
https://doi.org/10.1177/03009858231189205

Veterinary Pathology
2023, Vol. 60(6) 865–875
© The Author(s) 2023

Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/03009858231189205
journals.sagepub.com/home/vet

Domestic Animals – Original Article

The use and interpretation of hematoxylin and eosin (HE)-
stained slides form the basis of diagnostic pathology since the 
19th century.28 HE-based histologic diagnosis is also still the 
gold standard diagnostic tool for tumor diagnosis and subtyp-
ing, as well as for surgical margin evaluation and tumor grad-
ing.19 Despite its gold standard designation, its inherent 
intra- and interobserver variability is a common and well-
known shortcoming of the pathologist for both qualitative diag-
nosis (e.g. tumor subtyping) and quantitative tasks (e.g. mitotic 
count for tumor grading).4,6

Computer-aided diagnosis (CAD) and automatic image 
analysis using software solutions can be considered comple-
mentary to the pathologist workflow. The addition of these 
technologies so far is most helpful for improving the quality of 
repetitive quantitative tasks in histopathology and cytol-
ogy.1,4,5,20,26,30 With the availability of advanced deep learning 
methods, it is now possible to train algorithms that can 

identify more complex structures such as primary tumors and 
metastases in breast cancer (human pathology),11,27 detect 
mitotic figures (both human and veterinary pathology),5,23 
classify round cell tumors (veterinary pathology),25 classify 
and identify of melanocytic lesions (human pathology),21 and 
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Abstract
Microscopic evaluation of hematoxylin and eosin-stained slides is still the diagnostic gold standard for a variety of diseases, 
including neoplasms. Nevertheless, intra- and interrater variability are well documented among pathologists. So far, computer 
assistance via automated image analysis has shown potential to support pathologists in improving accuracy and reproducibility of 
quantitative tasks. In this proof of principle study, we describe a machine-learning-based algorithm for the automated diagnosis 
of 7 of the most common canine skin tumors: trichoblastoma, squamous cell carcinoma, peripheral nerve sheath tumor, 
melanoma, histiocytoma, mast cell tumor, and plasmacytoma. We selected, digitized, and annotated 350 hematoxylin and eosin-
stained slides (50 per tumor type) to create a database divided into training, n = 245 whole-slide images (WSIs), validation 
(n = 35 WSIs), and test sets (n = 70 WSIs). Full annotations included the 7 tumor classes and 6 normal skin structures. The 
data set was used to train a convolutional neural network (CNN) for the automatic segmentation of tumor and nontumor 
classes. Subsequently, the detected tumor regions were classified patch-wise into 1 of the 7 tumor classes. A majority of 
patches-approach led to a tumor classification accuracy of the network on the slide-level of 95% (133/140 WSIs), with a patch-
level precision of 85%. The same 140 WSIs were provided to 6 experienced pathologists for diagnosis, who achieved a similar 
slide-level accuracy of 98% (137/140 correct majority votes). Our results highlight the feasibility of artificial intelligence-based 
methods as a support tool in diagnostic oncologic pathology with future applications in other species and tumor types.
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quantify intracellular pigment in cytological slides (veterinary 
pathology).7,17,18

This study aimed at taking a first step toward creating an 
algorithm to automatically detect and classify common canine 
skin tumors.13,16,19 We hypothesize that the training of an artifi-
cial neural network using an appropriate number of well-anno-
tated digital images of canine cutaneous tumors will lead to a 
software solution that identifies and differentiates common 
canine cutaneous tumor types with a similar sensitivity and 
specificity as trained pathologists.

Material and Methods

Case Selection and Scanning

Surgical biopsies of 7 of the most frequent tumors in dogs were 
retrospectively selected from the histopathology archive of the 
Institute of Veterinary Pathology of the Freie Universität 
Berlin. The tumor types were trichoblastoma, squamous cell 
carcinoma (SCC), melanoma, peripheral nerve sheath tumor 
(PNST), mast cell tumor (MCT), plasmacytoma, and histiocy-
toma. Seventy cases per tumor were chosen with respect to 
typical histological features, acceptable state of preservation, 
sufficient histological perceptibility of cellular details, and 
staining quality (HE, total n = 490 slides). Melanoma slides 
were 45% heavily pigmented melanomas, 35% with less than 
50% pigment, and 20% amelanotic melanomas. In addition, 
18/70 (26%) melanomas were of dominant spindloid morphol-
ogy, 40/70 (57%) melanomas of dominant epithelioid morphol-
ogy, 4/70 (6%) of dominant balloon cell morphology, and 8/70 
(11%) with similar contribution of spindle and epithelioid cells.

