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SUMMARY
Little is known about the critical metabolic changes that neural cells have to undergo during development and
how temporary shifts in this program can influence brain circuitries and behavior. Inspired by the discovery
that mutations in SLC7A5, a transporter of metabolically essential large neutral amino acids (LNAAs), lead to
autism, we employed metabolomic profiling to study the metabolic states of the cerebral cortex across
different developmental stages. We found that the forebrain undergoes significant metabolic remodeling
throughout development, with certain groups of metabolites showing stage-specific changes, but what
are the consequences of perturbing this metabolic program? By manipulating Slc7a5 expression in neural
cells, we found that the metabolism of LNAAs and lipids are interconnected in the cortex. Deletion of
Slc7a5 in neurons affects the postnatal metabolic state, leading to a shift in lipid metabolism. Additionally,
it causes stage- and cell-type-specific alterations in neuronal activity patterns, resulting in a long-term circuit
dysfunction.
INTRODUCTION

Human cortical development entails the timely coordination of a

number of steps that are devised to generate a precise range of

correctly positioned and functionally integrated neuronal cells.

These steps are guided and regulated by a network of genes

whose mutations can underlie neurodevelopmental and neuro-

psychiatric disorders.1 Challenging environmental conditions

may also account for pathological variations of neurodevelop-

ment but the identification of such factors is complicated and

less understood.2–5 Genetic conditions, however, offer tractable

entry points to isolate some of the extrinsic factors influencing

the assembly of the brain.

We recently identified mutations in the gene SLC7A5, encod-

ing a large neutral amino acid (LNAA) transporter (LAT1), as a rare

cause of autism spectrum disorders.6 Most of the LNAAs are

essential; thus, their presence in the human body depends on

dietary intake. However, it remains largely unknown whether

and how the level of these amino acids (AAs) changes over

time in the brain and how fluctuations in their amount may influ-

ence the course of neurodevelopment. In fact, little is known
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about the metabolic program unfolding during brain develop-

ment and the specific nutrient dependencies that this entails.

For example, there are little data on how brain metabolism

changes immediately after birth. This period is interesting since

the brain undergoes a series of maturation processes while the

organism has to adapt to new feeding and environmental condi-

tions. Understanding how specific nutrients can influence brain

maturation may be key in preventing or correcting aspects of

certain neurodevelopmental conditions.

Here, we profiled the metabolome of the mouse cerebral cor-

tex at various developmental stages, thereby defining significant

longitudinal changes. Based on these results, we identified a

perinatal time window when the forebrain exhibits an increased

dependency on LNAAs. Thus, we studied the effect of perturbing

the perinatal metabolic state by limiting the amount of these

essential AAs in neural cells. In doing so, we identified a pivotal

and unexpected function of LNAAs during a temporal window

crucial for cortical network refinement. Precisely, we found that

altering the levels of LNAAs in cortical neurons changes their lipid

metabolism along with excitability and survival probability in

a cell-autonomous manner, specifically early after birth. Our
, April 27, 2023 ª 2023 The Author(s). Published by Elsevier Inc. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Metabolome profiling of the forebrain across time highlights developmental stage-specific metabolic states

(A) Schematic description of ATP synthesis strategies in the cortex at different developmental stages. Top left: at E14.5, neural progenitor cells (NPCs) produce

intermediate progenitors and migrating immature excitatory neurons, generating the different cortical layers. Bottom left: for ATP synthesis, NPCs rely on

anaerobic glycolysis, a cytoplasmic biochemical process converting glucose into lactate. Top middle: perinatally, the cortical network, mainly consisting of

maturing excitatory and inhibitory neurons, undergoes significant refinement. Glial cells are detectable but immature. Bottommiddle: the metabolic landscape of

maturing neurons is largely unknown. Top right: amature cortical network, including pyramidal (green), inhibitory neurons (blue) and glial cells (astrocytes [purple],

oligodendrocytes [orange] and microglia [pink]). Bottom right: mature neurons utilize glucose to produce ATP via aerobic glycolysis. Since endogenous pyruvate

is insufficient to meet energy demand, neurons depend on metabolic support by glial cells (TCA, tricarboxylic acid cycle; OXPHOS, oxidative phosphorylation).

(legend continued on next page)
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results offer a model of how mammalian neurons coordinate the

expression of a nutrient-associated gene with the regulation of

neuronal activity to ensure proper brain development. Altering

these processes during a limited but critical time window results

in permanent cortical circuit defects.

RESULTS

Metabolome profiling reveals distinctive metabolic
states of the cerebral cortex across development
Little is known about the metabolic program adopted by the

maturing brain. For example, we know that neural progenitor

cells (NPCs) mainly rely on anaerobic glycolysis (Figure 1A

left).7,8 In contrast, mature neurons meet their ATP demand

through oxidative phosphorylation (OXPHOS) (Figure 1A right),

but due to their high energy requirement and their inability to

store glycogen,9,10 they rely on astrocytes to provide metabolic

support.11,12 However, it is unknown how maturing neurons

meet their energy demand at intermediate developmental stages

when they lack full glial support (Figure 1A middle).

