e.g., early detection versus prevalence estimation)60,61, and the spe-
cific epidemiological, ecological, and socio-cultural-economic context
(e.g., what resources are available, whatmeasures are acceptable, what
is the community perception of the disease62). Selecting sentinels that
are distant from each other in the network proved to enhance the
overall probability of one sentinel being in proximity to an outbreak,
thereby increasing the likelihood of detection63. For example, dis-
tributing the sentinels in different network communities61 and prior-
itising surveillanceofhighly connectednodes in thenetwork30 (e.g., via
regular sampling) would achieve higher performance than randomly
selected nodes.

Nodes to be prioritised for surveillance may be different than
those used for disease control63. Removing central nodes in the
network, e.g., via vaccination or culling targeting “bridge” zoonotic
sources (i.e., with high betweenness), can significantly reduce the
connectivity of the zoonotic web30, therefore decreasing the like-
lihood of zoonotic spillover into the human population. However,
betweenness centrality fails to discriminate between zoonotic sour-
ces that have high betweenness because they have a lot of connec-
tions in the network, such as human and cattle, or sources that really
connect two communities, serving as bottlenecks for zoonotic
transmission flow30 (e.g., Ixodes). Nevertheless, the effectiveness of
interventions is intricately connected to the specific system under
study and must be tailored to the context. For example, badger
culling, equivalent to removing the badger node in the zoonotic web,
has shown contrasting results on the prevalence of tuberculosis in
cattle in the UK64,65.

Alternative methodologies have been employed to investigate
spillover events. For instance, Grange, et al. 66 ranked the spillover risk
from known and newly discovered wildlife-origin viruses using a
database of wildlife host-virus associations combined with expert
opinion on drivers of spillover. Washburne, et al. 67 utilised percolation
models to analyse cross-species transmission, uncovering inherent
nonlinearity in spillover rate. In addition, Olival, et al. 8 used a dataset
of mammal host-virus associations as a proxy for measuring spillover;
using generalised additive models (GAMs), they identified predictors
of host viral richness and estimated the number of undiscovered

viruses for each mammal species. Missing or unobserved links and
nodes frequently occur in collected network data68, which can impact
the network properties. Diverse methods have been proposed to infer
missing links69–71 and nodes69,72. Notably, edge prediction accuracy can
be enhanced through theuseofnetwork community structure73. These
methods offer valuable mathematical and statistical approaches for
future investigations of the zoonotic web, potentially allowing infer-
ence of zoonotic agent presence in a source where data has been
lacking.

Our study acknowledges several limitations. First, poorly descri-
bed taxonomic names hinder the precise identification of zoonotic
agents or vertebrate hosts at the species level. Likewise, the unspecific
description of food origin (e.g., “unspecified” animal), alongside our
conservative approach to data validation/cleaning and adherence to
authors’ terminology, may have resulted in an inaccurate assessment
of the degree centrality for some nodes. For example, Shiga toxin-
producing E. coli (STEC) strains could refer to both VTEC and EHEC74;
similarly, in the case of a host linked to both Listeria and L. mono-
cytogenes, Listeria could potentially be L. monocytogenes. Imprecise
description of the samples and zoonotic agents in publications
represents a major limitation to the estimation of the zoonotic risk.
Moreover, the single species-single pathogen approach, especially
dominant in human medicine11, and the tendency to disproportionally
investigate zoonotic sources that are closer to humans can result in
sample bias and in a skewed distribution of the number of zoonotic
agents recorded per source, with human showing the highest number
of zoonotic agents, followed by domesticated species. Zoonotic agent
detection through environmental sampling remains scarce, potentially
limiting result interpretation, particularly in a One Health context.
Future zoonotic research could leverage environmental DNA/RNA
(eDNA/ eRNA) sequencing for the detection and monitoring of zoo-
notic agents in the environment75, as exemplified by SARS-CoV-2
wastewater-based surveillance76. Furthermore, despite efforts to con-
trol for research bias, our analysis is inevitably constrained by the
existence of zoonotic source-agent associations that are either
unknown or not yet published. This constitutes a major challenge in
our understanding of zoonotic interactions. Ultimately, broadening
the dataset by including additional data on natural infections docu-
mented in diverse laboratories (e.g., university laboratories that often
investigate a broader range of sources and agents compared to
national reference labs) as well as event-based surveillance (EBS) data
sourced from various, non-official channels77, could significantly
enrich the dataset and enhance the depth of the analysis. ProMed-mail
reports, for instance, benefit from evaluation by a multidisciplinary
team of experts to ensure information reliability and accuracy before
publication78. Future extensions could also explore conducting tar-
geted searches for each zoonotic agent, based on available global
lists8,22–24, in the literature and international health organisation web-
sites (e.g., World Health Organization, World Organisation for Animal
Health). However, the latter may necessitate considerable time and
resources; employing automated data extraction methods and tools
could improve efficiency79–81. In addition, incorporating a temporal
dimension to zoonotic source-agent interactions would allow for a
more dynamic assessment of the zoonotic transmission chain within
and between the communities. This approach could unveil seasonal
variations in spillover events82 as well as mechanisms that link host
diversity to disease spread and emergence83. Moreover, as data on
directionality in transmission is largely unavailable, we used a non-
directed network and assumed a symmetrical process in interspecies
transmission. This simplification may have limitations in capturing
nuances in the dynamics of zoonotic transmission84 (e.g., WNV can be
transmitted from birds to humans via mosquitoes but this transmis-
sion process is not reciprocal). Furthermore, our data provides infor-
mation on infection solely at the species level, overlooking individual

