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Abstract
The current and cascading effects of global change challenges the interactions both between animal individuals (i.e. social 
and sexual behaviour) and the environment they inhabit. Amphibians are an ecologically diverse class with a wide range of 
social and sexual behaviours, making them a compelling model to understand the potential adaptations of animals faced with 
the effects of human-induced rapid environmental changes (HIREC). Poison frogs (Dendrobatoidea) are a particularly inter-
esting system, as they display diverse social behaviours that are shaped by conspecific and environmental interactions, thus 
offering a tractable system to investigate how closely related species may respond to the impacts of HIREC. Here, we discuss 
the potential impacts of global change on poison frog behaviour, and the future challenges this group may face in response 
to such change. We pay special attention to parental care and territoriality, which are emblematic of this clade, and consider 
how different species may flexibly respond and adapt to increasingly frequent and diverse anthropogenic stress. More specifi-
cally, we hypothesise that some parents may increase care (i.e. clutch attendance and distance travelled for tadpole transport) 
in HIREC scenarios and that species with more generalist oviposition and tadpole deposition behaviours may fare more 
positively than their less flexible counterparts; we predict that the latter may either face increased competition for resources 
limited by HIREC or will be forced to adapt and expand their natural preferences. Likewise, we hypothesise that human-
driven habitat alteration will disrupt the acoustic and visual communication systems due to increased noise pollution and/
or changes in the surrounding light environment. We highlight the need for more empirical research combining behavioural 
ecology and conservation to better predict species’ vulnerability to global change and efficiently focus conservation efforts.

Keywords HIREC · Communication · Behavioural plasticity · Parental care · Territoriality · Tadpoles

Introduction

Environmental changes, including shifting continents and 
climatic fluctuations, have been shown to prompt diverse 
responses in organisms across a wide range of taxa (Ricklefs  
and Schluter 1993; Rosenzweig 1995) throughout evolu-
tionary time. However, the unprecedented scale and pace 

of recent and current human-induced rapid environmental 
changes (HIREC), such as habitat destruction/fragmenta-
tion (Pimm and Raven 2000), climate change (Parmesan 
and Yohe 2003), and exposure to novel biotic (e.g. exotic 
species, pathogens, and parasites: Lockwood et al. 2013) 
and abiotic (e.g. environmental pollutants: Rohr et al. 2006) 
stressors, represent new challenges for many species which 
have not experienced such rapid changes in their evolution-
ary past (Palumbi 2001). The impact of HIREC on the natu-
ral world is colossal (Wake and Vredenburg 2008; Cowie 
et al. 2022), affecting the availability of important resources 
(i.e. food and shelter; Fahrig 2003), altering conspecific and 
heterospecific interactions (Tuomainen and Candolin 2011; 
Candolin and Wong 2012), and ultimately threatening many 
species and populations (Pimm and Raven 2000; Wake and 
Vredenburg 2008; Cowie et al. 2022).

For many animals, survival and reproduction in rapidly 
changing environments are expected to be shaped by the 
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plasticity of their behavioural responses (Hendry et al. 2008; 
Sih et al. 2011; Sih 2013; Wong and Candolin 2015). Some-
times, behavioural changes may be enough for an individual 
to adapt to new conditions or can provide additional time for 
genetic adaptation to occur (Pigliucci 2001). For example, 
great tits (Parus major) in urban environments have learnt 
to adjust their song frequency to avoid interference from city 
noise (Slabbekoorn and Peet 2003), while northern quolls 
(Dasyurus hallucatus) in Australia have learnt to avoid 
eating highly-toxic invasive cane toads (Rhinella marina) 
(Kelly and Phillips 2017). However, species can also show 
maladaptive responses in HIREC scenarios, such as sea 
turtle hatchlings following artificial light instead of natural 
cues (Tuxbury and Salmon 2005), or aquatic insects ovipos-
iting on asphalt or glass that resembles the surface of the 
water (Kriska et al. 1998, 2008), causing serious population 
declines (Tuomainen and Candolin 2011; Robertson et al. 
2013). In other cases, behavioural changes can determine 
which individuals will survive and reproduce under novel 
conditions, acting as a driving force in evolutionary pro-
cesses (West-Eberhard 2003; Crispo 2007; Tuomainen and 
Candolin 2011). Thus, changes in behaviour will directly 
influence how species evolve under HIREC.

While individual behavioural responses will affect popu-
lation dynamics on a local scale, the effect of HIREC on 
sociality and interspecific interactions has far-reaching 
ecological implications for broader community dynamics. 
Environmental changes can directly and indirectly influ-
ence the way in which individuals interact, not only with 
other species (e.g. predators and prey, hosts and parasites) 
but also with each other (Candolin and Wong 2012). Social 
interactions, ranging from choosing a mate to providing 
offspring with care, can be affected by HIREC in multiple 
ways (Croft et al. 2008). For example, ship noise reduces 
the ability of Lusitanian toadfish (Halobatrachus didacty-
lus) to detect conspecific acoustic signals, essential for mate 
attraction (Vasconcelos et al. 2007), while water turbidity 
reduces male-male competition in three-spined stickleback 
(Gasterosteus aculeatus), compromising the honesty of 
agonistic signals, which are relevant indicators of parent-
ing ability (Wong et al. 2007). Similarly, human disturbance 
can directly reduce the nest attendance of bearded vultures 
(Gypaetus barbatus), increasing the probability of breeding 
failure (Arroyo and Razin 2006).