To gain an understanding of the metabolic states and transi-

tions occurring during brain maturation, we analyzed the metab-

olome of the wild-type mouse cerebral cortex obtained at three

different time points: embryonic day 14.5 (E14.5), postnatal

day 2 (P2), and postnatal day 40 (P40). These time points coin-

cide with different feeding strategies and are enriched for neural

cells in different states: NPCs and immature (E14.5), maturing

(P2), and mature (P40) neurons (Figure 1A). By employing two in-

dependent high-performance liquid chromatography (HPLC)

detection strategies (see STARMethods), we quantified 346me-

tabolites. Principal-component analysis (PCA) of the results

separated the samples based on sampling age (Figure 1B), indi-

cating that the cerebral cortex at each of these three time points

is in a distinct metabolic state. The metabolic reorganization of

the developing cortex is extensive, with the level of 273 out of

346 metabolites changing over time (Figures 1C and 1C0). The
variability across animals of the sameagewas small (Figure S1A),

indicating that the observed changes are tightly regulated.

Compared with E14.5, at P2, the level of 137 metabolites is

significantly decreased and that of 60 increased (Figure 1C). At

P40, 202 metabolites show a different level than at P2, with an

approximately equal number of metabolites showing increased

or decreased levels (Figure 1C0). Enrichment analysis revealed

an overrepresentation of purine- and pentose phosphate-related

metabolites among those increasing at P2 (compared with

E14.5) and enrichment of AA-related metabolites among those

decreasing (Figure 1D). At P40, we detected a substantial in-

crease in glutamine and glutamate-related metabolites and a
(B) Principal-component analysis of the metabolome of E14.5, P2, and P40 wild-

(C and C0) Volcano plots showing differentially abundant metabolites across dev

(D and E) Metabolic pathway enrichment analysis of all significantly upregulated (r

compared with P2 (E).

(F) Clustering of all metabolites based on their trajectory over time; (x axis: age;

(G) Metabolic pathway enrichment analysis (Data S2) revealed an overrepresen

p < 0.021), ‘‘b-alanine metabolism’’ (p < 0.059; adj-p < 0.4) and ‘‘neuroactive ligan

for ‘‘glycerophospholipidmetabolism’’ (p < 0.013; adj-p < 0.24) and ‘‘arginine bios

isoleucine biosynthesis (p < 0.0035; adj-p < 0.22) and -degradation’’ (p < 0.035;

See also Figures S1 and S2.
decrease in a different set of AAs (Figure 1E), disclosing a

stage-specific regulation of AA metabolism. To better under-

stand the quality of these changes over time, we plotted the

developmental trajectories of the detected metabolites (Fig-

ure S2 gray trajectories; Data S1). Employing a Gaussian mixture

model (GMM), we clustered all measured metabolites based on

their time trajectories. Next, focusing on Kyoto Encyclopedia of

Genes and Genomes (KEGG)-annotated metabolites (n = 179)

(Figure 1F), we assessed whether different trajectory-related

groups were enriched for particular classes of metabolites (Fig-

ure 1G; Data S2). This analysis revealed a predictable enrich-

ment for neuroactive and cAMP signaling pathways in the cluster

representing metabolites with ascending trajectories over time

(cluster 1, Figures 1F and 1G), with the majority of the metabo-

lites steeply increasing between P2 and P40. Furthermore, we

found that cluster 5, comprising metabolites with declining tra-

jectories over time, is enriched for branched-chain AAs

(BCAAs) and BCAA-related metabolites (Figures 1F and 1G).

This cluster sparked our interest since BCAAs are substrates

of the SLC7A5 transporter. The decline over time of these and

a few other AAs (i.e., Figure S2; gray trajectories, metabolite

[M] 016, M017, M030, M062, and M086) could indicate either a

decreasing brain intake or an increasing utilization by neural cells

as theymature. Either way, this observation further suggests that

neural cells have distinctive AA demands at different develop-

mental stages. Finally, the only other cluster enriched for specific

classes of metabolites is cluster 3, which displays a drop in glyc-

erophospholipid (GPL)- and arginine-related metabolite levels,

specifically at P2 (Figures 1F and 1G).

Perturbation of LNAA uptake leads to perinatal
disruption of lipid metabolism
Knowing that the level of BCAAs and BCAA-related metabolites

changes during brain maturation, we investigated the conse-

quences of limiting BCAA supply to neural cells. Therefore, we

ablated Slc7a5, the main LNAA transporter, in these cells.

Indeed, although Slc7a5 has been described as a blood-brain

barrier (BBB) transporter,6 we found that, in the cerebral cortex,

it is also expressed in excitatory neurons and glial cells of all

layers, particularly perinatally (Figures 2A–2C0, S1B, and S1C),

coinciding with the timewindow displaying a drop in BCAA levels

(Figures 1F and 1G cluster 5). In addition, while patients with

SLC7A5 mutations present with microcephaly, the deletion of

Slc7a5 from the BBB in mice (Slc7a5fl/fl;Tie2-Cre positive [+]

mice) does not lead to a reduction in brain size.6 This suggests

a function of SLC7A5, and its substrates, in cell types other

than the endothelial cells of the BBB. Thus, we crossed floxed

Slc7a5 mice (Slc7a5fl) with Emx1-Cre animals. Emx1-Cre mice
type mouse cortices.

elopmental stages.

ed) or downregulated (blue) metabolites at P2 compared with E14.5 (D) and P40

y axis: scaled abundance).

tation of metabolites related to ‘‘cAMP signaling pathway’’ (p < 0.00075; adj-

d-receptor pathway’’ (p < 0.016; adj-p < 0.22) in cluster 1. Cluster 3 is enriched

ynthesis’’ (p < 0.037; adj-p < 0.25). Cluster 5 is enriched for ‘‘valine, leucine, and

adj-p < 0.89).
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express the Cre recombinase in the radial glial cells of the dorsal

telencephalon from E9.5 onward,13 thereby inducing Slc7a5

deletion in NPCs and their progeny, including the excitatory

neurons of the neocortex and hippocampus as well as in the glial

cells of the pallium (Figures 2A and S1D), but not in the endothe-

lial cells of the BBB (Figure 2C0). Next, we analyzed the metabo-

lome of the cerebral cortex of Slc7a5fl/fl;Emx1-Cre+ mice over

time and compared it with that of wild-type animals. This

approach allowed us to resolve (1) the cause of the drop in

LNAAs (particularly BCAAs) observed in P2 wild-type cortical ly-

sates (Figure S2, gray trajectories M016, M017, M030, M062,

and M086) and (2) the impact of deregulating these AAs on the

metabolism of the cerebral cortex. The effect of Slc7a5 deletion

on the overall metabolite profile is relatively minimal (Figure S1E).

