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A B S T R A C T   

Arena tests are used to address various research questions related to animal behavior and human-animal re-
lationships; e.g. how animals perceive specific human beings or people in general. Recent advancements in 
computer vision, specifically in application of key point detection models, might offer a possibility to extract 
variables that are the most often recorded in these tests in an automated way. The objective of this study was to 
measure two variables in human-pig arena test with computer vision techniques, i.e. distance between the 
subjects and pig’s visual attention proxy towards pen areas including a human. Human-pig interaction tests were 
organized inside a test arena measuring 147 × 168 cm. Thirty female pigs took part in the arena tests from 8 to 
11 weeks of age, for a total of 210 tests (7 tests per pig), each with a 10-min duration. In total, 35 hours of 
human-pig interaction tests were video-recorded. To automatically detect human and pig skeletons, 4 models 
were trained on 100 images of labeled data, i.e. two YOLOv8 models to detect human and pig locations and two 
VitPose models to detect their skeletons. Models were validated on 50 images. The best performing models were 
selected to extract human and pig skeletons on recorded videos. Human-pig distance was calculated as the 
shortest Euclidean distance between all key points of the human and the pig. Visual attention proxy towards 
selected areas of the arena were calculated by extracting the pig’s head direction and calculating the intersection 
of a line indicating the heads direction and lines specifying the areas i.e. either lines of the quadrangles for the 
entrance and the window or lines joining the key points of the human skeleton. The performance of the YOLOv8 
for detection of the human and the pig was 0.86 mAP and 0.85 mAP, respectively, and for the VitPose model 0.65 
mAP and 0.78 mAP, respectively. The average distance between the human and the pig was 31.03 cm (SD =
35.99). Out of the three predefined areas in the arena, pigs spend most of their time with their head directed 
toward the human, i.e. 12 hrs 11 min (34.83 % of test duration). The developed method could be applied in 
human-animal relationship tests to automatically measure the distance between a human and a pig or another 
animal, visual attention proxy or other variables of interest.   

1. Introduction 

In controlled experiments, animals are typically placed in a square or 
round arena, open on the top and limited by walls on the sides, in order 
to assess their reactivity to a novel environment or stimulus (Gra-
bovskaya and Salyha, 2014). Arena tests are used to address various 
research questions related to animal behavior and human-animal re-
lationships; e.g. how animals perceive specific human beings or people 
in general, what is the quality of stockmanship on farms or what is the 

potential for positive relationships to reduce the animals’ distress during 
aversive events (Waiblinger et al., 2006). The variables that are the most 
often recorded in these tests and analyzed to assess the behavior are: 
distance to the human, latency to contact, frequency or duration of 
contact, visual attention towards the human or locomotor activity such 
as lying, standing, or exploration (Bensoussan et al., 2020; Czycholl 
et al., 2019; Forkman et al., 2007). Recent advancements in computer 
vision, specifically in application of key point detection models for 
automated detection of pig’s skeletons e.g Wang et al. (2022) or Wang 
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et al. (2023) might offer a possibility to extract those variables in an 
automated way, reducing the need for laborious manual labeling on a 
farm or of recorded videos. 

Skeleton-based deep learning models were first developed to detect 
key points in humans, which required overcoming challenges such as 
strong articulations, small and barely visible joints, occlusions and the 
need to capture the context (Toshev and Szegedy, 2013). Recent gen-
eration of key point detection models, e.g. the ViTPose model, achieves 
impressive results on the challenging MS COCO Keypoint Detection 
benchmark setting a new state-of-the-art, i.e. 80.9 mean average preci-
sion (mAP) on the MS COCO test-dev set on a human skeleton with 17 
key points (Xu et al., 2022). In the study of Juarez et al. (2023), the same 
model achieved 0.82 mAP on a comprehensive pig farm dataset with 
5016 pig instances representing 6 production groups and encompassing 
the recognition of 22 key points on the pig skeleton. These results proved 
that both human and pig skeletons can be accurately detected with the 
current state-of-the-art key point detection models. Moreover, auto-
mated detection of location of key points or body parts was previously 
used to measure distances to the other objects in a pen or of pig’s body 
parts e.g. as in studies of Ling et al. (2022), or Oczak et al. (2022), which 
suggests that automated analysis of animal-based variables in arena tests 
is a promising area of study. 