Social interactions have a critical effect on individual fit-
ness (Allee et al. 1949) and, consequently, on population 
dynamics. Parental care, for example, is known to enhance 
the offspring’s fitness by increasing their survival, growth 
and/or quality, and, ultimately, their lifetime reproductive 
success (Royle et al. 2012). Despite the obvious benefits for 
the offspring, parental care comes at a cost to the caregiver 
in the form of energy expenditure, loss of mating opportuni-
ties, and increased predation risk while tending their young 

(Alonso-Alvarez et al. 2012). Thus, an individual’s invest-
ment in parental care depends on the value of their exist-
ing offspring in relation to future reproductive opportuni-
ties (Alonso-Alvarez et al. 2012; Royle et al. 2012). Under 
changing environmental conditions, both the energetic costs 
of care for the parents and the fitness benefits for the young 
could be altered, influencing population recruitment (Alonso-
Alvarez et al. 2012; Ratikainen et al. 2018). In the face of 
low resource availability, parents can, for instance, reduce 
their current investment into offspring with the expectation 
of better reproductive opportunities in the future (Winkler 
1987). This decline in care quality, in turn, can cause long-
term changes in the behaviour of the offspring, including 
aggressiveness and boldness (Armstrong 2019), cognition 
(Bredy et al. 2004), and F1’s parental behaviour (Gromov 
2009). Research conducted in songbirds, for example, has 
shown that nutritional stress during early development stages 
(when songbirds depend on their parents for food), negatively 
affects brain development and male song quality in adulthood 
(Nowicki et al. 2002). In rodents, offspring who are groomed 
less frequently during early postnatal periods exhibit lower 
spatial learning and memory in adulthood (Liu et al. 2000; 
Bredy et al. 2004). Decreased investment in the face of chal-
lenging environmental conditions is not the rule, however, as 
some parents appear to increase their workload in the face of 
sub-optimal conditions (Vincze et al. 2017). Ultimately, the 
adaptability of parental behaviour/cooperation appears to be 
the most accurate predictor of species successfully overcom-
ing the varied pressures of global change in the wild (Vincze 
et al. 2017).

Behavioural responses to global change largely dif-
fer between species. Amphibians are excellent models to 
study such responses owing to their broad range of social 
behaviours and their wide distribution across latitudes and 
climates, being found in all continents except Antarctica. 
Furthermore, their key position in trophic webs, their role 
as sentinel species and bioindicators of ecosystem health 
thanks to their sensitivity to environmental changes, and 
their dramatic decline around the globe (Hopkins 2007) 
make them a useful system to study the impact of human 
disturbances. In fact, amphibians are considered the most 
threatened vertebrate class on the planet (Stuart et al. 2004; 
Wake and Vredenburg 2008; Nori et al. 2015; IUCN 2020; 
Cordier et al. 2021), primarily due to habitat fragmentation/
destruction and the spread of a pathogenic fungus (Daszak 
et al. 2003; Pounds et al. 2006; Cordier et al. 2021).

One of the most emblematic and well-studied groups 
of amphibians showing complex and diverse social behav-
iours are Neotropical poison frogs (Dendrobatidae) and their 
closest relatives (Aromobatidae), altogether referred to as 
the superfamily Dendrobatoidea (Cope 1865; Grant et al. 
2006) and hereon referred to as ‘poison frogs’ for simplicity. 
Distributed from Nicaragua in Central America to Bolivia 
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in South America, poison frogs generally inhabit tropical 
rainforests (Summers and Tumulty 2014), often in areas that 
are under severe degradation, and exhibit a large diversity 
in mating systems, parental care strategies, and communica-
tion modalities (reviewed in Summers and Tumulty 2014). 
Males generally defend long-term territories from conspecif-
ics through so-called advertisement calls and, if necessary, 

physical combat (Fig. 1A; Pröhl 2005). Defending these 
territories is often crucial to male reproductive success, as 
courtship, mating, and oviposition take place therein (Pröhl 
2005). In most species, males perform parental care, which 
consists of clutch attendance and larval transport (Fig. 1B) 
from terrestrial oviposition sites (e.g. leaf litter and leaves 
on bushes) to water bodies such as streams, temporary 

Fig. 1  Poison frogs and their unique social behaviours may be impacted 
by global change. A Males of Dendrobates tinctorius engaged in physi-
cal combat, where often one male pushes, kicks, and gets on top of 
the other trying to press them against the substrate; B male Ameerega 
hahneli transporting his tadpoles (pointed at by the arrow) to a body of 
water; C tadpole (pointed at by the arrow) transport is done by females 
in Oophaga granulifera; D habitat disturbance can alter the way in 
which colours are perceived by con- and heterospecifics, as shown in O. 
pumilio, and thus affect communication systems; E males of D. tincto-
rius are in charge of clutch (pointed at by the arrow) attendance; F cli-
mate change can increase the risk of tadpole death (agonising tadpoles 