To investigate whether SLC7A5mutations affect specific groups

of metabolites, we performed an enrichment analysis of the

KEGG-annotated metabolites showing divergent temporal tra-

jectories (r < 0.975) in mutants and controls (Figures 2D–2H

and S2; Data S1 and S2). As expected, this analysis identified

the pool of AAs transported by Slc7a5, grouped into the term

‘‘aminoacyl-tRNA biosynthesis’’ (Figure 2G), as the major class

of affected metabolites in mutant animals. However, the deletion

of Slc7a5 alters the levels of these AAs in cortical tissue only at

P2 (Figure 2H), indicating a function of Slc7a5 in neonatal mice.

Furthermore, the level of these AAs is higher, not lower, in mu-

tants compared with controls (Figure 2H), suggesting that in the

absence of Slc7a5, the LNAAs accumulate in the extracellular

space and are not consumed by neural cells (Figure 2I). To test

this possibility, we quantified AAs in neural cells isolated from

P2 control and mutant cortices (Figure 2J), thereby measuring

their intracellular amount. Indeed, the levels of the primary

Slc7a5 substrates are significantly reduced in mutant cells. In

contrast, the level of histidine, the counter AA,14 is increased

(Figure 2K). Thus, the lack of Slc7a5 at P2 impairs the transport

of LNAAs into neural cells resulting in their net decreased con-

sumption. These results also indicate that the drop in AA levels

observed in P2 control samples (Figure 2H) reflects an increased

utilization by neural cells.

Although the BCAAs are a source of acetyl-CoA, an essential

compound for the tricarboxylic acid (TCA) cycle,15 we observed
Figure 2. The neonatal metabolic state is dependent on Slc7a5 expres

(A) Slc7a5 expression in the cerebral cortex of wild-type (left), Slc7a5fl/fl;Tie2-Cre

(B) Gapdh-normalized Slc7a5 levels in cortical samples obtained from Slc7a5fl/fl;T

*p < 0.05; **p < 0.01; unpaired two-tailed t test).

(C and C0) Slc7a5 mRNA expression in P2 murine wild-type somatosensory cor

expression is preserved at the BBB (arrows) (scale bars, 100 mm and 10 mm).

(D–F) Ternary plot classification of metabolites in wild-type andmutant cortex. (D)

its previously determined cluster affiliation (Figure 1F) and its exact unscaled tra

KEGG-annotated metabolites in wild-type mice. (F) Compared with controls

(cyan dots).

(G) Metabolic pathway enrichment analysis of the KEGG-annotated metabolites

(H) Stage-specific accumulation of Slc7a5 substrates in Slc7a5fl/fl;Emx1-Cre+ co

Data S1; x axis: age; y axis: scaled abundance).

(I) Slc7a5 facilitates the flux of BCAAs and LNAAs across the neuronal membr

depletion of LNAAs (bottom).

(J) Experimental workflow of the targeted intracellular metabolomic analysis.

(K) Volcano plot of the AAs measured in Slc7a5 mutant and control cells. AAs

indicated (n = 7 per genotype; FDR cutoff: 1%).

See also Figures S1 and S2.
only a verymild reduction in the levels of some of the energy stor-

age- and transfer-related metabolites (Figures S3A–S3F), sug-

gesting compensatory mechanisms. Indeed, while a derailment

of energy homeostasis hasbeenassociatedwith increased levels

of oxidative stress,16–18 the ratio between reduced and oxidized

glutathione was not altered in Slc7a5-mutant cells (Figure S3G).

Further, the decrease in intracellular LNAAs does not lead to de-

fects in AA sensing and protein synthesis pathways, such as the

mammalian target of rapamycin (mTOR), the adenosine-mono-

phosphate-activated protein kinase (AMPK), or the unfolded

protein response (UPR) signaling cascades (Figure S4).19–24

However, we found that loss of Slc7a5 in neurons affects the

levels of metabolites related to ‘‘GPLs’’ (Figure 2G; Data S2).

Specifically, a PCA of all the detected lipid-related metabolites

disclosed that while at E14.5 and P40 mutant and control sam-

ples cluster together, P2 samples separate by genotype (Fig-

ure S3H), thereby suggesting a time-point-specific alteration in

lipid composition due to the loss of Slc7a5, but how are BCAA

and lipid metabolism linked? To better comprehend how a

change in BCAA levels can disrupt lipid metabolism, we first

identified the exact lipid classes affected by Slc7a5 deletion.