Article https://doi.org/10.1038/s41467-024-49967-7

Nature Communications |         (2024) 15:5650 12



variations in shedding, and potentially missing key individuals acting
as hubs (“superspreaders”). Finally, controlling for detection method
stringency8, such as PCR (or other direct detection methods) versus
serology, could further refine our findings, allowing us to adjust edge
weight within the network.

Here, we show that network analysis represents a cross-
disciplinary method for unveiling the intricate web of zoonotic inter-
actions involving multiple sources and infectious agents within an
ecological system. In addition to presenting interactions between
nodes, a zoonotic web approach enables the identification of influen-
tial zoonotic agents and sources that may hold epidemiological sig-
nificance. Applying this approach across different settings, especially
in regions identified as hotspots for zoonotic disease emergence, can
expose critical knowledge gaps and reveal how existing epidemiolo-
gical understanding, shaped by research data availability and funding
priorities, may not always reflect on-the-ground realities. Overall, this
work emphasises the need for further modelling and empirical studies
to explore how maintenance is influenced by multiple source-agent
interactions. Establishing efficient and context-adapted One Health
network-based surveillance and control strategies requires supple-
menting the network analysis with multi-source data, ensuring a hol-
istic, multidimensional understanding of the zoonotic web to unravel
the complex dynamics of zoonotic transmission chains.

Methods
Systematic literature search and data extraction
The systematic literature search was conducted and reported
according to the Preferred Reporting Items for Systematic Review and
Meta-Analysis (PRISMA) guidelines85.

Information about zoonotic agents circulating in Austria is dis-
persed across scientific papers, reports from the Austrian Agency for
Health and Food Safety (AGES), reports from the Federal State Veter-
inary Services, and student theses. Between 17 July and23August 2022,
a systematic literature search was conducted using the query
(“Zoono*“AND (“Austria”OR “Österreich”)) in the following databases:
PubMed®, Scopus, and vetmed:seeker (internal database of the Uni-
versity of Veterinary Medicine Vienna, Austria), including articles
published between the inception of the databases and the date of the
search. Furthermore, the publication database of the AGES was sear-
ched using the keyword “zoono”. Additional papers found in the
reference section of reviews that provided relevant information were
also included. Retrieved publications were deduplicated in the refer-
ence manager Citavi (Swiss Academic Software. 2023) before the fol-
lowing selection processes.

Titles and abstracts were first screened for relevance using the
following inclusion criteria: the publication presented data pertaining
to at least one zoonotic disease or agent that was investigated or
documented in Austria, and the agent was identified as zoonotic in the
paper. Publications were excluded (i) if they did not investigate or
describe a zoonotic disease that was identified as such, (ii) if research
was not conducted in Austria, (iii) if publications did not describe
naturally occurring zoonotic infection, or (iv) if publications described
disease physiology or (v) dealt with treatment or methods for patho-
gen detection. Book chapters, posters, literature reviews, statistical
forecasts, and conference proceedings were excluded. Regarding
antimicrobial resistant bacteria, papers were included if they specifi-
cally explored the animal-human interface and/or the authors referred
to zoonotic transmission. To prevent duplication of data, diploma-,
master’s-, and doctorate thesis were not included if a peer-reviewed
research paper published the same data.

In a second step, the full texts of the previously selected titles/
abstracts were screened using the inclusion/exclusion criteria descri-
bed above. Publications were excluded if they were not in German or
English language or did not describe the situation in Austria. When a

publication dealt withmultiple countries, it was included if it provided
specific information on zoonotic diseases in Austria.