In this study we propose a novel computer vision method for auto-
mated detection of variables in human-animal relationship tests, using 
the pig as a model. The method is based on a two-step approach where in 
the first step we detect the pig’s and human’s key points, and then based 
on the detected key points we extract two variables: the pig-human 
distance and the pig’s visual attention proxy towards pen areas and a 
human inside the test arena. The applications of our method offer a 
possibility to extract those variables in an automated way, reducing the 
need for time-consuming manual observation or labeling of videos. It 
can also support objective analysis of animal behavior and human- 
animal relationships. 

2. Material and methods 

2.2. Animals, housing and human-animal interaction test 

This study was performed as part of a larger experiment (manuscript 
in preparation) aiming to assess the effects of dopamine and opioid re-
ceptor antagonists on the behavior of the pigs interacting with a human. 
Two of the measures of interest in this overarching experiment were the 
distance between the pig and the human across the different test con-
ditions, and the visual attention proxy of the pig towards the human, 
which were obtained through the elaboration of the algorithm presented 
in this paper. 

Thirty female pigs (Sus scrofa domesticus; Swiss Large White ×

Pietrain breed) were used in this project, across two batches (batch 1 n=

20 pigs, batch 2 n= 10 pigs). The pigs were selected at weaning at the 
age of 5 weeks, based on health condition and avoiding weight ex-
tremities. The pigs were 5 weeks old at the start of habituation to the test 
pen and human, 8 weeks old at the start of testing in the arena, and 11 
weeks old at the end of the experiment. Pigs were tested every third day. 
The remaining 2-days were “rest” days when pigs only received routine 
care. 

The pigs were housed in two groups of 10 (batch 1) or 9 (batch 2). All 
pigs were tested, but only 5 pigs from each group were tested in the 
second batch. Pigs were housed in weaner pens measuring 2.45 ×

3.82 m. Enrichment was provided in the form of two braided jute ropes 
of 1 m long hung from the pen fixtures in the lying area and two orange 
dog toy balls (Airflow ball, Dog Crest, 7.6 cm diameter). 

The test pen consisted of two enclosures of similar size measuring 
147 × 168 cm, made of yellow wood walls. One of the enclosures was 
the test arena, i.e. where the test pig was alone with the human, and the 
second one was a companion arena containing two companion pigs to 
minimize the effect of social separation. The partition between the two 

enclosures had a social window with dimensions of 50 × 25 cm allowing 
visual, auditory and olfactory contact between the test pig and the 
companion pigs (Fig. 1). Non-toxic animal paint was used to mark the 
pig on its back to allow individual recognition. 

The interacting human remained seated in the corner opposite to the 
pen door for the whole 10-min duration of the test. The pig was 
encouraged to approach through vocal and physical solicitation cues, i. 
e. soft talking voice and tapping of the fingers, small hand and arm 
gestures but avoiding large and fast movements. The pig was allowed to 
voluntarily approach and interact with the human. If the pig was within 
arm’s reach, the human provided gentle tactile contact, i.e. stroking, 
rubbing, scratching. 

2.3. Video recording 

The behavior of the pig and the human was video-recorded with one 
two-dimensional (2D) video camera (DS 2CD5046G0-AP; HikVision, 
Hangzhou, China) locked in protective housing HEB32K1 (Videotec, 
Schio, Italy) hanging above the arena in top view, 2 m above the pen. 
The images were recorded with a 1280 × 720 pixel resolution in MPEG- 
4 format, at 25 fps. The camera was connected to a server for the storage 
of video data (Synology, Taipei, Taiwan) with 4 cores, 8 GB memory, 
and 260 TB storage. The behavior of the human and the pig was video 
recorded for 10 min from the time when a pig entered the arena. In total, 
there were 210 tests divided into 2 batches with 140 tests in the first 
batch and 70 tests in the second batch. In total, 35 h of video recordings 
(210 videos x 10 min) were recorded during the experiments. 