pointed at by the arrows) by desiccation of nurseries; G Ranitomeya 
ventrimaculata parents (pointed at by the dashed arrows) lay clutches 
(pointed at by the solid arrow) in bromeliads occupied by a large tad-
pole in periods of low rainfall to increase the survival probabilities of 
the tadpole therein; H O. lehmanni is highly threatened due to illegal pet 
trade activities. Males are thought to be more likely to be found by col-
lectors because of their vocalisations (see the inflated vocal sac pointed 
by the arrow); I Andinobates bombetes adjusts their calling behaviour to 
avoid interference caused by traffic noise. Photo credits: Bibiana Rojas 
(A, B, C, E, F, G); Justin P. Lawrence (D); Mileidy Betancourth (H); 
Fernando Vargas (I)
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ponds, or small pools of water formed in plant structures 
(i.e. phytotelmata) (Summers and Tumulty 2014). Tadpoles 
are confined in these water bodies until completing meta-
morphosis (Weygoldt 1987; Lehtinen et al. 2004; Summers 
and McKeon 2004; Schulte et al. 2020). While uniparen-
tal male care is the basal reproductive strategy in poison 
frogs (Weygoldt 1987; Carvajal-Castro et al. 2021), multiple 
lineages have evolved biparental or exclusive female care, 
where females transport tadpoles (Fig. 1C) and feed them 
with unfertilised trophic eggs (Summers et al. 1999a). The 
transition to female or biparental care has been suggested to 
be the result of using small phytotelmata with scarce food 
resources (Brown et al. 2010; Carvajal-Castro et al. 2021), 
and biparental care has been proposed as the precursor of 
monogamy (Brown et al. 2008, 2010; Summers and Tumulty 
2014; Tumulty et al. 2014). It is precisely the interaction 
between the diverse sexual and social systems of poison 
frogs, combined with the pressing effects of HIREC, that 
makes this group a relevant model through which to test and 
understand the impacts of global change.

Although global change is expected to influence social 
behaviours in several ways, surprisingly little is known about 
how these effects take place in wild populations of poison 
frogs. Moreover, most studies analyse environmental stress-
ors independently, often underseeing potential interactions 
and synergic effects. For example, while tadpoles manage to 
cope with predator-induced stress and low concentrations of 
pesticides separately, when exposed to both at the same time 
they show substantial mortality (Relyea and Mills 2001). 
Further research combining animal behaviour and conser-
vation biology (Caro 1999) is necessary to identify species-
specific relevant HIREC and to understand how they may 
adapt (or not) their behaviours accordingly. Only by doing 
so, we may be able to evaluate populations’ vulnerability 
to global change, develop predictive models and focus con-
servation efforts (Schroeder et al. 2011). Here, we illustrate 
key points about the potential impacts of, and responses to, 
HIREC using Neotropical poison frogs’ social behaviours as 
a model system. We specifically focus on territoriality and 
parental care behaviours, as they could be of special impor-
tance due to their capacity to buffering offspring against 
HIREC. Using this information as a baseline, we identify 
knowledge gaps and formulate new testable hypotheses to 
assess (1) the nature and magnitude of HIREC impact on 
wild populations of poison frogs, and (2) potential parental 
care and aggression responses to these HIREC.

Impacts of global change on poison frogs

Poison frogs depend on a wide variety of microhabitats in 
different life stages. Leaf litter and phytotelmata, for exam-
ple, serve as primary breeding sites, shelters, and nurseries 
for poison frogs; in addition to being defendable resources 

for territorial species, they provide more stable temperature 
and humidity conditions than open areas with little canopy 
(Duellman and Trueb 1994). The dependence on suitable 
microhabitats together with the obligate use of small water 
bodies for reproduction or development make many Neo-
tropical frogs particularly vulnerable to HIREC (Donnelly 
and Crump 1998; Touchon and Warkentin 2009).

Habitat loss and climate change

Many tropical regions are subject to unprecedented rates of 
habitat loss (Lewis et al. 2015; Taubert et al. 2018). Over the 
last decade, deforestation patterns in the Amazonian rain-
forest have switched from localised large forest clearings 
to geographically spread small-scale deforestation events 
driven by agricultural intensification, land-use change, and 
natural resource exploitation (i.e. mining and logging activi-
ties) (Grau and Aide 2008; Hugo 2008; Kalamandeen et al. 
2018). Small-scale deforestation pressures are expected to 
affect more remote areas and populations. This type of defor-
estation is also recognised as one of the main causes of more 
frequent and intense anomalies in the Amazonian hydro-
logical cycle, such as extreme weather events (i.e. El Niño 
Southern Oscillation, hereafter El Niño) and dry spells dur-
ing the rainy season (Lovejoy and Nobre 2018), which may 
be further exacerbated by global warming (Jiménez-Muñoz 
et al. 2016). Both the loss of habitat and more frequent cli-
matic anomalies can affect poison frogs in multiple ways 
throughout their life stages, potentially leading to different 
behavioural responses and adaptations.

Disruption in communication systems

Habitat alteration through small-scale deforestation can 
directly affect conspecific communication in two differ-
ent ways. First, because human-made gaps are known to 
have increased radiation and higher temperatures than other 
areas of the forest (Vitt et al. 1998), male calling behav-
iour can become unsustainable over long periods of time. 
This is because, in degraded conditions, males would be 
more exposed and thus could incur higher evaporative water 
loss and potential overheating. These physiological stress-
ors entail behavioural consequences as, in the mid-to-long 
term, males would be unable to devote as much time to 
attract females and advertise territory ownership. Second, 
variations in the forest’s light environment can make an ani-
mal’s appearance change too (Endler 1993), which has been 
proven crucial in the courtship behaviour of some lekking 
bird species (Théry and Endler 2001). The detectability of 
the variable colour patterns found in D. tinctorius, likewise, 
has been shown to differ depending on whether they are seen 
under an open or closed canopy (Rojas et al. 2014). While 
this has been studied mostly in the context of predator–prey 
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interactions, such differences in detectability in response to 
the surrounding light environment could be particularly rel-
evant for species in which colour patterns play a role in mate 
choice (e.g. O. pumilio: Summers et al. 1999b; Maan and 
Cummings 2008; Yang et al. 2019) or underlie differences 
in other behavioural patterns such as boldness or aggressive-
ness (e.g. O. pumilio: Rudh et al. 2013; Pröhl and Ostrowski 
2011; Crothers and Cummings 2015; O. granulifera: Willink 
et al. 2013, 2014). Importantly, human-driven habitat dis-
turbance may not only affect the light environment but also 
the structure of the forest floor, which can alter detectability 
and visual contrast, thus causing potential interference in 
communication between conspecifics (Barnett et al. 2021). 
Furthermore, because poison frog colouration is partly based 
on carotenoid pigments acquired through the diet (Twomey 
et al. 2020), changes in the prey community availability 
driven by habitat disturbances could also alter the coloura-
tion of individuals. In fact, several studies have shown that 
a diet rich in carotenoids can indeed produce changes in 
colouration (Brenes-Soto and Dierenfeld 2014; Umbers et al. 
2016; Stückler et al. 2022) and increase the reproductive 
success of captive frogs (Ogilvy et al. 2012; Dugas et al. 
2013). Thus, changes in prey availability could affect the 
intake of carotenoids or their precursors and, in turn, affect 
intraspecific communication, particularly in species where 
colouration plays an important role in mate selection, as 
mentioned above.