All glass slides were digitized as whole slide images (WSI) 
using a linear scanner (ScanScope CS2, Leica) in 1 focal plane 
with default settings at a magnification of 400× (image resolu-
tion: 0.25 μm/pixel). WSI were viewed using ImageScope 
(Leica) during all phases of the project.

Data Sets

350 slides (50 of each tumor type) were randomly attributed to 
data set 1, which was used for training (n = 245 WSIs), valida-
tion (n = 35 WSIs), and testing (n = 70 WSIs) of the convolu-
tional neural network (CNN, method described below).29 The 
remaining 140 slides (20 slides per tumor type, data set 2) were 
used as a test set to compare the algorithm and the pathologists’ 
performance regarding a slide-level assessment of tumor type.

Annotations of Tissue Area and Tumors

Each slide of data set 1 was fully annotated using 6 classes of non-
neoplastic structures (epidermis, dermis, subcutis, inflammation-
necrosis, bone, and cartilage) and 7 classes of neoplastic structures 
(trichoblastoma, SCC, melanoma, PNST, MCT, plasmacytoma, 
and histiocytoma) (Supplemental Table S1) by 3 independent 
annotators.29 Annotations were performed in SlideRunner,3 a soft-
ware for annotations on WSIs. Using the polygon tool, each area 

of interest was surrounded with a thin line, from point to point 
until it was completely delimited.

In total, 12,424 annotations were made, with an annotation 
area of 76,118.05 mm2 (Supplemental Table S1).

Development of the Algorithm: Training  
and Testing

Technical method development was conducted at the Pattern 
Recognition Lab at the Friedrich-Alexander-Universität 
Erlangen-Nürnberg in close collaboration with the medical 
experts at the Freie Universität Berlin.29

A semantic segmentation algorithm was trained to distin-
guish between background, nontumoral skin structures (epider-
mis, dermis, subcutis, and inflammation combined with 
necrosis), and tumor (regardless of tumor type). For segmenta-
tion, a UNet22 architecture with a ResNet1814 backbone pre-
trained on ImageNet24 was used. The network was trained with 
image patches sized 512 × 512 pixels and a resolution of 4.0 
μm/pixel. For additional implementation details we refer to the 
work of Wilm et  al.20 Due to high quantitative (area) class-
imbalances, an adaptive sampling strategy was used. Initially, 
10 patches per slide were sampled uniformly across all annota-
tion classes, resulting in 2,450 training patches. These were 
used to train the network for 1 epoch. Then, the network perfor-
mance was evaluated on 350 validation patches (10 per WSI) 
sampled in the same fashion. Afterwards, the probability of 
sampling patches from a class with a low validation perfor-
mance was increased, whilst high-performing classes were 
under-sampled. Using this adaptive sampling scheme, the 
model was explicitly trained on classes facing most difficulties, 
aiming for faster convergence of the model training. The model 
was trained for 100 epochs with a maximal learning rate of 
10-4 and a batch size of 4. As loss function, a combination of 
cross-entropy and Dice loss was used.

In a second step, a tumor type classification network was 
trained to distinguish between the 7 tumor types. The same data 
set split as used for training the segmentation network was 
used, resulting in 35 training WSIs per tumor type. Due to the 
high morphological resemblance of round-cell tumors, which 
might only be distinguishable at a high image resolution, the 
classification network was trained on patches at the original 
resolution of 0.25 μm/pixel. To cover as much context as pos-
sible, the input size of the model was increased to 1024 × 1024 
pixels. An EfficientNet-B531 based classification architecture 
pretrained on ImageNet24 was used. For each epoch, 10 patches 
per slide were sampled, ensuring that each tumor was repre-
sented equally and avoiding class-imbalances across all tumor 
types. The network was additionally trained to predict a “non-
neoplastic” class, for which patches from all remaining annota-
tion classes (epidermis, dermis, subcutis, and inflammation 
combined with necrosis) were used. A patch was only used for 
training the classification network if at least 90% of the pixels 
were annotated as the sampled class. A batch size of 4 and a 
maximal learning rate of 103 were used to train the network for 
100 epochs which ensured convergence of the training. For 
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optimization, the cross-entropy loss and the Adam optimizer 
were used.