Thus, we performed a comparative untargeted lipidomic analysis

of P2 Slc7a5fl/fl;Emx1-Cre+ and Slc7a5fl/fl;Emx1-Cre� cortical

tissue and dissociated cells (Data S3). These analyses revealed

a specific reduction of GPLs in mutant cortical cells, along with

an increase of triacylglycerols (TGs) in Slc7a5 deficient cortical

tissue (Figures 3A and 3B). Members of the GPLs are the main

components of the phospholipid bilayer of biological mem-

branes.25 TGs, on the other hand, account for the majority of di-

etary fats and represent a way to store energy.26 Sites of TG syn-

thesis and storage are the liver and adipose tissue,27,28 but they

can be mobilized rapidly in case of energy or fatty acid (FA) de-

mand by the brain.29,30 To determine whether detected alter-

ations are specific to any cell type, we compared our results

with a dataset of human cortical cell-type-specific lipids.31 Inter-

estingly, several of the lipids differentially abundant in Slc7a5

mutants are neuron enriched, while astrocyte-enriched lipids

are not affected in mutants (Figure 3C).

Next, to uncover the molecular mechanisms underlying the al-

terations in the cortical lipid profile, we performed a comparative
sion

+ (middle), or Slc7a5fl/fl;Emx1-Cre+ (right) mice.

ie2-Cre+ animals across development (n = 4 mice per genotype per time point;

tex (SSCtx) (C and C0 [left]). In Slc7a5fl/fl;Emx1-Cre+ SSCtx (C0 [right]), Slc7a5

The localization of eachmetabolite (dot) within the ternary plot is determined by

jectory, defined as the ratio between the three time points. (E) Ternary plot of

(gray dots), mutants display changes in the trajectory of some metabolites

displaying an altered trajectory in mutants (Data S2).
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ane (top). Loss of Slc7a5 causes extracellular accumulation and intracellular
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proteomic study of perinatal control and mutant cerebral

cortices (Figures 3D and S3I). We identified 1,202 proteins de-

regulated in mutant samples, comprising 954 upregulated and

248 downregulated proteins in the Slc7a5fl/fl;Emx1-Cre+ cortex

(Figure 3D). Gene ontology (GO) enrichment analysis returned

proteins involved in lipid metabolism as being the most signifi-

cant and numerous among the upregulated proteins (Figure 3E

right), while among the downregulated GO terms, we found an

enrichment for neuron projection and membrane-associated

proteins (Figure 3E left; Data S4). Those GO terms were repro-

ducible at the mRNA expression level (Figure S3J; Data S5)

and linked to the reduction of GPLs32 (Figures 3A and 3B). Impor-

tantly, we did not observe changes in the B1/B3 integrin

signaling cascade.33 Indeed, a co-immunoprecipitation experi-

ment of Slc7a5 from neural cells, while confirming its interaction

with Slc3a2,34 excluded interactions with components of the B1/

B3 integrin pathway (Data S6).

Finally, to identify the connection between BCAA and GPL

metabolism, we integrated the proteomic, lipidomic, and metab-

olomic results focusing on potential convergent pathways (Fig-

ure 3F). Via this integration, we recognized that Slc7a5 mutant

cells, probably due to the shortage of BCAAs, prioritize mito-

chondrial BCAA catabolism, part of the ATP production machin-

ery, over cytoplasmic BCAA catabolic reactions (i.e., Bcat2 vs.

Bcat1; Figure 3F). Most importantly, about half of the enzymes

involved in BCAA metabolism in the mitochondria are also

involved in FA b-oxidation, thereby disclosing a molecular over-

lap between BCAA and lipid catabolism (Figure 3F). The reduc-

tion of the intracellular BCAA levels leads to a compensatory up-

regulation of several of these shared enzymes (e.g., Acaa2,

Acadm, and Echs1), thereby increasing FA b-oxidation and

causing a drop in FAs. These results suggest that neurons at

the perinatal stage rely on BCAAs as substrates for ATP produc-

tion (Figure S3K). In their absence, FAs are redirected from GPL

synthesis into b-oxidation (Figure 3F). The observed increase in

tissue TGs reflects the increased demand for FAs to support

b-oxidation and ATP production. Indeed, the increase of TGs

in mutant cortical tissue is accompanied by the upregulation of

Gcn2 and Apob. Gcn2 is a kinase acting as a sensor for intracel-

lular BCAA levels.35 Low levels of BCAAs induce Gcn2

autophosphorylation, resulting in the inhibition of its protein turn-

over.36,37 Interestingly, Gcn2 has also been involved in the mobi-

lization of TGs from fat storage in response to brain energy

demand.30,38 Apob constitutes the primary lipoprotein transport-

ing dietary lipids across tissues.39 Finally, Slc7a5 mutants also

show an increased level of Bckdk, a regulator of the BCAA cata-
Figure 3. BCAA deprivation alters neuronal lipid metabolism

(A and B) Volcano plots of deregulated lipids in Slc7a5 mutant cortical tissue (A) a

color-coded according to their annotated class (PI, phosphatidylinositol; PE, pho

cardiolipin; TG, triacylglyerol; _pos, detected in positive mode; _neg, detected in

(C) Same plot as in (B) with neuron-enriched (blue) or astrocyte-enriched lipids (o

(D) Volcano plot of proteins deregulated (1% false discovery rate (FDR) cutoff) in

(E) GO-term enrichment analysis of up- and downregulated proteins at 2% FDR

(F) Integration of the proteomic, metabolomic, and lipidomic data of P2 cortical ti

pathways: ‘‘BCAA catabolism,’’ ‘‘FA degradation’’ (b-oxidation), ‘‘FA synthesis

expression or abundance due to Slc7a5 depletion are color-coded (blue: decreas

are highlighted by a dashed rectangle.