2.4. Camera calibration 

To measure the distance between a pig and a human inside the test 
arena, in the units of the metric system of measurement e.g. centimeters, 
it was necessary to calibrate the camera used to record the tests. Initially, 
the recorded videos were cropped to 450 × 530 pixel resolution to 
remove the area outside of the test arena (Fig. 2a). In the second step 16 
reference points were placed on the floor of the test arena, with known 
distances to each other (Fig. 2b). The points were placed on the floor 
when the arena was empty and removed before the tests started. These 
points’ locations in the image (x,y) were subsequently used to obtain the 
camera intrinsic matrix and distortion coefficients according to Eqs. 1 
and 2, 

camera matrix =

⎡

⎣
313.51 0 265.47

0 298.97 274.1
0 0 1

⎤

⎦ (1)  

Distortion coefficients = (0.03, − 0.65, 0.01, − 0.08, 0.51) (2) 

with the calibrateCamera function implemented in OpenCV (Bradski, 

Fig. 1. Test arena. Test pig was placed in the test arena on the right with the 
interacting human during the test session. Two companion pigs were placed in 
the companion pen arena on the left during the test session and were provided 
access to food, water and straw. 
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2000). 
With the known parameters of the camera intrinsic matrix and 

distortion coefficients the radial and tangential distortions in the images 
were corrected with the undistort function implemented in OpenCV 
(Figs. 2c and 2d). 

Based on the camera calibration procedure, the size of one pixel in 
the video was estimated to 5.9 mm. All 210 videos, each of 10 min 
duration, recorded during the tests were undistorted according to this 
procedure. 

2.5. Dataset for training of key point detection models 

Out of 3150,000 frames recorded in the experiments (210 videos x 
10 min x 60 s x 25 fps), 150 were selected with the K-means algorithm to 
guarantee that the selected images have the least correlation, as 
described in Pereira et al. (2019) and Oczak et al. (2023). Out of 150 
images 100 were randomly selected as the training set and 50 as vali-
dation set for later training and validation of object detection and pose 
estimation models (Table 1). 

Out of 150 images 40 had no human and 55 no pig. Leaving images 
without either a pig or a human or both was intentional to provide 
negative examples for later training of object detection models i.e. 
without the presence of objects of interest. 

2.6. Data labelling 

The dataset with 150 images was labeled using the COCO annotator 
software V0.11.1, (Brooks, 2019). We modified the pig skeleton pro-
posed by Juarez et al. (2023) described in Table 2 by removing the 
following 6 key points and their corresponding connections: tips of the 

Fig. 2. Camera calibration a) image cropped b) markers with known locations placed inside the arena c) image with corrected distortions - an empty arena d) image 
with corrected distortions - a pig interacting with a human. 

Table 1 
Dataset.  

Dataset N. images N. humans N. pigs 

Training  100  73  67 
Validation  50  37  28 
Total  150  110  95  
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ears, elbows and knees. 
The skeleton was reduced to 16 key points with 17 connections 

(Fig. 3). This was done to reduce the complexity of the skeleton pro-
posed by Juarez et al. (2023) and only use the key points that were 
considered the most essential for our study i.e. for calculation of 
pig-human distance and pig’s head direction. To achieve these 

objectives it was not necessary to detect elbows, knees and 4 key points 
on the ears i.e. tips of the ears were removed, while the base of the ears 
were kept. 

Labeling of human skeleton was done with the COCO format i.e. with 
17 key points and 17 connections (Lin et al., 2014). 

2.7. Training and validation of the VitPose and the YOLOv8 models 

To detect key body points of the human and the pig inside the test 
arena we applied a top down key point detection method. The method 
consisted of two steps: (1) detection of the pig and human with YOLOv8 
as an object detection model, and (2) detection of key points with the 
VitPose key point detection model. Key points were detected only inside 
areas indicated as containing either a human or a pig by the object 
detection model. Both the VitPopse and the YOLOv8 models are state-of- 
the-art key point and object detection models that set new benchmarks 
on the MS COCO dataset (Solawetz, 2023; Xu et al., 2022). Moreover, 
the VitPose model was already validated for key point detection in pigs 
(Oczak et al., 2023). For training and validation of both models we used 
their implementations in the OpenMMLab toolbox (mmcv 2.0.1; mmdet 
3.1.0; mmengine 0.8.4, mmyolo 0.6.0), which is an open source project 
containing implementations of state-of-the-art computer vision algo-
rithms for object detection, animal pose estimation, action recognition, 
and tracking (MMDetection Contributors., 2018). Parametrization of the 
YOLOv8-x and the ViTPose-H model was set according to the imple-
mentation in the MMYolo and the MMPose libraries. 