Fig. 1 visualizes the WSI inference pipeline. A slide was 
first segmented into 6 classes using the segmentation network. 
Afterwards, regions segmented as tumors were classified into 1 
of the 7 tumor types. For this, the predicted tumor region was 
upscaled from the segmentation resolution of 4 μm/pixel to the 
classification resolution of 0.25 μm/pixel. Then, the tumor 
region was divided into patches sized 1024 × 1024 pixels, 
which were only passed on to the classification network if they 
were completely segmented as tumor. Each patch then obtained 
a classification label by the network. All patches classified as 
nonneoplastic tissue were excluded, while all remaining patch 
classifications were combined to a slide classification label 
using majority voting.

In the same way, the algorithm was run on the second data 
set, which did not contain pixel-level annotations, only hidden 
diagnostic labels for each WSI.

Pathologist Consensus Diagnoses

Six experienced pathologists (different from the ground truth 
pathologists) were asked to provide a primary diagnosis and 2 
differential diagnoses for the second data set, which contains 
140 WSIs (20 per tumor type). For each of the 3 diagnoses, the 

pathologists had to provide a value of the experienced cer-
tainty/confidence level (possible range 0.01–0.98, sum of the 3 
values had to be 1.0, primary diagnosis had to be associated 
with the highest confidence level). The diagnoses were subse-
quently ranked by the confidence level value in the following 
order: primary diagnosis, first differential diagnosis, and sec-
ond differential diagnosis.

For the consensus diagnosis of the pathologist group, a sim-
ple majority vote was calculated. The tumor type with the high-
est number of votes was defined as primary consensus 
diagnosis. First and second differential diagnoses were defined 
accordingly. In the case of a draw, the tumor type with the high-
est average confidence level was selected. A tumor was thus 
able to receive a maximum of 20/20 correct diagnoses (accord-
ing to the ground truth) in 1 tumor group.

To display the variation in the strength of the consensus for 
the different tumor types, an accumulated decimal consensus 
level (decimal consensus) per tumor and accumulated per 
tumor group was calculated. For example, if 4/6 pathologists 
chose the final consensus diagnosis and 2/6 chose another 
tumor type on slide 1 of the respective tumor group, the deci-
mal consensus resulted in 4.0 for this tumor (range 0.0–6.0). If 
for slide 2 of this tumor group 5/6 pathologists chose the final 
primary diagnosis and 1/6 pathologists chose a different diag-
nosis, the decimal consensus for this slide would be 5.0 and the 

Figure 1.  Pipeline for the tissue segmentation and tumor classification algorithms. For training of the algorithm, whole slide images (WSI, 
tumor [all classes] and nontumor areas) of the training data set were cut into smaller patches and provided to a first artificial neuronal 
network (UNet), which was developed to segment tumor from nontumor areas for reduction of WSI complexity. Subsequently, segments 
classified as “tumor” were divided into the 7 tumor classes to train a second neuronal network (EfficientNet) for tumor classification. Both 
algorithms were finally tested on a validation set of 20 tumors. MCT, mast cell tumor; SCC, squamous cell carcinoma; PNST, peripheral 
nerve sheath tumor.
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accumulated consensus level for the overall tumor type would 
be 4.5, sum of (4 + 5) / 2.

Statistical Analysis

All statistical analyses were performed using SPSS (v28) or 
customized software solutions programmed by A.B. Slide-level 
recall (sensitivity) was defined as the sum of true positive con-
sensus or algorithmic diagnosis over the sum of true-positive 
and false-negatives diagnoses (consensus or algorithm) in all 
slides of 1 tumor type. For patch-level recall, the percentage of 
correctly classified patches (true positive) by the algorithm over 
the sum of percentage of true-positively and false-negatively 
diagnosed patches in all cases of 1 tumor type was used.

Slide-level precision (positive predictive value) was defined 
as the sum of true positive diagnoses (consensus or algorithm) 
over the sum of true- and false-positive diagnoses. Patch-level 
precision was defined as the percentage of correctly algorith-
mically classified patches over the sum of true-positively and 
false-negatively diagnosed patches in all cases of 1 tumor type.