See also Figures S3 and S4.
bolic pathway also implicated in the phosphorylation of cyto-

plasmic Acl, a key enzyme in citrate-based lipogenesis.40

These findings suggest an increased perinatal dependency of

neural cells on LNAAs. Decreased availability of these AAs re-

veals a direct link between BCAAs and lipid metabolism in

the brain.

Lack of the AA transporter SLC7A5 leads to stage-
specific neuronal cell loss
Can the perinatal metabolic shift displayed by Slc7a5 mutant

neural cells explain some clinical issues reported in patients?

Slc7a5fl/fl;Emx1-Cre+ mice are born at Mendelian ratios, are

viable and at birth do not display obvious growth defects

compared with their wild-type littermates (i.e., Slc7a5fl/fl;Emx1-

Cre� or Slc7a5fl/+;Emx1-Cre+ mice) (Figure S5A). In agreement

with Slc7a5 expression profile (Figure S1B) and the AA profile,

which changes only postnatally, Slc7a5fl/fl;Emx1-Cre+ mutants

are born with normal brain size (Figures S5B and S5C), indicating

that Slc7a5 is dispensable in the NPCs of the forebrain. Thus,

SLC7A5 mutations do not lead to microcephaly by hindering

the generation of an appropriate number of neurons. However,

by P40, the brain of Slc7a5fl/fl;Emx1-Cre+ mice is significantly

smaller than that of their control littermates (Figures 4A, 4A0,
and S5D). Histological analysis revealed a reduction in the thick-

ness of the cerebral cortex of P40 Slc7a5fl/fl;Emx1-Cre+ animals

(Figures 4B and 4B0), with layers II and III being the drivers of this

difference (Figures S5E–S5G0). By monitoring the brain weight

over time, we found that the difference in brain size between con-

trol and Slc7a5mutant animals appears during the first postnatal

week (Figure 4C) and remains stable from P10 onward, coin-

ciding with the increased Slc7a5 expression levels in neural cells

perinatally (Figures 2A and 2B). This time course supports a tem-

poral dependence of Slc7a5 function in postnatal neurodevelop-

ment. To test whether the phenotype reflects an increase in post-

natal neural cell death, we assessed the protein level of cleaved

(Cl)-caspase-3, a pro-apoptotic marker, on cortical samples ob-

tained from control and mutant mice across development.

Compared with controls, mutants show a significant increase

in Cl-caspase-3, specifically at P2 and P5 (Figure 4D). In line

with the reduction of layers II–III thickness (Figures S5E–S5G0),
most apoptotic cells are localized in the upper cortical layers

(Figures S5H and S5I). Importantly, the period affected by the

surge in Cl-caspase-3 levels corresponds to the phase of pro-

grammed cell death targeting cortical excitatory neurons. This

is an innate process required to refine the number of neurons

in the cerebral cortex.41 Specifically, to obtain a calibrated
nd dissociated cells (B). Lipids showing significantly lower or higher levels are

sphatidylethanolamine; PC, phosphatidylcholine; PS, phosphatidylserine; CL,

negative mode; n = 5 per genotype; p value cutoff: 0.05; Data S3).

range) highlighted (Data S3).

the P5 Slc7a5fl/fl;Emx1-Cre+ cortex.

(Data S4).

ssue and cells. The schematic depicts enzymes associated with the metabolic

/elongation,’’ ‘‘glycolysis,’’ and ‘‘glycerophospholipid synthesis.’’ Changes in

ed; red: increased; *p < 0.05). Enzymes shared by the BCAA and FA pathways
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Figure 4. Slc7a5 mutations cause postnatal microcephaly

(A) Pictures of adult Slc7a5fl/fl;Emx1-Cre+ and control brains. (A0) Brain-to-body weight ratio of adult Slc7a5fl/fl;Emx1-Cre+mice and littermate controls (means ±

SEM; n = 15 mice per genotype; *p < 0.05; unpaired two-tailed t test).

(B and B0) Representative images (B) and quantification (B0 ) of Nissl-stained coronal sections of P40 mutant and control SSCtx (means ± SD; n = 3 littermates per

genotype; ***p < 0.001; unpaired two-tailed t test; scale bar, 1,500 mm).

(C) Slc7a5fl/fl;Emx1-Cre+ mice develop postnatal microcephaly during the first 10 days after birth (means ± SD; n R 3 littermates per genotype/time point;

*p < 0.05; ***p < 0.001; ****p < 0.0001; multiple unpaired two-tailed t test).

(D) Gapdh-normalized cleaved-caspase-3 expression in mutant and wild-type cortex across development (means ± SD; n = 4 mice per genotype time point;
nsp > 0.05; ****p < 0.00001; multiple unpaired two-tailed t test).

(E and G) Frontal and lateral images of patient 130-1 and 130-2, diagnosed with SLC7A5 compound heterozygous pathogenic variants.

(F and H) Measurements of the head circumference of the two patients showing the progression of microcephaly.

See also Figure S5 and Table S1.
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network, cortical neurons are generated in excess and subse-

quently eliminated by two waves of apoptosis, one of which oc-

curs early after birth. Additionally, previous studies have shown

that to obtain an optimal pyramidal/inhibitory neuron ratio, the

wave of apoptosis affecting cortical excitatory neurons around

P5 is followed by an adjustment in the number of inhibitory neu-

rons.42 Thus, although Slc7a5fl/fl;Emx1-Cre+ mice only lack

Slc7a5 expression in the excitatory neurons of the forebrain,

the number of inhibitory cells might be indirectly affected.
8 Cell 186, 1–18, April 27, 2023
Indeed, compared with their littermate controls, adult Slc7a5fl/-

fl;Emx1-Cre+ animals have a significantly lower number of inhib-

itory neurons, particularly in the upper cortical layers

(Figures S5J and S5K). In contrast, non-neuronal cells are unaf-

fected (Figures S5L–S5O), indicating that Slc7a5 is important

specifically for neuronal functions.