Increased care and aggression under HIREC: a parent’s 
perspective

Reduced vegetation cover and longer dry spells could result 
in higher egg mortality due to dehydration, especially for 
amphibian species with nonaquatic eggs (Touchon and  
Warkentin 2009). For example Delia et al. (2013) found that 
offspring of the glass frog Hyalinobatrachium fleischmanni, 
a species with parental care, had higher mortality rates in 
years of low rainfall. Similar situations could arise in poi-
son frogs due to the high susceptibility of their terrestrial 
clutches to evaporative water loss; in Allobates paleovarzen-
sis, for instance, only 8.6% of the clutches survived until 
the transporting stage following an El Niño event compared 
to ~ 70% survival during a standard season (Rocha et al. 
2021).

There are several behaviours that may help adult poison 
frogs reduce the vulnerability of their eggs to HIREC. On 
the one hand, choosing suitable oviposition sites is particu-
larly important if larvae are unable to leave these sites when 
conditions become unfavourable. For example, in the tree 
frog Dendropsophus ebraccatus, a unique species which can 
flexibly choose between aquatic and nonaquatic deposition 
sites, changes in rainfall patterns since 1972 have altered 
oviposition-site selection (Touchon 2012). Although egg 

mortality was generally higher in aquatic sites due to greater 
predation risk, altered rainfall patterns driven by climate 
change increased clutch dehydration risk, shifting the opti-
mal site choice by parents from terrestrial to aquatic habi-
tats over the span of only 40 years. D. ebraccatus clearly 
provides an excellent system to measure the success of the 
adaptive decision-making by parents; however, whether or 
not poison frogs are as flexible in their use of oviposition 
and tadpole deposition sites requires further research. For 
terrestrially-breeding frogs, buffering the negative effects 
of HIREC could largely depend on the parents’ capacity 
to select specific microhabitats with favourable structures. 
Dendrobates tinctorius, for example, is a terrestrial-breeding 
frog with clutch attendance (Fig. 1D) and uniquely flexible 
deposition choices compared to other species that also use 
ephemeral pools as nurseries. D. tinctorius fathers trans-
port tadpoles to diverse pools that range enormously in 
their vertical position (0– > 20 m), size (19 mL to − 270 
L), and chemical composition (pH = 3 to − 7) (Fouilloux 
et al. 2021). We hypothesise that, when faced with the pres-
sures of HIREC, species that can access (and tolerate) a 
wider variety of nurseries will fare better than those with 
narrower options. Species with flexible behaviour may also 
benefit from modulating care investment based on climatic 
conditions, e.g. when desiccation risk is high parents spend 
additional effort accessing especially deep/stable nurser-
ies compared to potentially more relaxed, “riskier” choices 
throughout a consistently rainy season. Furthermore, we 
predict sites with denser canopy cover as well as abundant 
leaf litter and vegetal structures (e.g. fallen branches and 
hollow trunks) to provide more stable microclimate con-
ditions for successful egg development. Nevertheless, dif-
ferent microhabitats may be weighed differently depending 
on species-specific biological and life-history requirements. 
Therefore, a better understanding of the microhabitat use of 
species both in undisturbed and disturbed areas is essential 
to implement effective conservation efforts.

On the other hand, to compensate for adverse environ-
mental conditions, parents may adjust the intensity and 
frequency of clutch attendance to guarantee offspring sur-
vival (see examples in invertebrates (Dick et al. 1998), fish 
(Green and McCormick 2005), reptiles (Stahlschmidt and 
DeNardo 2010), and birds (Vincze et al. 2017)). Males of 
H. fleischmanni, for example, increase both the frequency 
and time spent on egg care in response to a reduction in 
relative humidity (Delia et al. 2013). One of the most com-
mon ways anurans provides egg attendance is by placing 
their body over the eggs to reduce evaporative water loss 
or directly moistening the eggs through physical contact 
with the ventral integument (Wells 2010). Although this 
behaviour has been suggested for some poison frogs (Souza 
et al. 2017), it is not ubiquitous across the family (Rocha 
et al. 2021). Furthermore, some amphibians can increase 
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the amount of glycoprotein-rich jelly cores, jelly layers, or 
matrices surrounding the clutches, which protect embryos 
from dehydration and predators (Delia et al. 2020). So far, 
little research has focused on the potential egg attendance 
plasticity that poison frogs may present under environmental 
stress. Considering that egg attendance conflicts with other 
fitness-related activities, such as foraging and mating (e.g. 
Delia et al. 2013), investigating the trade-offs of parental 
decisions under environmental changes is essential to predict 
population dynamics. Therefore, if the costs of maintaining 
the current clutch surpass their fitness benefits, we would 
predict individuals to reduce their parental care effort or 
even abandon clutches completely, as seen in other taxa (e.g. 
birds: Bustnes and Erikstad 1991; Öberg et al. 2015; fish: 
Suski and Ridgway 2007).

