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Review 

AP-1 transcription factors in cytotoxic lymphocyte 
development and antitumor immunity☆ 

Diana Schnoegl1,2, Angela Hiesinger3,  
Nicholas D Huntington2 and Dagmar Gotthardt3   

The proper functioning of cytotoxic lymphocytes, such as 
natural killer and CD8+ T cells, is essential for effective cancer- 
immunity and immunotherapy responses. The differentiation of 
these cells is controlled by several transcription factors (TFs), 
including members of the activator protein (AP)-1 family. The 
activity of AP-1 family members is regulated by various immune 
signaling pathways, which can be triggered by activating or 
inhibitory receptors as well as cytokines. The target genes 
controlled by AP-1 TFs are central to generate immunity to 
pathogens or malignancies. Here, we provide an overview of 
the current understanding of how AP-1 TFs regulate cytotoxic 
lymphocytes. 
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Activator protein-1 transcription factors 
The activator protein (AP)-1 family consists of Jun 
(c-Jun, JunB, and JunD), Fos (c-Fos, FosB, Fra-1, 

and Fra-2), Maf (c-Maf, MafB, MafA, Mafg/f/k, and Nrl), 
and ATF (activating transcription factor) (ATF2, LRF1/ 
ATF3, BATF, BATF2, BATF3, JDP1, and JDP2) [1]. 
AP-1 transcription factors (TFs) are basic region leukine 
zippers that act as dimers: Jun proteins are able to form 
homo- and heterodimers, while Fos and ATF proteins 
cannot homodimerize and require dimerization with Jun 
proteins. AP-1 TFs are rapidly transcribed in response to 
extrinsic stimuli and regulate various cellular processes, 
including differentiation, proliferation, transformation, 
migration, inflammation, or apoptosis. The composition 
of AP-1 dimers determines their specificity and whether 
target gene expression is positively or negatively regu-
lated [1]. While AP-1 TFs are commonly associated with 
tumor promotion, also tumor-suppressive functions have 
been reported [2]. Similarly, anti- and pro-inflammatory 
effects of AP-1 members are known, and they can act 
upstream and downstream of inflammatory mediators. 
Despite their known role in regulating inflammation and 
function of several immune cell types, the functions of 
AP-1 TFs in natural killer (NK) and (chimeric antigen 
receptor [CAR])-T cells are incompletely understood. 

Activator protein-1 in natural killer cells 
NK cells are innate lymphocytes, essential to kill infected 
or malignant cells. Their function is regulated by activating 
and inhibiting receptors and cytokines. Tight regulation of 
several TFs, including the AP-1 family, is essential for NK 
cell development and function. In unstimulated human 
NK cells, c-Jun and JunD are highly expressed, but AP-1 
expression changes upon stimulation [3]. After NK cell 
activation by IL-2, c-Jun- and JunD expression remains 
unaltered, but c-Fos and JunB expression and DNA- 
binding activity increases [4]. Additionally, TNF-α (tumor 
necrosis factor alpha), an important cytokine for prolifera-
tion and function of NK cells [5], exerts its effects through 
AP-1 and MAPK (Mitogen-activated protein kinase) 
pathways [6]. NK cell activation via CD16 results in ele-
vated levels of c-Fos [3], indicating an important role of 
AP-1 in regulating NK cell function. Current knowledge is 
summarized below and in Figure 1.    
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In Fra-1-overexpressing mice, numbers of liver NK cells 
are significantly decreased [7]. Additionally, precise reg-
ulation of Fra-2 is particularly important as ectopic over-
expression leads to systemic NK cell deficiency in mice. 
Conversely, Fra-2 silencing in human CD34+ cells results 
in decreased NK cell numbers following in vitro differ-
entiation [8,9]. In IL-2-stimulated CD4+ T cells, Fra-2 is 
a STAT5 target [10], which is also essential for NK cell 
development, downstream of IL-7 and IL-15 [11]. This 
suggests a possible STAT5–Fra-2 axis regulating NK cell 
development and/or survival. Alternatively, Fra-2 can be 
activated by Notch signaling [12], which is essential for 
transition from common lymphoid progenitors to pre-NK 
cells. Global Fra-2 overexpression leads to a cell-intrinsic 
defect at this developmental stage due to a down-
regulation of E4bp4/Nfil3 (Nuclear Factor, Interleukin 3 
Regulated) [8] — an essential TF for NK cell develop-
ment [13]. The effects of Fra-2 in mature NK cells and 
their function have not yet been studied. 