The following data was extracted from the selected publications:
(i) Publication data: citation, year of publication, and type of pub-
lication; (ii) Type of study: case study, original research, or national
surveillance data; (iii) Investigated zoonotic agent: agent type (e.g.,
bacterium, virus, parasite, fungus, prion, or other) and common/sci-
entific names as mentioned in the information source; (iv) Investi-
gated host: host category, e.g., human, companion animal (defined as
domesticated animals possessed by a person for reasons other than
food or resource production, including domesticated small rodents or
exotic companion animals), livestock (defined as domesticated ani-
mals kept for resource and food production), wildlife (defined as free-
ranging or captive wild animal species that are not domesticated),
common/scientific names as mentioned in the information source, if
the zoonotic agent was detected in the host, i.e., seropositive (con-
firmed by the presence of antibodies), positive (direct detection of the
agent), or negative; (v) Investigated vector: common/scientific names
as mentioned in the information source, and if the zoonotic agent was
detected in the vector (positive/negative); (vi) Investigated environ-
mental matrix and if the zoonotic agent was detected in the matrix
(positive/negative); (vii) Investigated food matrix: the specific type
of foodstuff investigated, the origin of the food product (animal or
plant), and if the zoonotic agent was detected in the foodstuff (posi-
tive/negative); (viii) Epidemiological context: study year, federal
state(s), whether the case was imported and most probable origin,
whether the zoonotic agentwasmentioned asemerging inAustria, and
whether specific professional activities were deemed to carry an ele-
vated risk of exposure.

Data curation
First, the data underwent quality control and cleaning procedures
where the unique values of each field were checked to search for
inaccurate or missing data in the dataset using the R function unique().
Events containing detected errorsweremanually inspected against the
original data source, and, when necessary, the erroneous values were
modified, replaced, or removed. Furthermore, for each animal host,
vector, and zoonotic agent, common and scientific names, as well as
taxonomic classification were resolved against the NCBI Taxonomy
database86 using the R package taxize87. If a conflict occurred between
the scientific name and/or common name as provided in the infor-
mation source and the NCBI-resolved name, the information source
was cross-referenced and searched for complementary informationon
the investigated species. When the original source did not provide
sufficient details for the identification of a scientific name, the most
precise taxonomic denomination was used.

Food categories were generated by combining the food source
(e.g., cattle) and the type of food (e.g., meat and meat products). For
analytical purposes, foodstuffs designating the same type of foodwere
grouped. For example, “kebab”, “ground meat”, or “rillettes” were
coded as “meat and meat product”; “milk” and “milk product” were
coded as “dairy”; “egg” and “egg product” were coded as “egg”; “fish”,
“fish filet”, or “rollmops” were coded as “marine product”; “salad”,
“spices”, “fruit”, or “vegetable” were coded as “plant-based food”. The
categories “cheese” (e.g., mozzarella, Brie, Roquefort) and “sausage”
(e.g., ham, salami, raw meat sausage) were also added for more accu-
rate representation.

Analysis of the zoonotic web
Thedatasetwasused to create anundirectednetwork representing the
web of naturally occurring zoonotic interactions, thereafter called the
zoonotic web, depicting the relationships between zoonotic actors. In
this network, the zoonotic agents and their zoonotic sources (i.e.,
vertebrate hosts, arthropod vectors, foodstuffs, and environment)
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were shown as nodes linked by edges, which represented zoonotic
infection (hosts and vectors) or colonisation (food and environmental
sources). A link between a zoonotic agent i and a vertebrate host j
indicates that agent iwas directly or indirectly detected in host j. A link
between a zoonotic agent i and a vector j signifies that agent i was
identified in vector j, implying that vector j may transmit agent i to a
vertebrate host through a bite or mechanically. Likewise, a link
between a zoonotic agent i and an environmentalmatrix j indicates the
presence of agent i in environment j, potentially leading to infection of
a vertebrate host upon contact. Lastly, a link between a zoonotic agent
i and a foodmatrix j indicates that agent iwas detected in food j, which
may result in the infection of a vertebrate host through ingestion. In
the network, the most specific NCBI-resolved zoonotic agent and host
nameswere employedwhile arthropod vectorswere aggregated at the
genus level. The zoonotic web is a bipartite network, i.e., a graph that
contains two disjoint sets of nodes, the zoonotic sources and the
zoonotic agents, respectively, such that every edge connects the two
node sets (i.e., interactions among zoonotic sources or among zoo-
notic agents were not allowed). The degree centrality (the number of
links a node has) was calculated for each node. In the epidemiological
context, the node degree centrality for each zoonotic source corre-
sponds to the zoonotic agent richness, i.e., the number of taxa directly
or indirectly detected in the zoonotic source. Similarly, the node
degree centrality for each zoonotic agent corresponds to the zoonotic
source range, i.e., the number of sources from which it has been
directly or indirectly evidenced, reflecting its “host” or “zoonotic
source” plasticity.