It is noteworthy that in territorial species, such as most 
dendrobatid frogs (Pröhl 2005), the trade-off between 
defending territories and attending multiple clutches simul-
taneously may become magnified under habitat loss. Habi-
tat loss and fragmentation can modify species movement as 
well as the availability of resources and suitable territories 
(Fahrig 2003), which can alter the carrying capacity of the 
area in different ways. Firstly, habitat fragmentation could 
reduce population density if edge effects are negative (e.g. 
increased predation pressure), or if the fragmented habi-
tat is not able to sustain larger populations (Mullu 2016). 
Given that the costs of mate search in females depend on 
the number of suitable mates available, a lower population 
density could detract energy and time from tadpole care in 
species with female egg-feeding and tadpole transport. By 
contrast, the remaining patches of habitat could also increase 
population density by concentrating the surviving individu-
als from the disturbed habitat (Mullu 2016). In the result-
ing smaller and densely packed habitat patches, aggression 
rates between highly territorial individuals may increase 
due to a higher number of encounters and more competition 
for limited resources and territories (Fisher et al. 2021). In 
male tree lizards (Urosaurus ornatus), for instance, aggres-
sive interactions between individuals are more frequent in 
resource-limited burned sites than in resource-rich habitats 
(Lattanzio and Miles 2014). More energy spent on territo-
rial defence could translate into a reduced ability to attract 
further mates or attend multiple clutches, directly influenc-
ing mating systems. This conflict between aggression and 
direct care of offspring has been found in multiple animals 
(e.g. Lissåker and Kvarnemo 2006; DeAngelis et al. 2020). 
Importantly, filial cannibalism occurs in some dendrobatid 
frogs, both in adult males when taking over a new terri-
tory (e.g. Allobates femoralis: Ringler et al. 2017) and in 
females to decrease parental investment of a mate in unre-
lated clutches (e.g. Dendrobates auratus: Summers 1989). 
Thus, we predict that higher densities and lower resource 
availability could also lead to more territorial intrusions by 

males, more competition among females, and, as a result, an 
increase in filial cannibalism events.

Finally, because egg attendance and territorial defence 
may become more energetically demanding under harsh 
environmental conditions, we hypothesise that alternative 
care strategies such as plastic biparental care and monog-
amy could become favoured over evolutionary time. This is 
the case in the Atlantic labrid fish Symphodus tinca, which 
changes from no parental care to uniparental care when tem-
perature and predators increase during the breeding season 
(Van den Berghe 1990), or in plovers (Charadrius spp.), 
where temperature stochasticity increased male parental 
cooperation during incubation (Vincze et al. 2017). Given 
that some poison frogs can show parental flexibility and a 
parent can take over tadpole transport when the other par-
ent goes missing (for more details see next section), we 
encourage future studies to investigate whether flexibility 
can be found in other parental care behaviours such as egg 
attendance.

Consequences on larval survival and possible evolutionary 
trajectories under HIREC

The alteration of forest habitats for different human land-
uses as well as changes in climate patterns can also affect 
poison frogs during larval and adult stages by modifying the 
availability and quality of important resources and micro-
habitats. For example, by clearing primary forest and reduc-
ing the canopy cover, the ground becomes more exposed 
to solar radiation, which increases near-ground temperature 
and, in turn, phytotelmata desiccation risk (del Pliego et al. 
2016; Rivera-Ordonez et al. 2019). This is especially con-
cerning given that the depletion of some resources (e.g. bro-
meliad phytotelmata) has been related to serious population 
declines in some poison frog species (Pröhl 2002; Vargas-
Salinas and Amézquita 2013; Meza-Joya et al. 2015).

Phytotelmata are used in multiple poison frog species to 
deposit their tadpoles (Weygoldt 1987; Summers and McKeon  
2004; Lehtinen et al. 2004; Rojas 2014, 2015; Schulte et al. 
2020; Fouilloux et al. 2021), can naturally vary in water vol-
ume, nutrient composition, food sources, stability as well as 
the risk of competition and predation (Lehtinen et al. 2004). 
Consequently, parents have to assess all these different eco-
logical factors, which can be highly unstable and vary in 
space and time (Rudolf and Rödel 2005; Schulte and Lötters 
2013), and adapt their deposition strategy according to this 
information (Webb et al. 1999; Schulte and Lötters 2013). 
Furthermore, the size of these breeding pools has been asso-
ciated with the evolution of different parental care strategies 
(e.g. trophic egg feeding and biparental care evolved in spe-
cies using smaller pools; Brown et al. 2010). The selection 
of suitable rearing sites will play a key role in the successful 
development and survival of their offspring (Refsnider and 
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Janzen 2010), and thus will have direct effects on the popu-
lation recruitment for multiple species. However, HIREC 
might further exacerbate the instability and availability of 
good-quality phytotelmata, imposing multiple novel costs on  
parental care and territoriality. Because these stressors could  
be especially pronounced in small phytotelmata, species with  
parental care strategies such as egg feeding could be particu-
larly affected. Importantly, nursery desiccation is already 
considered one of the most common abiotic causes of tadpole  
mortality (Fig. 1E), even in tropical rainforests where annual 
rainfall is very high (Murphy 2003; Rudolf and Rödel 2005; 
BR, CF pers. observ.).