F1 score (a measure of classification accuracy) is defined as 
the harmonic mean of precision and recall considering false-
negatives and false-positives for algorithmic and pathologists’ 
diagnoses. For algorithmic diagnosis only the first 3 algorithm 
classifications with the highest number of associated patches in 
the respective were considered.

The average confidence level of the pathologists (range 
0.01–0.98 per tumor, total 1.0) of the 3 diagnoses of the patholo-
gists and the percentage of the 3 top patch diagnoses of the algo-
rithm, respectively, per tumor were used to perform a principal 
component analysis (PCA).24,25,31 Two separate analyses were 
performed, one for the pathologists and one for the algorithm. 
Biplots were generated to show how similar pathologists appre-
ciated single tumors within the tumor classes (small/dense clus-
ters meaning high similarity) and between the 7 tumor classes 
(close or overlapping clusters meaning high similarity of 2 
tumor clusters). For the algorithm biplot, small/dense clusters 
reflect a similar distribution of patch diagnoses in the 20 cases 
of 1 class, while close or overlapping clusters reflect overlap-
ping similar single patch diagnosis distributions between tumor 
classes. Biplots were created using the package ggbiplot (ver-
sion 0.55) in R version 4.1.3 (R foundation Vienna).

For the visualization and evaluation of the model perfor-
mance and its comparison with the pathologists’ responses, 
confusion matrices were created. Confusion matrix (CM) on 
the slide-level diagnosis for algorithmic and pathologist’s diag-
nosis and on patch-level diagnosis for algorithmic diagnosis 
were calculated.

Immunohistochemistry

To confirm the cases in our database and determine their indi-
vidual ground truth, a conventional immunohistochemistry 
analysis (IHC) analysis was performed for selected cases. The 
following antibodies were used: Melan-A (Dianova, A103) 
monoclonal mouse for melanoma10 in a 1:300 dilution. 

CD79acy monoclonal mouse anti-human for plasmacytoma 
(Dako, HM57) in a 1:60 dilution. CK10 (Abcam, EP1607IHCY) 
monoclonal rabbit for SCC in a 1:1000 dilution. E-Cadherin 
(Abcam, EP913[2]y) monoclonal rabbit for histiocytoma in a 
1:1000 dilution. Briefly, all slides were pretreated using citrate 
buffer and microwave and signals were visualized using the 3, 
3’-diaminobenzidine (DAB) method. As negative control, 
slides were treated with albumin containing distilled water 
instead of the primary antibodies. Archive morphologically 
prototypical tumor was used as positive controls. In the case of 
trichoblastoma and PNST, IHC was not necessary. In the case 
of MCT, IHC was not performed because the diagnosis was 
made by exclusion by comparison with the markers for round 
cell tumors (plasmacytoma and histiocytoma).

Results

Algorithmic Tissue Segmentation

The test split (n = 10 WSIs per tumor type, total 70 cases) of 
the fully annotated data set 1 was used to evaluate the algo-
rithm performance in segmenting tumor and nontumor classes.

Algorithmic segmentation of tumor from all other tissue 
classes had the highest precision of 95% but the lowest recall of 
66% (F1 score 0.78, Supplemental Table 2). Thus, nontumor 
areas were more often diagnosed as tumor than tumor areas as 
nontumor areas. Subcutis was segmented with an 85% preci-
sion (F1 score 0.85), followed by dermis (84%, F1 score 0.76) 
and epidermis (79%, F1 score 0.87). The class with the lowest 
precision was inflammation/necrosis (I/N) with a 46% preci-
sion (F1 score 0.62). The confusion of this class was mainly 
with tumor class (false-positive tumor diagnosis in 26% of all 
I/N patches. I/N also had overlaps with dermis (15%) and sub-
cutis (11%), but rarely with epidermis (2%).

Tumor Classification—Algorithmic Versus  
Human Consensus Diagnosis

Automated algorithmic tumor classification was performed on 
the nonannotated data set 2 (n = 140 WSIs, 20 per tumor type) 
and later compared with the pathologist consensus. The algo-
rithm pipeline depicted in Fig. 1 resulted in multiple patch pre-
dictions per WSI (Fig. 2). To convert the patch-wise classifications 
into a main diagnosis and 2 differential diagnoses per tumor 
case, a simple ranking of the absolute patch number associated 
with the respective tumor class was performed. The tumor class 
with the highest number of associated patches in 1 WSI was 
defined as the primary diagnosis. The differential diagnoses 1 
and 2 were identified accordingly. The remaining diagnoses on 
patch level were usually distributed over more than 3 types of 
tumors, but with low percentages.