We trained 4 models: (1) the YOLOv8 for detection of the human, (2) 
the YOLOv8 for detection of the pig, (3) the VitPose for detection of 
human key points, and (4) the VitPose for detection of pig key points. 
Both the YOLOv8 and the VitPose models for detection of the human and 
her key points were initially downloaded from online repositories 
(MMPose Contributors., 2022; MMYOLO Contributors., 2022) as 
pre-trained models on the MS COCO dataset. The models were re-trained 
with 100 images with human skeletons labeled in the test arena. The 
YOLOv8 and the VitPose models for detection of the pig and its key 
points were trained on a dataset collected and labeled in the study of 
Juarez et al. (2023) merged with 100 images with pig skeletons labeled 

Table 2 
Definitions of key points (Juarez et al. 2023).  

Key point Definition Connected to 

Snout At the rostral bone in the tip of the nose, which 
comprises the parts of the face rostral to the eyes 
and dorsal to the mouth. 

Neck 

Base of the 
left ear 

At the point where the left pinna, which is the 
portion of the ear that is visible on the outside of 
the head, connects to the skull. 

Neck 
Tip of left ear 

Base of the 
right ear 

At the point where the right pinna, which is the 
portion of the ear that is visible on the outside of 
the head, connects to the skull. 

Neck 
Tip of right 
ear 

Tip of the left 
ear 

At the distal end of the left pinna. Base of left 
ear 

Tip of the 
right ear 

At the distal end of the right pinna. Base of right 
ear 

Neck At the last cervical vertebra, which immediately 
precedes the thoracic vertebrae and marks the 
transition from the neck to the trunk. 

Snout 
Base of left 
ear 
Base of right 
ear 
Right 
shoulder 
Left shoulder 

Left shoulder At the left scapulohumeral joint, the point where 
the articular head of the humerus connects with 
the scapula. 

Neck 
Left flank 
Left elbow 

Right 
shoulder 

At the right scapulohumeral joint, the point where 
the articular head of the humerus connects with 
the scapula. 

Neck 
Right flank 
Right elbow 

Left elbow At the left olecranon process, also known as the 
point of the elbow. It is found proximal and 
caudal to the elbow joint, where the distal end of 
the humerus articulates with the proximal ends of 
the radius and ulna. 

Left shoulder 
Left hand 

Right elbow At the right olecranon process, also known as the 
point of the elbow. It is found proximal and 
caudal to the elbow joint, where the distal end of 
the humerus articulates with the proximal ends of 
the radius and ulna. 

Right 
shoulder 
Right hand 

Left hand At the toe or tip of the hoof of the left front limb. Left elbow 
Right hand At the toe or tip of the hoof of the right front limb. Right elbow 
Left flank Between the left shoulder and the iliac bone of the 

left hip, in the centre of the left external 
abdominal oblique muscle, at the broadest part of 
the abdomen. 

Left shoulder 
Left hip 

Right flank Between the right shoulder and the iliac bone of 
the right hip, in the centre of the right external 
abdominal oblique muscle, at the broadest part of 
the abdomen. 

Right 
shoulder 
Right hip 

Left hip At the left coxofemoral joint, where the left 
femoral head meets the acetabulum of the os 
coxae. 

Left flank 
Left knee 
Base of the 
tail 

Right hip At the right coxofemoral joint, where the right 
femoral head meets the acetabulum of the os 
coxae. 

Right flank 
Right knee 
Base of the 
tail 

Left knee At the stifle joint, where the distal end of the left 
femur articulates with the tibia and the patella. 

Left hip 
Left foot 

Right knee At the stifle joint, where the distal end of the right 
femur articulates with the tibia and the patella. 

Right hip 
Right foot 

Left foot At the toe or tip of the hoof of the left hind limb. Left knee 
Right foot At the toe or tip of the hoof of the right hind limb. Right knee 
Base of the 

tail 
At the point where the first coccygeal vertebra 
meets the sacrum. 

Left hip 
Right hip 
Tip of the tail 

Tip of the tail At the last coccygeal vertebra. Base of the 
tail  

Fig. 3. Pig and human skeleton labeled in COCO annotator software with 
rectangles indicating a human and a pig. 
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in the test arena in the current study. As the MS COCO dataset did not 
contain a pig object class and the dataset collected and labeled in the 
study of Juarez et al. (2023) a human object class it was practical to use 
two separate models in the current study for detection of both classes of 
objects. All four models were trained for 1000 epochs with validation on 
the 50 labeled images on every 5th epoch. The progress in training of the 
models was evaluated with mean Average Precision (mAP) metric, 
whereas for the VitPose model Object Key Point similarity (OKS) mea-
sure was used (Lin et al., 2014) with per key point class standard de-
viations estimated in the study of Juarez et al. (2023). The 4 models with 
the highest mAP on the respective validation sets were selected for 
automated feature variables extraction on all video material recorded in 
the study. 