Some authors have suggested plastic feeding behaviour as 
one possible mechanism to deal with phytotelmata desicca-
tion. According to this hypothesis, some poison frog species 
would switch from avoiding tadpole/egg deposition in pools 
already containing conspecifics (to minimise predation: 
Caldwell and Araújo 1998; Summers 1999) to systemati-
cally depositing them with conspecifics, which can be a form 
of food resource. For example, in Ranitomeya ventrimacu-
lata, clutches are laid more often in bromeliad axils where 
there is already a tadpole towards the end of the rainy season 
(Fig. 1F) (Poelman and Dicke 2007). This way, parents are 
thought to accelerate their older offspring’s development and 
increase their chance to reach metamorphosis before tempo-
rary pools dry out, which can happen within days. Likewise, 
older tadpoles of the species Ranitomeya variabilis may feed 
on younger siblings when resources are low (Brown et al. 
2009). However, although cannibalising conspecific tadpoles 
provide higher nutritional value than other prey for some 
amphibian species (e.g. Crump 1990), the direct benefits of 
cannibalism through enhanced growth rates in poison frogs 
have not been disentangled from the benefits of eating ‘just’ 
another (i.e. heterospecific) tadpole. Instead, tadpole canni-
balism is thought to be the result of indiscriminate predatory 
behaviour to eliminate potential competitors (Caldwell and 
Araújo 1998; Summers and McKeon 2004). Furthermore, 
weaker avoidance or even active choice of pools with con-
specific tadpoles at the end of the rainy season could also 
be the result of less suitable sites available or parents using 
tadpole presence as a cue for pool quality and persistence, 
as is the case in Dendrobates tinctorius (Rojas 2014). This 
last idea is further supported by a study on Edalorhina perezi 
(Leptodactylidae), which also loses their sensitivity to inver-
tebrate predators late in the rainy season (Murphy 2003).

A reduction in the number of suitable nurseries could also 
lead to the convergence of site choice by multiple parents, 
potentially from multiple species that in “normal” condi-
tions would select for smaller/more unstable pool types (e.g. 
bromeliads). Consequently, we predict that under HIREC the 
overall larval density in pools will increase, and competition 
between tadpoles from the same or different species could 
become stronger, potentially benefitting certain species over 

others by exploiting alternative food supplies (i.e. feeding 
on other tadpoles of either the same (cannibalism) or dif-
ferent species). Cannibalism can have major consequences 
at the population level for some species, eliminating large 
proportions of offspring or entire cohorts in extreme cases 
(Polis 1981). That is the case in Ranitomeya (formerly Den-
drobates) ventrimaculata, where only one tadpole survives 
in most pools regardless of the number of tadpoles deposited 
therein (Summers 1999).

We hypothesise that a reduction in the number of suitable  
phytotelmata available in a territory will force parents to 
transport their tadpoles longer distances until deposition sites, 
increasing direct and indirect associated costs. For example, 
transporting individuals might directly increase their mortality 
risk by presumably spending more time exposed to potential 
predators (Rojas and Endler 2013; Pašukonis et al. 2019), as 
well as indirectly reduce their fitness by investing less time 
and energy on territorial defence and mating opportunities 
(Pašukonis et al. 2019). From the larvae point of view, in den-
drobatid species where adults transport tadpoles singly into 
phytotelmata, travelling longer distances would mean leav-
ing siblings unattended for longer periods of time and, thus, 
increasing their probability of dying from desiccation, preda-
tion or fungal infection. All these costs may, in turn, become 
accentuated in human-disturbed habitats, where different 
microclimatic conditions, vegetation cover, and assemblages 
of predators pose new threats and increased stress (Knowlton 
and Graham 2010). One possible behavioural response that 
might be favoured to reduce the costs of transporting tadpoles 
longer distances could be to transport as many tadpoles as 
possible at the same time. Ringler et al. (2013) found a signif-
icantly positive correlation between the distance of Allobates 
femoralis males to their home territories during tadpole trans-
port and the number of tadpoles on their back, suggesting that 
the number of tadpoles that parents decide to take up at once 
is influenced by the distance to suitable water bodies. This 
would mean that at least some species of poison frogs may be 
capable of adjusting their behaviour depending on the avail-
ability of tadpole deposition sites and buffer to some degree 
their reduction due to HIREC. Another response to deal with 
increased parental costs (i.e. longer transporting distances) 
that could be favoured over evolutionary time is the appear-
ance of female parental care plasticity in otherwise uniparen-
tal male care systems. Because most female poison frogs do 
not defend territories (Pröhl 2005), they might gain consider-
able fitness benefits by flexibly taking over parental duties and  
increase the survival chances of the clutches in which they 
have already invested significant time and energy. Female 
parental care plasticity has been previously reported in some 
poison frogs (e.g. Allobates femoralis, Dendrobates tinctorius, 
Anomaloglossus beebei) where, in absence of the male car-
egiver, females show compensatory parental care behaviour 
by transporting tadpoles both under laboratory (Ringler et al. 
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2015; Fischer and O’Connell 2020) and natural conditions 
(Ringler et al. 2013; Rojas and Pašukonis 2019; Pettitt 2012). 
However, this plasticity has not been found in other close  
species like Allobates paleovarzensis (Rocha et al. 2021).