Next, we asked whether the critical temporal window identi-

fied in mice is also sensitive to the loss of SLC7A5 function in hu-

mans. Thus, having identified patients with mutations in
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SLC7A5, we measured their head size for several weeks from

birth on (Figures 4E–4H). Patients 130-1 and 130-2 are siblings

from a non-consanguineous family presenting with the clinical

feature of SLC7A5 deficiency (Figure S5P). Trio-whole exome

sequencing (WES) analysis of both siblings and their parents

identified compound heterozygous pathogenic variants in the

SLC7A5 gene: the previously described and functionally as-

sessedmissense variant c.1124C>T, p.(Pro375Leu)6 and a novel

intragenic deletion of exons 5 to 10. Parents are heterozygous

carriers. Patient 130-1 showed microcephaly at birth (�3 SD).

The microcephaly progressively worsened to �5 SD at the age

of 7 months (Figure 4F). The clinical history and presentation of

the younger sibling, patient 130-2, are essentially similar. A

mild microcephaly was diagnosed at birth (�2.5 SD), progres-

sively deteriorating to �4.5 SD at the age of 6–7 months (Fig-

ure 4H). The phenotypic comparison of published patients6 re-

vealed that the constant features associated with biallelic

pathogenic SLC7A5 variants include microcephaly, develop-

mental and motor delay, seizures, and autistic features

(Table S1). Notably, the pathological variants identified in pa-

tients are mostly missense mutations that impact the transport

capacity, not the expression, of the transporter.6 Thus, the hu-

man data indicate that the transport of SLC7A5 substrate is

key to the patient’s clinical presentation. Therefore, SLC7A5mu-

tations likely result in decreased BCAA uptake and lead tomicro-

cephaly during the period of cortical refinement and pro-

grammed cell death in mice and humans.

Pyramidal neuron loss is due to cell-autonomous
deficiency of Slc7a5
Next, we investigated whether Slc7a5-deficiency-linked

neuronal cell death is due to a cell-autonomous or non-cell-

autonomous effect. Assessing this was important, especially

since in the absence of Slc7a5 AAs accumulate in the extracel-

lular space, which could be harmful to the tissue. To perform a

quantitative assessment, we used the mosaic analysis with dou-

ble markers (MADM) system, which enables concurrent fluores-

cent labeling and gene knockout in sparse single-cell clones

in vivo.43,44 Specifically, two reciprocally chimeric marker genes

(GT and TG alleles) are targeted to identical loci upstream of

Slc7a5. The marker genes are part of the so-called MADM

cassette (M8), which consists of split coding sequences for

eGFP and tdTomato fluorescent proteins interspaced by a loxP

site (Figure S6). FollowingCre-recombinase-mediated interchro-

mosomal recombination, the sequence for eGFP and tdTomato

are reconstituted. Due to an innately low stochastic interchromo-

somal recombination rate, the green (eGFP+), red (tdTomato+),

and yellow (eGFP+/tdTomato+) labeling are confined to individ-

ual sparse clones. In our experimental setup, the Cre recombi-

nase expression is coupled with the Emx-1 promotor. This facil-

itates MADM labeling and deletion of Slc7a5 in single

telencephalic radial glia progenitors (RGPs) and their progeny

(Figure 5A), thereby generating cortex-specific genetic mosaics.

To analyze potential cell-autonomous effects of the loss of

Slc7a5 in the developing neocortex, we assessed the relative

abundance of green (eGFP, Slc7a5�/�) and red (tdTomato,

Slc7a5+/+) excitatory neurons at different time points of postnatal

development (P0, P5, and P40) in mosaic-MADM (MADM-8GT/
TG,Slc7a5;Emx1-Cre+) and control-MADM (MADM-8GT/TG;Emx1-

Cre+) animals (Figures 5B–5D0). While at P0 we did not observe

significant changes in the ratio of green to red cells (Figures 5B

and 5B0), supporting that Slc7a5 deficiency does not affect the

proliferative phase of cortical development, by P5, there are

significantly fewer Slc7a5�/� than Slc7a5+/+ excitatory neurons

(Figures 5C and 5C0). Further, mosaic-MADM animals present

fewer Slc7a5�/� (green) neurons in upper cortical layers (LII–

LIV) compared with control (red) cells, while neurons in the lower

layers (LV and LVI) are not affected by Slc7a5 deletion. The same

analysis done at P40 revealed a slightly more profound reduction

of mutant neuronal cells in mosaic-MADM cortices (Figures 5D

and 5D0). We concluded that the deletion of Slc7a5 leads to a

cell-autonomous increase in neuronal cell loss immediately after

birth.

LNAA-dependent metabolic reprogramming controls
neuronal excitability in neonatal mice
What mechanisms could underlie the stage- and cell-type-spe-

cific phenotype observed in Slc7a5fl/fl;Emx1-Cre+ mice?