2.8. Human-pig distance 

The distance between the pig and the human was calculated ac-
cording to Eq. 3, 

D
(

a, b
)

= 0.59 ∗

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ax − bx)
2

+
(
ay − by

)2
√

[cm] (3)  

where D(a, b) is the Euclidean distance between pig’s key point a, and 
human’s key point b. The Cartesian coordinates of key body point a was 
denoted by (ax, ay) and that of key body point b by (bx, by). The result of 
calculation of the Euclidean distance between key body points of the 
human and the pig expressed in pixels was multiplied by 0.59 to convert 
the distance to centimeters. Calculation of the distance was done on 
every frame of the dataset between all key body points of the human and 
the pig. The shortest distance between a pair of key points was selected 
as the human-pig distance feature variable (Fig. 4a). 

2.9. Pig’s visual attention proxy towards pen areas and the human 

There were three areas inside the test arena important for the anal-
ysis of the pig’s behavior in the context of human animal-interaction: (1) 
the window to the adjacent pen with companion pigs, (2) the entrance to 

Fig. 4. Typical feature variables for research on human-animal interactions: a) Distance between the closest key points of a pig and a human, i.e. right ear and right 
ankle. b) Three areas in the test arena: the window to the companion arena in blue color, the entrance to the arena in pink color and the human skeleton in red color. 
c) Pig’s visual attention proxy directed at the window. d) Pig’s visual attention proxy directed at the human. 
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the arena, and (3) the human. The first two areas, which were located in 
the same position for the duration of the experiment, were specified as 
two quadrangles with fixed coordinates, while the human, whose posi-
tion in the test arena was variable, was specified by automatically 
detected key points and their connections (Fig. 4b). Note that we esti-
mated pig’s visual attention proxy based on a line between the neck and 
the snout of the pig, but the pig has a large field of panoramic vision in 
addition to their front binocular vision (Prince, 1977). Therefore, this is 
only an approximation of the direction towards which they may be 
paying attention as pigs can also see sideways. 

The first step in the process of detection of the pig’s visual attention 
proxy towards the three areas in the test arena was to calculate a slope of 
a line between the neck and the snout of the pig according to Eq. 4, 

slope =
ny − Sy

nx − Sx
(4)  

where (nx, ny) denoted the Cartesian coordinates of key point neck, 
while (sx, sy) denoted the Cartesian coordinates of key point snout. To 
detect the forward direction of the pig’s head we firstly calculated the 
coordinates of 2 points at the end of the line between the neck and the 
snout of the pig according to Eqs. 5, 6, 7 and 8, 

ex = nx + len (5)  

ey = slope(ex − nx
)

+ ny (6)  

fx = sx − len (7)  

fy = slope(fx − sx

)
+ sy (8)  

where (ex, ey) denoted the Cartesian coordinates of the first of the two 
points at the end of the line, while (fx, fy) denoted the Cartesian co-
ordinates of the second of the two points at the end of the line. To ensure 
that the projected line between the neck and the snout of the pig 
spanned across the whole image reaching all the three areas in the test 
arena, we either added or subtracted a constant len with the value of 
1000 pixels from the coordinates of the snout and the neck. In the 
following step Euclidean distances between the snout and the two points 
at the end of the line were calculated according to Eqs. 9 and 10, 

D
(

s, e
)

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(sx − ex)
2

+
(
sy − ey

)2
√

(9  

D

(

s, f

)

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(sx − fx)
2

+
(

sy − fy

)2
√

(10)  

where d(s, e) is the Euclidean distance between the pig’s key point snout 
and the first of the two points at the end of the line, while d(s, f) is the 
Euclidean distance between the pig’s key point snout and the second of 
the two points at the end of the line. The shorter of the 2 Euclidean 
distances indicated the pig’s head direction (Figs. 4c and 4d). 