A diagnosis on the slide-level was a majority vote by the 
pathologists or by the class with the highest number of algo-
rithmic assigned patches. With this approach the performance 
of the pathologist group and the algorithm were compared on 
data set 2 (20 WSI per tumor type).
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The algorithm correctly classified 133/140 cases (95%). 
The consensus diagnosis of the pathologists classified 137/140 
cases (98%) correctly with a total decimal consensus of 5.8/6 
correct answers. Comparison of the median F1 score for tricho-
blastoma (pathologists: 1.00, algorithmic: 0.98), SCC (patholo-
gists: 1.99, algorithmic: 0.98), PNST (pathologists: 0.98, 
algorithmic: 0.98), melanoma (pathologists: 0.97, algorithmic: 
0.97), and mast cell tumor (pathologists: 0.95, algorithmic: 
0.95) diagnosis by pathologists’ consensus and algorithmic 
diagnosis found similar high scores (Fig. 3, Table 1). Two of 
the round cell tumors, histiocytoma (pathologists: 0.89, algo-
rithmic: 0.89) and plasmacytoma (pathologists: 0.83, algorith-
mic: 0.84), were tumors with the lowest F1 score for both 
pathologists and the algorithm.

Confusion matrix analysis (slide-level diagnosis, Table 2) 
showed that pathologists misinterpreted 2 melanoma cases as 
PNST or SCC, respectively, and 1 plasmacytoma as MCT 
(Table 2B). Similarly, the algorithmic diagnosis misinterpreted 
1 melanoma as PNST. Two SCC were misinterpreted as 

plasmacytoma, mainly because of the strong inflammation in 
these tumors (Fig. 4). Two plasmacytomas were misinter-
preted as melanoma or SCC and thus not as expected as a 
round cell tumor differential diagnosis like histiocytoma or 
MCT (Table 2A).

Confusion matrix analysis on the patch-level (percentage of 
correctly/incorrectly classified patches, Table 3) showed that 
between 70% (SCC) and 95% (MCT) of the tumor patches 
(average over all tumor classes 85%) were correctly classified. 
The falsely classified patches were rather evenly distributed 
over the other, wrong, tumor classes. Exceptions with an accu-
mulation of wrong classifications in 1 class were 12% of plas-
macytoma patches classified as histiocytoma, 9% of 
histiocytoma patches classified as MCT and 9% of SCC patches 
classified as MCT areas.

PCA of the 3 differential consensus diagnoses by the pathol-
ogists and their associated average confidence level found 
invariably high confidence levels of the pathologist for their 
tumor diagnosis (dense/small clusters) (Fig. 5). As expected, 

Figure 2.  Automatic classification of a histiocytoma using a machine learning algorithm. The majority of patches are correctly classified 
as histiocytoma (blue overlay). However, approximately 22% of the tumor patches were classified as squamous cell carcinoma (SCC) (red 
overlay), which are mostly superficially located fragments of hyperplastic epidermis. Whole slide image, hematoxylin and eosin. MCT, mast 
cell tumor; PNST, peripheral nerve sheath tumor.
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the round cell tumors plasmacytoma, histiocytoma and MCT 
were appreciated as similar to each other (clusters close to each 
other or overlapping) but very dissimilar from the other tumors 
(distant from the other clusters and long vector distance). 

Similarly expected, the epithelial tumors SCC and trichoblas-
toma were appreciated as similar to each other but very dis-
similar from the other tumors. The pathologists were thus 
mostly very confident in their diagnosis and found round cell 
tumors as most similar.