Enhancer of zeste homolog 2 (EZH2)-deficient mice, 
lacking a histone methyltransferase, associated with si-
lenced chromatin [14], have increased numbers of NK 
cells and their precursors [15]. The maturation process of 
these cells is however impaired. These EZH2-deficient 
NK cells express lower levels of Fos, Jun, JunB and 
JunD, suggesting that EZH2 deletion affects NK cell 
maturation and function through AP-1 attenuation [16]. 
In murine NK cells, AP-1 expression is induced by the 
family of Ikaros TFs (Ikzf) and mice lacking Ikzf-1 
display reduced levels of all AP-1 components, leading 
to defective IL-15 signaling in NK cells. Additionally, 
Ikzf-3 knockout further decreases AP-1 levels and leads 
to a complete absence of peripheral NK cells, high-
lighting the importance of AP-1 in IL-15-mediated reg-
ulation of NK cell survival and function [17]. In contrast, 
the AP-1 repressor BTB Domain And CNC Homolog 2 
(BACH2) is highly expressed in immature NK cells in 
mouse bone marrow and spleen and decreases during 
final maturation [18]. Similar findings have been re-
ported in human NK cells, where BACH2-expression 
levels are higher in immature CD56bright than in mature 
CD56dim cells [19]. In mice, both global BACH2 dele-
tion and its loss in Ncr1-expressing cells, leads to de-
velopment of more mature NK cells in the spleen and 
lung along with increased granzyme-B expression. 
BACH2-deficient NK cells also exhibit elevated levels 
of Inteferon (IFN)-γ and granzyme B following IL-15 
stimulation, but this effect diminishes upon additional 
stimulation with IL-12 and IL-18 [20]. 

AP-1 factors play a critical role in the regulation of NK 
cell surface receptor expression. C-Jun or c-Fos over-
expression enhances the levels of the activating receptor 
NKG2D in NK and T cells [24], while the inhibitory 
receptor LILRB1 is induced by JunD [25]. The receptor 
2B4/CD244 has dual roles: in human NK cells, it is acti-
vating, leading to increased cytotoxicity and IFN-γ pro-
duction, but in mice, it triggers an inhibitory effect  
[21,22]. In a human NK cell line, its expression is induced 
through Ets-1/AP-1 interactions [22]. Likewise, in human 
hepatocarcinoma cells, two different Ets-1/AP-1-binding 
sites have been identified on the promoter of the human- 
activating receptor DNAM-1/CD226. These binding sites 
provide separate regulatory mechanisms: at one site, 
transcriptional activity of a c-Jun/c-Fos dimer is enhanced 
by its interaction with Ets-1, while at the other site, Ets-1 
inhibits AP-1- dependent transcription by competing for 
the binding site [23]. This indicates a very fine- tuned and 
tight regulation of AP-1-induced target gene transcription. 

Mature NK cells have two important effector functions: 
cytotoxicity and the production of cytokines and chemo-
kines such as IFN-γ, TNF-α, or CXCL8 [26]. The roles 
of AP-1 factors in regulating NK cell cytokine production 
are not yet understood, but AP-1 factors regulate IFN-γ 
secretion in T cells [27]. It is of interest to study if there is 
a potential similar regulation in NK cells. 

TGF-β, an immunosuppressive cytokine, impairs NK 
cell cytotoxicity by suppressing activity of several TFs, 
including AP-1 activity [28]. As it has been suggested 
that TGF-β acts in feedback loops with AP-1 factors in 
epithelial cells and myofibroblasts, it would be of re-
levance to study a potential similar regulation in cyto-
toxic immune cells. 