On the basis of a line indicating the direction of the pig’s head it was 
possible to estimate the attention of the pig towards the three areas 
inside the arena: the window to the companion arena with pigs, the 
entrance to the arena and the human. The direction of the pig’s head was 
calculated by checking if there was an intersection of the line indicating 
the pig’s head direction and (1) any of the 4 lines of the quadrangle 
drawn around the window to the adjacent pen or (2) any of the 4 lines of 
the quadrangle drawn around the entrance to the arena or (3) any of the 
17 lines between the key points of the human’ skeleton (Figs. 4c and 4d). 
The intersection between the line indicating the pig’s head direction and 
any of the lines specifying the three areas was calculated according to 
Eqs. 11 and 12, 

I1 =[(l2y−l1y

)
(l2x − l1x

)
− (l2x−l1x

)
(l2y − l1y

)][
(l2y−l1y

)
(l2x − l2x

)

− (l2x−l1x

)
(l2y − l2y

)]

(11)  

I2 =
[
(dy−sy

) (
dx − l1x

)
−(dx−sx

)(
dy − l1y

)][
(dy−sy

) (
dx − l2x

)

–(dx−sx

) (
dy − l2y

)]

(12)  

where I1 and I2 denoted two cross products of the 2 lines. The Cartesian 
coordinates of the snout was denoted by (sx, sy), of the point at the end of 
the line indicating the direction of the pig’s head by (dx, dy). The Car-
tesian coordinates of any of the lines specifying the 3 areas inside the 
arena was denoted by (l1x, l1y) and (l2x, l2y). The intersection between 
both lines was registered if both I1 and I2 had values lower than 0. If 
either I1 or I2 was higher than 0 the pig was not directed to any of the 
three designated areas in the test arena. 

3. Results 

The YOLOv8 models trained to detect the human and the pig in the 
test arena reached similar performance of 0.86 mAP and 0.85 mAP, 
respectively on 55th and 75th epochs (Figs. 5a and 5b). The perfor-
mance was similar despite the fact that the model for the detection of the 
human was trained on 250,073 human instances with 250,000 instances 
from COCO dataset and 73 from the test arena, whereas the model for 
detection of the pig was trained on 5083 pig instances with 5016 in-
stances from the dataset of Juarez et al. (2023) and 67 from the test 
arena. In contrast to the object detection model, the VitPose model for 
skeleton detection of the human reached lower performance of 0.65 
mAP on the 985th epoch than the VitPopse model for skeleton detection 
of the pig that reached 0.78 mAP on the 440th epoch (Figs. 5c and 5d). 

The average distance between the human and the pig in the test 
arena was 31.03 cm (SD = 35.99). Out of the total duration of human- 
pig interaction tests of 35 h, pigs spent half of the time (17.5 h) within 
10.44 cm distance to the human or closer (Fig. 6a). This was derived 
from the median distance between the human and the pig. 

Out of the three predefined areas in the arena i.e. the window to the 
companion arena with pigs, the entrance to the arena and the human, 
pigs spend the most time with their head directed at the human i.e. 12 
hrs 11 min (34.83 %). Pigs’ heads were directed towards the entrance or 
the window for a similar duration of 3 hr 22 min (9.66 %) and 4 hrs 
(11.47 %) respectively (Fig. 6b). 

4. Discussion 

The better performance of the model for detection of the pig’s skel-
eton than the model’s for detection of the human’s skeleton (0.78 mAP 
vs 0.65 mAP) might be related to the fact that human instances in the 
COCO dataset are mostly recorded from the frontal perspective or from a 
slight angle view, while the human in the test arena were only recorded 
in top view in our study dataset. Thus, it is possible that the pre-trained 
ViTPose model needed more examples with human skeletons in the test 
arena, in top view to reach similar performance to the VitPose model 
that was trained on the pig images. Pigs were recorded mostly in top 
view in both data subsets used for training i.e. in the dataset of Juarez 
et al. (2023) and from the current study in the test arena, hence offering 
a more homogeneous dataset. Similar performance of the YOLOv8 
model trained to detect the human (0.86 mAP) and YOLOv8 model 
trained to detect the pig (0.85 mAP) suggests a better robustness of 
YOLOv8 to changes in camera perspectives than of the ViTPose model, 
or more limited possibility to re-train a large pre-trained ViTPose model 
to a different camera perspective. Further investigation and tests are 
required with other skeleton detection models than the ViTPose model, 
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e.g. RSN (Cai et al., 2020) to verify if this phenomenon is model-specific. 
The results of the ViTPose model trained for detection of pig’s 