PCA of the 3 algorithmic diagnoses using the ranked 3 
tumor classes with the highest patch number and the portion of 
different patch classes in each slide found some similar but also 
different results compared with the human consensus (Fig. 5). 
In agreement with the human consensus, the 2 round cell tumor 
clusters plasmacytoma and histiocytoma were overlapping, 
thus appreciated as similar (Fig. 5). However, the third class of 
round cell tumors, MCT, was identified as clearly different 
from the other 2 round cell classes. Also, in contrast to the 
human diagnosis, trichoblastoma was recognized as not highly 
similar to the other epithelial tumor SCC. In general, for algo-
rithmic diagnoses the clusters areas were larger (less similarity 
= less dominance of 1 tumor class patch within the tumor area) 
and vectors were shorter (higher similarity between the tumor 
classes). Thus, although the algorithm mostly came to the same 
slide level diagnosis, the basis of this diagnosis (percentage of 

Figure 3.  Overview of recall (sensitivity), precision (positive predictive value), and F1 score of the individual diagnoses of the pathologists 
and algorithm by tumor type. The median of the pathologists is shown as a point; the error bars show the range between all pathologists, 
from the minimum (0.7) to the maximum scored (1.0). MCT, mast cell tumor; PNST, peripheral nerve sheath tumor; SCC, squamous cell 
carcinoma.

Table 1.  Comparison of the combination of recall and precision 
(F1 score) with respect to the pathologists’ consensus and the 
algorithm classification.

Tumor Type

F1 Score Median of 6 
Pathologists’

Median (Range) F1 Score Algorithm

Histiocytoma 0.90 (0.789–0.976) 0.89
MCT 0.95 (0.905–0.976) 0.95
Melanoma 0.97 (0.900–0.974) 0.97
Plasmacytoma 0.83 (0.780–0.950) 0.84
PNST 0.98 (0.976–1.000) 0.98
SCC 0.98 (0.976–1.000) 0.95
Trichoblastoma 1.00 (0.974–1.000) 0.98

Abbreviations: MCT, mast cell tumor; PNST, peripheral nerve sheath tumor; 
SCC, squamous cell carcinoma.
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correct positive patches) was more diverse than the confidence 
levels of the pathologists.

However, comparison of pathologist confidence level in the 
primary correct diagnosis with the portion of algorithmically 
correctly diagnosed patches (according to the ground truth) 
found a similar variation for the different tumor classes, except 
for SCC (Table 4). Melanoma, PNST, trichoblastoma, and 
MCT showed both high confidence levels (≅0.9) and a high 
portion (⪆0.9) of correctly classified patches.

Discussion

This study aimed to develop of a machine-learning based algo-
rithm that is able to diagnose the most common canine skin with 
a similar accuracy as experienced veterinary pathologists. 
Challenging 6 pathologists and the algorithm with 140 cases of 7 
different tumor classes confirmed that the developed algorithm 
diagnosed 95% of the cases correctly, which was only 3% less 
accurate than 98% correct consensus (majority votes) diagnoses 
by the pathologists. The algorithm, therefore, showed a mildly 
lower accuracy but was still successful on a very high level.6

Comparison of the algorithmic diagnoses with the human 
diagnoses is not straightforward. Both are based on the ranking 
of the 3 dominant diagnoses, but also on the subjective confi-
dence level (in the case of humans) with a winner-takes-all 
approach, whereas in the case of the algorithm, it is based on a 
majority vote over the percentage of patches identified on the 

slides. However, there are some correlations between the 
human consensus and algorithmic diagnosis, which may give 
hints on the way the algorithm but also the human observer 
comes to a diagnosis.

Assuming that a lower portion of patches of the primary/
correct tumor class indicates “uncertainty/low confidence” of 
the algorithm, a rather artificial but interesting comparison of 
the human with the algorithm is possible (besides the pure per-
centage of correct whole slide level diagnoses).

In general, a major difference between the human and the 
algorithm, was a less “confident” diagnosis by the algorithm as 
is indicated principal component analysis (Fig. 5). Furthermore, 
while all pathologists agree that epithelial tumors (/round cell 
tumors) look more similar to each other than to round cell 
tumors (/epithelial tumors), algorithmic analysis did not com-
pletely come to the same conclusion. While the round cell 
tumors plasmacytoma and histiocytoma were appreciated as 
similar, the round cell tumor type “mast cell tumor” was appre-
ciated as more similar to trichoblastoma than to the other round 
cells by the algorithm, which is not fully understandable from 
a human point of view. Also, the epithelial tumor SCC was 
found more similar to the spindle cell tumor PNST and the neu-
roectodermal tumor melanoma than to the other epithelial 
tumor, trichoblastoma, by the algorithm. This could be 
explained by the histological complexity of SCC of tumor, with 
the presence of inflammation and desmoplasia, in different 
degrees of differentiation.8

Table 2.  Confusion matrix on the slide level of the algorithm (A) and the pathologists (B) against the ground truth (number of cases with 
the respective diagnosis).