The cytotoxic potential of NK cells is currently widely 
exploited in immunotherapy [29]. Clinical trials invol-
ving an IL-15-receptor agonist increased expansion and 
activation of NK cells and showed improvement of pa-
tients suffering from non-Hodgkin lymphoma. Notably, 
after the first dose, these NK cells exhibited already- 
elevated expression of Jun and Fos [30]. In a human NK 
cell line, cytotoxicity correlated with accumulation of 
JunB, FosB, and c-Fos and inhibitory receptor signaling 
impaired the activation of the AP-1 factors [31]. Ad-
ditionally, stimulation of NK cells with IL-2, protein- 
bound polysaccharide K, or tumor cells increased AP-1 
DNA-binding activity [32]. Interestingly, the granzyme- 
B promoter displays an AP-1- binding site [33]. 

AP-1 TFs affect NK cell development and function. Overexpression and silencing of Fra-2 lead to decreased NK cell numbers, potentially via STAT5 
and/or Notch signaling, leading to downregulation of NFIL3. Loss of EZH2 leads to decreased levels of AP-1 family members, resulting in elevated 
numbers of NK cells and their precursors, while the AP-1 antagonist, BACH2, restrains terminal NK cell maturation and leads to a higher abundance of 
immature NK cells.   
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NK cells are also the first defense in viral infections [34] 
and human cytomegalovirus (CMV) infection can trigger 
the generation of memory NK cells. A recent study re-
vealed the enriched presence of AP-1-binding motifs — 

particularly for Fos–JunB in memory NK cells [35]. Given 
that mice also acquire NK cell memory following CMV 
infection [36], and enrichment of Jun- binding sites in 
chromatin regions that are highly accessible in memory 

Figure 2  
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AP-1 regulating T- and CAR-T-cell development, function, and exhaustion. Development and polarization are driven by different AP-1 TFs: Fra-2 and 
JunB drive Th2 polarization, while BATF, BATF3, and BACH2 regulate the development of different CD8+ T-cell subsets. C-Fos and c-Jun can 
cooperate with NFAT TFs to induce cytokine production in activated T cells. C-Jun, Fra-2, and BACH2 play a protective role against exhaustion, 
whereas the role of BATF in exhaustion regulation remains uncertain due to conflicting findings.   
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CD8+ and NK cells [37], it is of interest to explore the 
role of AP-1 TFs in the establishment, maintenance, and 
functionality of memory NK cells. 

Activator protein-1 in T cells 
T cells develop in the thymus into regulatory, helper 
(CD4+), or cytotoxic (CD8+) T cells. The interactions 
between AP-1 and NFAT TFs play a significant role in 
the regulation of lineage-specific genes and T-cell dif-
ferentiation [38]. C-Jun and c-Fos cooperate with NFAT 
factors to induce cytokine expression in activated T 
cells. It has been hypothesized that NFAT TFs have 
different effects and target genes depending on the 
availability of AP-1 factors, thereby controlling T-cell 
development, function, and anergy [39]. 

AP-1 components, in particular JunB, accumulate in all 
subsets, but high transcriptional activity was only shown 

in Th2 cells [40]. Several studies have demonstrated that 
AP-1 factors function downstream of T cell receptor 
(TCR) signaling and drive CD8+ effector differentiation  
[41]. BATF (Basic leucine zipper transcription factor, 
ATF-like) is essential for the differentiation of CD8+ 
effector T cells, by promoting lineage- determining TFs, 
but represses effector molecules and BATF-deficient 
CD8+ T cells display defective proliferation and meta-
bolism [42]. In contrast, BATF3 promotes CD8+ T- cell 
survival and memory [43]. CD8+ T-cell memory can also 
be promoted by BACH2, acting via AP-1 attenuation, 
thereby preventing terminal effector differentiation [44]. 

In the context of chronic infections or cancer, c-Jun is 
downregulated in effector T cells. This is compensated 
by BATF upregulation, which is required for differ-
entiation and function of effector T cells [45]. However, 
BATF–IRF4 (Interferon Regulatory Factor 4) 

Figure 3  
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Shared and distinct effects of AP-1 in NK and (CAR)-T cells.   