Finally, human-transformed habitats may also affect par-
ents' orientation capacity by attenuating their familiarity 
with sensory cues. For example in Oophaga pumilio, ori-
entation depends both on the distance and the habitat type 
(forests or pastures) (Nowakowski et al. 2013). Thus, given 
that males often select tadpole deposition sites outside of 
their territories or core areas (Ringler et al. 2013; Pašukonis 
et al. 2019), parents’ ability to find good rearing sites in 
the first place, or to return to selected phytotelmata in the 
case of tadpole feeding species, could be impaired. To date, 
very little work has explored the manner(s) in which land-
use changes influence movement behaviour in poison frogs. 
However, it is reasonable to predict that they could have 
great impacts not only on parental decisions and territorial 
defence but also on population dispersal and gene flow. This 
is, therefore, a subject that merits further investigation.

Pet trade, infectious diseases, and pollution

In the Amazonian and Chocó rainforests, the fast development 
of large- and small-scale agriculture, urbanisation, and min-
ing activities (Fig. 2), especially gold mining (Kalamandeen  
et al. 2018; Palacios-Torres et al. 2018), are not only modify-
ing habitats but also polluting the environment (Folchi 2001; 
Piscoya Arbañil 2012; Gamarra Torres et al. 2018). Further-
more, accidental or deliberate introduction of exotic species, 
and, especially the global pet trade in the case of poison 
frogs, are increasing the transmission of and susceptibility 
to pathogens and parasites in previously isolated populations  
(e.g. Fecchio et al. 2021; Santos et al. 2021).

The illegal pet trade is recognised as one of the major 
threats to dendrobatid poison frogs (Gorzula 1996; Gaucher 
and MacCulloch 2010; Nijman and Shepherd 2010; Brown 
et al. 2011; Betancourth-Cundar et al. 2020), as hobbyists 
are often after exotic colour variants, which can reach exor-
bitant prices in the market. This practice has been notably 
increasing in South America with the popularisation of the 
internet (Máximo et al. 2021), placing increased risks to the 
anurans of this region. Besides obvious long-term conse-
quences such as decreased genetic diversity, the rarefaction 
of individuals in natural populations is thought to affect the 
two sexes differently, with males being at a higher risk of 
being detected due to the conspicuousness of their vocali-
sations (Fig. 1H) (Betancourth-Cundar et al. 2020), which 
they use to fend rivals off and to attract females. This can 
obviously alter the care provided to offspring, particularly in 
species in which parental care duties are predominantly per-
formed by males, but it can also result in population declines 
as the populations end up being heavily female-biased 

(Betancourth-Cundar et al. 2020). The global amphibian pet 
trade is also widely recognised as one of the main drivers of 
the worldwide spread of amphibian pathogens such as the 
chytrid fungus Batrachochytrium dendrobatidis (hereafter 
Bd) (Fisher and Garner 2007), one of the most dramatic 
examples of newly-emerged pathogens, which causes the 
infectious disease chytridiomycosis. Therefore, it is not sur-
prising that Bd has recently been detected in dendrobatid 
species in the wild.

Bd is known to be responsible for the mass mortalities in 
many amphibian populations and some species extinctions 
worldwide (Daszak et al. 2003; Lips et al. 2005; Pounds 
et al. 2006). Indeed, Bd prevalence in Dendrobatidae was 
recently found to be higher than in Bufonidae and Hylidae 
in an Amazonian community (Courtois et al. 2015). While 
the impact of Bd on poison frog populations is still poorly 
known, in other species it can inhibit the immune response 
(Fites et al. 2013), impact their body condition and growth 
(Parris and Cornelius 2004), reduce their locomotion and 
foraging performance (Chatfield et al. 2013; Venesky et al. 
2009), and even change their advertisement calls (An and 
Waldman 2016). Moreover, because Bd zoospores are 
aquatic, species more dependent on water are expected to be 
the most impacted due to prolonged periods of time exposed 
to Bd zoospores (Bielby et al. 2008). Thus, in the scenario 
proposed above, where global change may cause higher 
densities of tadpoles sharing rearing sites, Bd transmission 
within and between species could exponentially increase. 
Likewise, we predict energetically costly activities such 
as parental care and territory defence to be also affected, 
because infected individuals may have to relocate energy 
from reproduction, calling, or parental care into immune 
defence. This means that infected individuals may be less 
able to defend their territories or perform parental care, 
which would indirectly cause higher offspring mortality 
rates. Given the importance of social behaviours on popula-
tion dynamics, further research investigating the impacts of 
Bd on such behaviours is required.

In addition, chemical pollutants derived from agriculture 
(e.g. herbicides and pesticides) and mining activities (e.g. 
metals and metalloids: Hg, Cu, Co, Zn, and As) can impair 
individuals’ immune defences and further increase their sus-
ceptibility to pathogens and diseases (Christin et al. 2003). 
Similarly, when found in low concentrations, they can delay 
growth and metamorphosis (Carey and Bryant 1995), cause 
malformations (Unrine et al. 2004; Ferrante and Fearnside 
2020), alter fertility and fecundity (Adams et al. 2021), or 
even cause sex-reversals (Nemesházi et al. 2020), often lead-
ing to devastating consequences for amphibian populations 
(Brühl et al. 2013). Increasing evidence demonstrates effects 
on a wide range of amphibian behaviours, such as reduced 
rates of activity (e.g. swimming, feeding, and breeding) or 
ability of tadpoles to escape predation (Shuman-Goodier 
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and Propper 2016; Sievers et al. 2019). In two-lined sala-
manders (Eurycea bislineata), for instance, exposure to sub-
lethal concentrations of mercury reduced their motivation 
to feed (Burke et al. 2010), whereas it impaired swimming 
performance in American toad (Anaxyrus [formerly Bufo] 
americanus) larvae (Bergeron et al. 2011). Although chemi-
cal contaminants have also been reported to alter multiple 
social behaviours such as territorial behaviour in other taxa 
(e.g. vom Saal et al. 1995; Bell 2001), to our knowledge, no 
study has addressed this possibility in amphibians. Given 
the strong detrimental effects of pollutants on egg and tad-
pole survival and development, we would expect selection 