skeleton with 0.78 mAP were similar to results obtained in the study of 
Juarez et al. (2023) in which the ViTPose model achieved a performance 
of 0.82 mAP. Slightly better performance of the model in the study of 
Juarez et al. (2023) might be related to the presence of more pigs from 
the same environment in the training and the validation sets, i.e. 585 
instances in the training set in the study of Juarez et al. (2023) versus 67 
instances in the current study. A similar paradigm of probable influence 
of dataset size on model performance was observed when comparing the 
performance of object detection model YOLOv8 for the detection of pigs 
with the performance of object detection model YOLOX applied in the 
study of Oczak et al. (2023) a training dataset with 9969 instances 
versus 67 instances in the current study. YOLOX achieved a performance 
of 96.5 mAP in the study of Oczak et al. (2023) in comparison to 0.85 
mAP of YOLOv8 in the current study. Thus, YOLOX had better perfor-
mance than YOLOv8 despite the fact that YOLOX is an older model 
achieving worse performance than YOLOv8 on the MS COCO bench-
mark dataset with 80 object categories. 

When visually exploring the results of object and key point detection 
models no misclassification was observed that could negatively affect 

the measurement of head orientation or distance between the pig and 
the human. This performance was achieved despite the fact that few 
images from the test arena were used to either re-train or train the 
models i.e. 73 human instances and 67 pig instances. This is promising 
as in the future applications, e.g. for studies on human-animal re-
lationships, time will be saved on laborious labeling of dataset specific 
pig’s and human’s skeletons. 

The average distance between the human and the pig detected in the 
present study (31.03 cm) was shorter than the average distance of 
56–85 cm in the “walking human test” in the study of Tanida et al. 
(1995) in which the human walked inside the arena after initial contact 
with the pig, although their area was 64 % larger (240 cm×160 cm) 
than in the present study (147 ×168 cm). 

In the study of Hemsworth et al. (1986) in an arena test of 3 min 
duration pigs in three study groups spent on average 58 s (32.2 % of test 
duration), 47 s (26.1 %) and 26 s (14.4 %) in a proximity of 0.5 m to a 
human. The three groups of piglets received various handling by humans 
before the arena tests. The first group received regular handling (i.e. 
3 min daily) by humans from 12 hrs after birth until 8 weeks of age. The 
second group received regular handling (i.e. 3 min daily) by humans 
from 27 days after birth until 8 weeks of age. The last group got routine 

Fig. 5. Results of validation of the YOLOv8 and ViTPose models on every 5th epoch during the training process a) The YOLOv8 model trained to detect the human. B) 
The YOLOv8 model trained to detect the pig. C) The ViTPose model trained to detect human’s 17 key point skeleton. D) The ViTPose model trained to detect pig’s 16 
key point skeleton. 
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husbandry handling by humans. The average time spent in the proximity 
of 0.5 m to the human in our study was 7 min 13 s (72.3 %) in a 10 min 
test, which was more than for any of the groups in the study of Hems-
worth et al. (1986) percentage wise. Pigs in our study were habituated to 
the presence of a human for 10 min daily in a period from about 28 days 
to 8 weeks of age, so very similar to the second group in the study of 
Hemsworth et al. (1986). Large proportion of time spent in close prox-
imity to a human in our study might confirm the results of Hemsworth 
et al. (1986) indicating that habituation to the presence of a human in 
early life influences the behavioral response of pigs to humans later in 
life. However, the much smaller size of the arena in our study, which was 
nearly six times smaller (2.5 m2 vs 14.4 m2) than in the study of 
Hemsworth et al. (1986), possibly influenced the proportion of time 
spent in close proximity to a human. 

Interestingly the time spent looking at the human in our study was 
longer percentage wise (34.83 %) than in the result obtained by Tallet 
et al. (2014) for pigs that received gentle tactile contact from a human in 
a period from day after weaning until approx. 8 weeks of age i.e. on 
average 8 s (6.7 %) and 17.5 s (14.6 %) in a 2 min test. The reason for 
this difference, as in the studies cited above for comparison of time spent 
in close proximity to a human, might be the bigger size of the test arena, 
which was approximately three and a half times bigger (2.5 m2 vs 9 m2) 
in the study of Tallet et al. (2014) than in our study. 