A—Algorithm

Algorithm Versus 
Ground Truth Melanoma Plasmacytoma MCT PNST SCC Trichoblastoma Histiocytoma

Melanoma 19 0 0 1 0 0 0
Plasmacytoma 1 18 0 0 1 0 0
MCT 0 0 19 0 1 0 0
PNST 0 0 0 20 0 0 0
SCC 0 2 0 0 18 0 0
Trichoblastoma 0 0 0 0 0 20 0
Histiocytoma 0 1 0 0 0 0 19

B—Pathologist’s Consensus

Pathologists
Ground Truth Melanoma Plasmacytoma MCT PNST SCC Trichoblastoma Histiocytoma

Melanoma 18 0 0 1 1 0 0
Plasmacytoma 0 19 1 0 0 0 0
MCT 0 0 20 0 0 0 0
PNST 0 0 0 20 0 0 0
SCC 0 0 0 0 20 0 0
Trichoblastoma 0 0 0 0 0 20 0
Histiocytoma 0 0 0 0 0 0 20

Abbreviations: MCT, mast cell tumor; PNST, peripheral nerve sheath tumor; SCC, squamous cell carcinoma.
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There may be 2 reasons for this discrepancy between the digi-
tal and the human diagnostician. First, cognitively/psychologi-
cally, humans may overestimate their confidence levels once 
they decide for a primary diagnosis and thus forget potential 
doubts on the way to the diagnosis.6,12 In contrast, the patch dis-
tribution found by the algorithm is objective15 and not overwrit-
ten postdiagnosis by a final subjective confidence level. Most 
probably, the human observer will also find large areas in typical 

tumors that are not typical and diagnostic (e.g. inflammation, 
necrosis, desmoplasia, and fibrosis). However, by conscious 
decision or due to a cognitive “tunnel vision/anchoring” effect, 
the human seems to ignore these areas and only focus on the 
areas relevant for the final diagnosis.2 This hypothesis is cur-
rently being investigated by our group in an independent study.

Second, the algorithm seems to base diagnostic decisions 
for epithelial or round cell tumors on other morphologic 

Figure 4.  Automatic classification of a squamous cell carcinoma (SCC). Highly inflamed areas in the SCC (red) are (mis)interpreted as 
plasmacytoma (green) or occasionally histiocytoma (blue) due to severe chronic inflammation of the tumor. Whole slide image, hematoxylin 
and eosin. MCT, mast cell tumor; PNST, peripheral nerve sheath tumor.



Fragoso-Garcia et al	 873

features than the human. The general roundish or polygonal or 
spindloid cell shape may be less important for digital algorith-
mic decisions than other, so far unknown, features (nuclear 
shape, staining intensity, morphology of the stroma). Methods 
of explainable AI, indicating areas with relevant features for 

the algorithm, may help to identify and translate these features 
for human cognition.9

Nevertheless, as shown in Table 3, tumor types with a lower 
portion of digitally diagnosed correct patches associated with 
the ground truth tumor class were also associated with a lower 

Table 3.  Confusion matrix of the algorithm’s predictions at the patch level (percentage of patches with the correct diagnosis).

Algorithm Versus Ground Truth Melanoma Plasmacytoma MCT PNST SCC Trichoblastoma Histiocytoma

Melanoma 0.91 0.02 0.00 0.02 0.04 0.02 0.00
Plasmacytoma 0.05 0.75 0.01 0.01 0.06 0.01 0.05
MCT 0.02 0.03 0.95 0.02 0.09 0.00 0.09
PNST 0.00 0.04 0.01 0.91 0.07 0.00 0.02
SCC 0.02 0.03 0.00 0.03 0.70 0.02 0.03
Trichoblastoma 0.00 0.02 0.00 0.01 0.01 0.94 0.01
Histiocytoma 0.00 0.12 0.00 0.01 0.03 0.00 0.80
Precision 0.91 0.75 0.95 0.91 0.70 0.94 0.80
Recall 0.90 0.79 0.80 0.86 0.85 0.94 0.83
F1 score 0.91 0.77 0.87 0.88 0.77 0.94 0.81

Values < 0.01 are presented as 0.00.
Abbreviations: MCT, mast cell tumor; PNST, peripheral nerve sheath tumor; SCC, squamous cell carcinoma.