to favour individuals capable of recognising and avoiding 
egg-laying and rearing sites based on chemical pollutant 
concentrations. As far as we are aware, however, this abil-
ity has been investigated in some anurans but not in poison 
frogs. For example, adults of the grey treefrog (Hyla versi-
color) avoided ponds for oviposition if contaminated with 
the glyphosate pesticide Roundup (Takahashi 2007).

Social behaviours can also be impacted by an important, 
yet often underestimated, the form of anthropogenically 
driven pollution, noise pollution. For acoustically com-
municating species, as is the case of most anuran species, 
anthropogenic background noise can mask vocalisations and 

Fig. 2  Illegal mining. Small-
scale deforestation due to illegal 
mining activities is threatening 
the habitat of many species 
of poison frogs in the Ama-
zon and the Chocó regions, 
two of Earth’s biodiversity 
hotspots. Here, illegal mining 
activity in Nouragues Natural 
Reserve, French Guiana. Pho-
tos: A) Bernard Gissinger; B) 
Alexandre David
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thus disrupt key species-specific communication (Simmons 
and Narins 2018). For instance, masking of acoustic signals 
could inhibit males’ calling activity (Sun and Narins 2005), 
reduce females’ ability to localise male’s advertisement calls 
(Caldwell and Bee 2014), or change female’s mate choice, 
potentially selecting for less fit males (Barrass 1985) or 
males with lower quality of parental care (Pettitt et al. 2020). 
Masked male calls may not only attract fewer females but 
also make territorial calls less audible, affecting male ter-
ritorial defence by reducing their ability to detect and dis-
criminate against conspecific intruders, as shown in birds 
(Kleist et al. 2016). This, in turn, may translate into more 
conspecific intrusions, aggressive encounters, and increased 
filial cannibalism rates. To cope with anthropogenic noise, 
some species can modify their call characteristics to con-
trast acoustically with noise pollution. For example, Cauca 
poison frogs, Andinobates bombetes (Fig. 1I), vocalise in 
moments of low background noise and call less when noise 
is higher (Vargas-Salinas and Amézquita 2013; Jiménez-
Vargas and Vargas-Salinas 2021), while Bloody Bay poison 
frogs (Mannophryne olmonae) increase higher frequency 

calls and decrease inter-pulse intervals (Clemmens 2014). 
However, because changes in calling characteristics could 
potentially be opposed to female mate preferences, future 
research should investigate if such responses could become 
maladaptive.

Conclusions

1. HIREC have great impacts on the way organisms interact 
among them and with their environment, imposing new 
threats for multiple species. Behaviour is often the first 
response to environmental changes, and its plasticity 
can determine how organisms adapt (or not) to HIREC. 
Social behaviour responses, in particular, are of special 
importance given their role in population dynamics (i.e. 
reproductive success and offspring survival). Thus, by 
combining animal behaviour and conservation issues, 
we can improve our understanding and predictions of 
how susceptible different species and populations are to 
HIREC.

Fig. 3  Conceptual overview. The main driving forces of HIREC (A 
climate change, B habitat fragmentation, C chemical pollution, and 
D novel pathogens and diseases) interact across habitats implicating 
cascading effects on the social behaviours of amphibians. Through-
out the tropics, these disturbances will impact a large diversity of spe-
cies with consequences detectable at every life stage. (I) We predict 

that HIREC will particularly threaten juveniles and larvae, where less 
consistent rainfall and higher temperatures will limit the availability 
and diversity of larval nurseries and increase the desiccation prob-
ability of clutches. (II) In response to these threats, we hypothesise 
that parents will both increase care and the flexibility in deposition 
choices
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2. Due to their diverse and complex social behaviours, as 
well as their occurrence in often degraded habitats, poi-
son frogs are an interesting group to study the potential 
impacts of and social responses to HIREC (see Fig. 3 for 
a summary).

3. To compensate for negative HIREC impacts, we predict 
individuals to increase parental care efforts by spending 
more time attending clutches and transporting tadpoles 
to further and fewer nursery sites. However, this increase 
in parental costs will only be sustained to the point that 
it does not outweigh individual fitness. Furthermore, we 
hypothesise higher species-specific aggression rates both 
in adults and tadpoles, as well as more frequent filial 
cannibalistic events due to limited resources/territories 
and anthropogenic noise. Finally, altered environmental 
conditions derived from small-scale deforestation (i.e. 
higher radiation, increased temperature, and changes in 
ambient light) or increased noise pollution may disrupt 
important conspecific communication processes by 
reducing the calling capacity of males or by modifying 
mate detectability, courtship, and choice.

4. Here, we have examined the impact of different anthro-
pogenic stressors on poison frogs individually. How-
ever, the reality is usually more complex, with multi-
ple HIREC and natural stressors acting and interacting 
simultaneously in unexpected ways. All these factors 
make predictions harder to formulate.
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