A similar methodology for the estimation of the pig’s head direction 
to the one applied in the current study was used in the study of Oczak 
et al. (2022). In this study the sow’s head direction was estimated based 
on a line projected between the nose and the point between the ears of 
the sow instead of the neck as in our study. The distance between the 
closest point on this line and the center of the hay rack indicated the 
degree to which the sow’s head was directed towards the hay rack in the 
pen. This feature variable was then used together with several other 
feature variables to estimate the time spent by the sow on the use of hay 
rack in the pen. In our current study the estimated head’s direction was 
used to binary classify attention of the pig towards predefined areas in 
the pen by estimation of intersection with lines specifying the location of 
the areas i.e. attention was directed towards the area or not rather than 
attention expressed as continuous variable as in the study of Oczak et al. 
(2022). Binary classification of attention of the pig towards pen areas 
based on intersecting lines has the advantage of easier interpretability 
without the need of introducing additional thresholding on the calcu-
lated variable similarly as in the study of Oczak et al. (2022). Another 

difference between both studies was the type of models used to detect 
the body parts. In the study of Oczak et al. (2022) both the ears and the 
nose were detected with object detection model RetinaNet instead of the 
key body point detection model as in the current study. This potentially 
reduces the robustness of detections towards occlusions in the pen as 
skeleton detection models should be more robust to occlusions, de-
formations and novel poses (Newell et al., 2016; Toshev and Szegedy, 
2013). Note however that as we cautioned before, pigs have a larger 
field of vision than for example humans and other predator species, 
combining a large panoramic vision on their sides and a narrower 
binocular vision in front of them, and therefore the direction of their 
head is only an approximation of their visual attention (Prince, 1977). 

We successfully developed a method based on computer vision to 
automatically measure the distance and visual attention that could be 
directly applied in human-animal relationship tests. This approach 
could also be used in other types of behavioral tests such as open field 
and novel object tests to measure the animal’s reaction towards objects 
or features of their environment. With slight modifications the method 
could be used in human-animal relationship tests to measure other as-
pects of human-animal interaction such as approaching, following or 
avoiding the human, object, situation or other variables of interest (for a 
review, see Waiblinger et al., 2006 or Rault et al., 2020). The method 
could be used in a scoring system of the test, such as pig withdraws at a 
distance of > one arm’s length, pig withdraws at a distance of ≤ one 
arm’s length, pig can be touched at the snout or at the head, or pig can be 
touched behind the at the snout, head, ears and neck. 

The first out of two examples of how the method could be simply 
adapted to extend its application might be in novel object tests to 
measure touching the object. The object would have to be detected first 
with an object detection model. Then it would be necessary to decide on 
a distance around pig’s key points that indicate the touch e.g. 3 cm 
around the snout. The second example of the adaptations of the method, 
this time to detect interaction with the human, could involve deciding 
on specific human key points that need to be in close proximity to pig 
key points, as probably not all human key points are relevant for the 
interaction e.g. nose or shoulders. Then deciding on a threshold distance 
between pig’s key points and human key points would be needed e.g. 
wrists in 3 cm proximity to any pig’s key point. 

In order to extend the method to behavioral tests involving groups of 
animals such as latency until the first pig of the group approaches the 
novel object or the human, the method of tracking individuals in a group 

Fig. 6. Feature variables a) Distance between the pig and the human. B) Pig’s visual attention proxy towards predefined areas in the test arena.  
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would have to be integrated with the method presented in the current 
study. For example, tracking methods based on Graph Convolutional 
Networks (Parmiggiani et al., 2023) could be used. Alternatively, object 
detection methods, which simply detect distinctive spray marks on the 
back of the pigs usually used in behavioral tests, could be used. 

The attitude and behavior of stockpeople affect the animals’ fear of 
humans, which ultimately influence animals’ productivity and welfare 
(Zulkifli, 2013). Thus, a very interesting area of application of the 
method is for automatic detection of human-animal interactions in the 
practical farm environment to evaluate the quality of care by staff on 
farms. This could be integrated with an evaluation of farm animal 
welfare such as the Welfare Quality Protocol (Welfare Quality®., 2009) 
or the implementation of routine monitoring with computer vision. 

5. Conclusions 

The developed computer vision method to automatically measure 
distance and visual attention proxy could be directly applied in human- 
animal relationship tests. This approach could also be used in other 
types of behavioral tests such as open field and novel object tests to 
measure the animal’s reaction towards objects or features of their 
environment. The applications of our method offer a possibility to 
extract those variables in an automated way, reducing the need for time- 
consuming manual observation or labeling of videos. It can also support 
objective analysis of animal behavior and human-animal relationships. 
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