Considering that neuronal excitability can determine the survival

of cortical pyramidal cells during the postnatal wave of pro-

grammed cell death,41,42 we hypothesized that abnormal AA

and lipid metabolism might ultimately lead to changes in excit-

ability. Indeed, alterations in neuronal lipid composition, espe-

cially in GPLs, can directly affect membrane formation and

structure.25 Furthermore, protein-lipid interactions and post-

translational modifications can modulate the clustering and

activity of many ion channels.45–48 In particular, palmitoylation,

a FA-dependent posttranslational modification mediated by pal-

mitoyltransferases, is an important regulatory mechanism in

neurons.49–51 Indeed, we found that three palmitoyltransferases

are deregulated in Slc7a5 mutants (Figure S7A). These include

Zdhhc17, which specifically modifies proteins involved in

neuronal functions. Additionally, approximately half of the down-

regulated proteins associated with the GO-term ‘‘integral

component of the plasma membrane’’ (Figure 3E) are regulated

by palmitoylation. Among these, we found Ank2, which is palmi-

toylated to support membrane scaffolding of the voltage-gated

sodium channel Nav1.252; Kcnd2, a potassium channel involved

in the regulation of action potential (AP) backpropagation53,54;

and Snap25, one of the top targets of Zdhhc17 involved in

various neuronal functions55,56 (Figure S7A). Thus, we assessed

the intrinsic excitability of layers II and III pyramidal neurons from

the somatosensory cortex (SSCtx) of mutant and control animals

at P6–P7 by performing whole-cell current-clamp recordings

while applying a series of current steps to elicit APs. Recordings

from Slc7a5fl/fl;Emx1-Cre+, Slc7a5fl+;Emx1-Cre+ and wild-type

littermates revealed a substantial reduction in neuronal firing in

Slc7a5fl/fl;Emx1-Cre+ animals (Figures 6A, S7B, and S7C). Since

both metabolic abnormalities and reduced neuronal survival in

Slc7a5fl/fl;Emx1-Cre+mice are limited to the first days after birth,

we performed current-clamp recordings at P25–P26 to assess

whether the neuronal excitability defect is restricted to the

same time window. Indeed, at P25–P26 Slc7a5fl/fl;Emx1-Cre+

samples are indistinguishable from controls (Figures 6B and

S7D), underscoring the importance of Slc7a5 in modulating

neuronal excitability early after birth. While the transient nature
Cell 186, 1–18, April 27, 2023 9
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Figure 5. Loss of Slc7a5 leads to a cell-autonomous reduc-

tion of cortical upper-layer neurons

(A) Schematic representation and genotypes of cells of control-

MADM (MADM-8GT/TG;Emx1-Cre+) and mosaic-MADM (MADM-

8GT/TG,Slc7a5;Emx1-Cre+) cortex.

(B) Coronal sections and (B0) quantification of green/red cell ratio of

MADM-labeled neurons in the cortical plate of P0 mosaic- and con-

trol-MADM littermates.

(C) Coronal sections and (C0) quantification of green/red cell ratio of

MADM-labeled upper layer (left) and lower layer (right) excitatory

neurons in P5 mosaic- and control-MADM littermates.

(D) Coronal sections and (D0) quantification of green/red cell ratio of

MADM-labeled upper layer (left) and lower layer (right) excitatory

neurons in P40 mosaic- and control-MADM littermates (P0: n = 4; P2

and P40: n = 5 [P2 and P40] animals per genotype; average of >5

slices per animal; nsp > 0.05;**p < 0.001; Mann-Whitney test; scale

bars, 100 mm).

See also Figure S6.
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Figure 6. Intracellular AA levels modulate neuronal excitability perinatally

(A and B) Current-clamp recordings from LII/LIII pyramidal neurons in (A) P6–P7 Slc7a5fl/fl;Emx1-Cre+ and Slc7a5fl/fl;Emx1-Cre� SSCtx (Slc7a5fl/fl;Emx1Cre�:

n = 22 cells/3 mice; Slc7a5fl/fl;Emx1-Cre+: n = 30 cells/3 mice; two-way ANOVA: genotype F(1,311) = 123.01 ***p < 0.001, current step F(5,311) = 205.3

***p < 0.001, interaction F(5,311) = 16.75 ***p < 0.001) and (B) P25–P26 (Slc7a5fl/fl;Emx1Cre�: n = 5 cells/3 mice; Slc7a5fl/fl;Emx1-Cre+: n = 15 cells/3 mice; two-

way ANOVA: genotype F(1,139) = 1.84 nsp > 0.5, current step F(6,139) = 34.87 nsp > 0.5, interaction F(6,139) = 0.07 nsp > 0.5).

(C and D) Schematic (C) and results (D) of patch clamp recordings from green (Slc7a5�/�) and red (Slc7a5+/+) LII/LIII pyramidal neurons from the same P6–P7

mosaic-MADM animal (Slc7a5+/+: n = 5 cells; Slc7a5�/�: n = 7 cells from 5 mice; two-way ANOVA: genotype F(1,65) = 116.05 ***p < 0.001, current step

F(5,65) = 79.22 ***p < 0.001, interaction F(5,65) = 11.16 ***p < 0.001).

(E) Representative action potential (AP) traces from the data shown in (A) and (B).

(F–H) The AP amplitude (F), AP rise time (G), and AP threshold (H) are transiently affected in Slc7a5 deficient LII/LIII pyramidal neurons at P6–P7 (numbers as in A)

compared with age-matched littermates and P25–P26 time point (numbers as in B; two-way ANOVA for AP amplitude: genotype F(1,71) = 23.15 ***p < 0.001, time

point F(1,71) = 52.57 ***p < 0.001, interaction F(1,71) = 3.24 nsp > 0.5, Holm-Sidak post hoc ***p < 0.001). Two-way ANOVA for AP rise time: genotype

F(1,71) = 7.32 ***p < 0.001, time point F(1,71) = 101.21 ***p < 0.001, interaction F(1,71) = 6.4 *p < 0.05, Holm-Sidak post hoc ***p < 0.001. Two-way ANOVA for AP

threshold: genotype F(1,71) = 10.56 **p < 0.01, time point F(1,71) = 42.93 ***p < 0.001, interaction F(1,71) = 2.61 nsp > 0.5, Holm-Sidak post hoc ***p < 0.001.