Figure 5.  Biplot of the principal component analysis of the top 3 diagnoses for all tumors. (a) Distribution of algorithm classification 
regarding the tumor type based on the patch-level diagnosis percentages. (b) Distribution of pathologists’ consensus based on their 
combined differential diagnosis certainty estimates. Each diagnosis (classification regarding the algorithm and diagnosis consensus regarding 
the pathologists) is visualized as a point, with color denoting its tumor type (n = 140 whole slide images). The denser the points are 
arranged (delineated areas) the higher the appreciated similarity of the tumors. In addition, clusters close to each other or overlapping 
indicate a close appreciated similarity between the 2 tumor classes. PNST, peripheral nerve sheath tumor; MCT, mast cell tumor; SCC, 
squamous cell carcinoma.
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confidence in the primary decision by the human observer. This 
could indicate that there may be parallels in the decision pro-
cess of the human mind similar to those of the algorithmic 
patch-wise decision.

The only exception from this generalization was the SCC 
class. Here, the algorithm had lower SCC patch portions (0.7) 
than the confidence of the pathologists (0.95). Thus, 30% of the 
tumor area was classified into other classes, mainly plasmacy-
toma, PNST, and MCT. Given the frequently observed inflam-
mation, necrosis and the tumor stroma in SCC, the 30% of 
patches may thus not be misdiagnosed but indicate the inhomo-
geneity of SCC.19

This exemplifies that in our 2-step segmentation-classifica-
tion approach, simple majority decision for tumor subtypes relies 
on a very precise preselection of tumor areas. Otherwise, auto-
matic tumor classification, which is built to force each patch pre-
sented into 1 of the 7 tumor classes independent from its true 
nature, may lead to a wrong diagnosis. For instance, strong 
inflammation in an epithelial or spindle cell tumor could lead to 
a misclassification and confusion with any of the round cell 
tumors. In a follow-up project we are developing a broad data set 
of possible inflammatory lesions in canine skin to increase the 
segmentation accuracy of inflammation versus tumor and to fur-
ther classify different inflammation types in the skin.

Alternatively, a 1-step approach containing all potential 
diagnoses in a biopsy may prevent the consequential error of 
imperfect segmentation on classification. However, this 
requires very large training data sets that contain either all pos-
sible histomorphological skin diagnoses, which will prove dif-
ficult given the complexity of dermatologic pathology or it has 
to identify at least all potential morphologic features (all pos-
sible inflammatory cells, all forms of necrosis, degeneration, 
etc.). In this case, automatic diagnosis may be presented in 
(quantitative) patterns of features present that may be specific 
for a certain inflammatory, degenerative, or neoplastic disease. 
The resulting set of identified features then must be evaluated 
and weighed by a responsible pathologist or automatically 
according to the clinical data/questions and the prognostic/

therapeutic relevance of the different features. Weighing of fea-
tures/subdiagnoses will be highly relevant, to avoid, for 
instance, missing a small area of auricular SCC in a large area 
of highly inflamed auricular skin.

In conclusion, this study prototypically shows that a 
machine-learning-based algorithm is able to segment tumor 
from nontumor areas and subsequently classifies a small subset 
of canine skin tumors with similar, although minimally lower, 
accuracy compared with the consensus of 6 experienced 
pathologists. Statistical analysis found differences in the appre-
ciated similarity of tumor types by the algorithm and the 
pathologists, which points toward different relevant morpho-
logic features for diagnosis used by the algorithm. However, 
the percentage of patches correctly algorithmically classified in 
a tumor correlated coarsely with the subjective confidence 
level of confidence of the pathologists (for a tumor), indicating 
potentially similar “cognitive” processes in both diagnostic 
approaches. A majority-vote for patch number-based algorith-
mic decisions for final diagnosis proved successful in the cur-
rent approach but the decision process may have to be refined 
if automatic diagnosis is challenged with a larger set of poten-
tial diagnoses and less prototypical biopsies.
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