AP1 factors in cytotoxic lymphocytes Schnoegl et al. 5 

www.sciencedirect.com Current Opinion in Immunology 2023, 85:102397 



interactions result in expression of exhaustion-associated 
genes [41,46]. Exhaustion as a consequence of prolonged 
antigen stimulation leads to transcriptional and epige-
netic alterations and reduced killing. Even at the initial 
stages of T-cell exhaustion, there is a decrease in chro-
matin accessibility in regions enriched with AP-1/ 
bZIP motifs, causing an imbalance of AP-1 and IRF 
factors and decreased gene expression [47]. In tumor- 
infiltrating exhausted T cells, these AP-1 motifs are not 
transcriptionally active, but activity can be restored by 
immunotherapeutic co-stimulation [48]. In contrast to 
BATF, Fra-2 overexpression prevents CD8+ T-cell ex-
haustion [49]. Similarly, AP-1 antagonism by BACH2 
overexpression enhanced the development of stem-like 
CD8+ T cells preventing their exhaustion [50]. It 
therefore seems conflicting that the TF EGR2 (Early 
Growth Response Protein) was reported to stabilize the 
phenotype of exhausted cells by repressing AP-1 [51]. 
This suggests different functions for different AP-1 
members and highlighting the complexity and im-
portance of AP-1 in regulation of T-cell development, 
survival, and function. 

CAR-T cells are engineered with synthetic receptors 
that empower them to eliminate cells expressing specific 
antigens. One of their major limitations in im-
munotherapy is exhaustion [52]. C-Jun-overexpressing 
CAR-T cells lead to exhaustion resistance and increased 
antitumor functions in multiple in vivo models [53]. Si-
milarly, BATF overexpression in CAR-T cells results in 
increased CAR-T function and survival and reduced 
exhaustion [47]. However, other studies reported a 
BATF-dependent upregulation of exhaustion genes and 
that BATF deletion improves tumor control [54]. These 
contradictory results underscore the significance of 
proper AP-1 regulation in tumor-controlling T cells. The 
effects of AP-1 TFs in T and CAR-T cells are depicted 
in Figure 2. 

Activator protein-1–STAT interactions 
The JAK-STAT (Januskinase-Signal Transducers and 
Activators of Transcription) pathway plays a central role 
in NK and T-cell development. AP-1 TFs can influence 
this signaling pathway on multiple levels. In cooperation 
with NFAT (nuclear factor of activated T-cells) TFs, 
AP-1 can trigger the production of STAT-activating cy-
tokines such as IL-2, IL-4, or IL-12 [55], which play an 
important role for NK or T-cell functions. Additionally, 
AP-1 transcription or DNA- binding activity can be in-
duced by STATs or their target genes. For instance, Fra- 
2 is a direct downstream target of STAT5 in IL-2-sti-
mulated T cells [10] and AP-1 TFs may potentially 
mediate different STAT5-dependent functions in NK 
cells. Furthermore, AP-1 activation in response to IFN-γ 
signaling is strictly dependent on STAT1 [56]. 

In activated NK cells, parallel enrichment of STAT and 
AP-1 motifs has been shown, suggesting direct interac-
tions of these TFs [57]. Similar findings have been re-
ported in colorectal carcinoma and hematopoietic 
malignancies, where STAT3 and c-Jun form a complex 
and jointly regulate the expression of their target genes  
[58]. As STAT3 can also regulate effector molecule ex-
pression in NK and T cells [59,60], it would be inter-
esting to evaluate if STAT3 and AP-1 might act together 
in the regulation of their responses. Understanding these 
complex interactions is important for modulating and 
fine-tuning NK and T cells in therapeutic settings. 

Conclusions and future directions 
Despite the similarities in their function and regulation, 
the effects of AP-1 TFs in NK and CD8+ cells are 
partially contrasting (Figure 3). The summarized litera-
ture also clearly indicates that our current knowledge in 
this area is strongly limited. Many conclusions have to be 
drawn from studies conducted in immortalized cell lines 
or other cell types, and genetically modified mice with 
global modifications. Additionally, numerous findings 
are based on indirect observations. As a result, the pre-
cise role of AP-1 in regulating these immune cells re-
mains incompletely understood. This underscores the 
need for further research to comprehensively grasp their 
involvement. Gaining a deeper comprehension of how 
the different AP-1 factors affect cytotoxic immune cells 
is essential for harnessing them as potential targets for 
therapeutic interventions. 
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