The zoonotic source-agent network was subsequently pro-
jected into a one-mode network of zoonotic agent sharing among
sources. Edges were weighted by the number of shared zoonotic
agents between two sources. By transforming the zoonotic source-
agent bipartite network into a source-source unipartite network, a
“transmission-potential network“29 was created, where sources
were linked based on shared zoonotic agents. To account for
research biases, we considered, for each source, the total number of
zoonotic investigations (i.e., the number of times a source was
studied). For instance, if, in one study, a source was investigated
annually for three years, we counted three zoonotic investigations.
Similarly, if the same source was examined for five zoonotic agents
in a single study, we counted it as five zoonotic investigations. This
approach provided a more accurate estimation of scientific
research effort compared to simply counting the number of studies.
We used the number of zoonotic investigations as an estimate of
scientific research effort for each source and regressed each edge
weight by the Box-Cox transformed number of zoonotic investiga-
tions of the least studied source of each edge. The residuals were
subsequently rescaled so that the lowest weight value was 19,10. After
removal of the isolated components in the research effort-adjusted
one-mode network of zoonotic agent sharing, we calculated the
following node centrality metrics: degree centrality, strength cen-
trality (the sum of the weights of edges to/from a node), weighted
betweenness (the number of shortest paths that go through a node,
which allows identifying nodes that act as bridges connecting the
different communities), and weighted closeness (the average
inverse distance to all other nodes)31. To calculate the weighted
metrics, the edge weight was transformed into cost by dividing 1 by
the weight88. Node rankings through node centrality metrics were
compared using the Kendall correlation test. Average values of the
node centrality metrics were also compared between the four
zoonotic source categories using the Kruskal-Wallis test. When a
difference was evidenced, a pairwise comparison between zoonotic
source categories was performed using the Wilcoxon rank sum test;
p-values were adjusted following the Benjamini-Hochberg
method89. Network analyses were performed using the R packages
igraph90 and bipartite91.

Community detection
We used the Leiden algorithm92, which relies on a measure called
modularity93, to detect communities of zoonotic agent sharing within
the research-adjusted one-mode network of zoonotic sources. The
method aims to optimise modularity by maximising the difference
between the actual and expected number of edges within commu-
nities. The Leiden algorithm is considered as an improvement over the
Louvain algorithm94. It comprises three distinct steps: initial optimi-
sation of modularity, subsequent refinement of the partition, and a
third step focusing on the community aggregation process92. Notably,
by refining the local partition in each community, the Leiden algorithm
demonstrates enhanced stability in community detection and offers
more efficient computation time compared to the Louvain algorithm94.

Exploring network One Health cliques
We investigated the circulation of zoonotic agents at human-animal-
environment interfaces within the research effort-adjusted network of
zoonotic agent sharing by searching “One Health” 3-cliques in the
network structure. A clique is a fully connected subgraph within the
network. A 3-clique is a set of three nodes all pair-wisely connected to
each other, therefore forming a triangle31. We were interested in
3-cliques that included nodes representing the three traditional One
Health compartments, i.e., animal (173 nodes), human (one node), and
environment (15 nodes). Plant-based foodstuffs, invertebrate vectors,
and any environmental matrices (including surfaces and tools in food
processing plants) were included into the compartment “environ-
ment”while foodproducts of animal originwere consideredwithin the
“animal” compartment. We ranked the One Health cliques by their
total edge weight, i.e., the sumof the edgeweights between all pairs of
nodes (zoonotic sources) within the clique, corresponding to the
research effort-adjusted sum of zoonotic agents shared between all
pairs of One Health compartments.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw dataset generated in this study, as well as its cleaned and
validated version, are available in the Supplementary Code. The data
has also been archived in the study repository on figshare with the
identifier: https://doi.org/10.6084/m9.figshare.2530617795.

Code availability
All analyses were conducted in R Statistical Software version 4.3.0
(2023-04-21) “Already Tomorrow”. The documented R scripts used for
data cleaning, validation, processing, and analysis, are available in
Supplementary Code. The READ.ME file contains the necessary
instructions to run the code and replicate our results. These files have
also been archived in the study repository on figshare95.
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