(I) AP plotted as voltage vs. time (top) and dV/dt vs. voltage (phase-plane plot, bottom). Phases of the AP are color-coded to highlight the initiation of the AP in the

axon initial segment (AIS; pink), the propagation in the somatodendritic compartment (blue), and the repolarization peak.

(J) Phase-plane plot of data shown in (A) reveals defects in the AIS and the somatodendritic compartment in LII/LIII pyramidal neurons of Slc7a5fl/fl;Emx1-Cre+

animals.

See also Figure S7.
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of the phenotype suggests a rather direct link between the meta-

bolic state of the neuron and its excitability, it remained a possi-

bility that the observed electrophysiological abnormalities were

due to plasticity effects associated with network properties.

However, should the reduced excitability directly be connected

to, or even cause Slc7a5-dependent neuronal cell loss, we ex-

pected this phenotype to be cell autonomous. Thus, we returned

to the mosaic-MADM mouse model (Figure 6C) and performed

current-clamp recordings from Slc7a5�/� (green) and Slc7a5+/+

(red) excitatory neurons in the same animal. Indeed, the AP firing

rate is significantly reduced in LII and LIIISlc7a5�/� neurons from

the SSCtx at P6–P7 (Figure 6D), indicating that Slc7a5 expres-

sion controls neuronal excitability cell-autonomously at early

stages after birth. To understand the bases of the reduced firing

rate caused by Slc7a5 deletion, we analyzed the AP properties.

We inferred that Slc7a5mutant neurons at P6–P7 do not fire less

because they are more immature than wild-type neurons since

they show AP features more comparable to those observed in

older (i.e., P25–P26) control neurons (Figure 6E). Indeed,

compared with controls, mutant neurons at P6–P7 display larger

amplitude (Figure 6F), faster rise time (Figure 6G), and more hy-

perpolarized AP threshold (Figure 6H), matching the AP features

observed in control neurons at P25–P26 and suggesting a

different modulation of the voltage-gated channels involved in

the initiation and rising phase of APs. In agreement, dendrites

of mutant layer II and III pyramidal neurons present with a

more mature spine morphology compared with controls

(Figures S7E–S7I), therefore excluding a maturation delay.

Nonetheless, other properties such as the restingmembrane po-

tential, the inter-spike interval (ISI) ratio, the AP decay time and

half width are unchanged at P6–P7 (Figures S7J–S7M). We

further examined the AP waveform using the phase-plane plot

analysis (Figure 6I) to evaluate the dynamic changes of themem-

brane potential over time (dV/dt; Figure 6J). Our analysis re-

vealed a striking increase in the velocity of the AP, highlighting

a potential defect at the axon initial segment (AIS) and a faster

AP backpropagation in the somatodendritic compartment of

mutant neurons (Figures 6I and 6J), linking to the reduction of

Kcnd2 protein level (Figure S7A). Accelerated AP backpropaga-

tion can also point toward defects in dendritic arborization.57

Indeed, while the soma size is not affected (Figures S7N and

S7O), we found a slight decrease in dendritic number and length

in Slc7a5fl/fl;Emx1-Cre+mice perinatally (Figures S7P and S7Q).

However, thesemorphological alterations persist until adulthood

(Figures S7R and S7S) and, therefore, are not associated with

changes in excitability. Furthermore, while the unchanged

resting membrane potential would exclude a role of ATP-depen-

dent potassium channels, the electrophysiology data point to

changes in the properties of multiple channels, probably through

a different modulation and/or distribution of voltage-gated so-

dium (e.g., Nav1.2) and potassium channels (e.g., A-type),

potentially explained by the downregulation of the detected pal-

mitoylated proteins (Figure S7A).

Slc7a5 deficient animals show persistent behavioral
defects
To assess whether the alterations observed in Slc7a5 mutant

animals during the period of cortical circuit refinement lead to
12 Cell 186, 1–18, April 27, 2023
permanent behavioral abnormalities, we subjected adult

Slc7a5fl/fl;Emx1-Cre+ and control animals to behavioral tests.

In an open field, mutant animals present with increased horizon-

tal (Figures 7A–7B0) and vertical explorative behavior (Figure 7C)

but no anxiety-like behaviors (Figure 7D). Since SLC7A5 patients

present with severe motor deficits, we assessed locomotion fea-

tures in Slc7a5fl/fl;Emx1-Cre+ mice. Indeed, mutant mice exhibit

moderate motor deficits (Figure 7E), such as decreased stride

and stance length (Figures 7F–7F0 0), as well as hind limb clasping

behavior (Figures 7G and 7G0). Next, we tested Slc7a5fl/fl;Emx1-

Cre+ mice for social interest and social-memory behaviors. We

found that Slc7a5fl/fl;Emx1-Cre+ mice have indications of socia-

bility and social-memory impairments (Figures 7H–7K0). In sum-

mary, our analyses show that Slc7a5 deficiency in neurons

causes persistent behavioral dysfunctions.

DISCUSSION

Neurons are generated in large amounts early during embryonic

brain development, but a significant fraction of them are

removed at subsequent developmental stages.58–60 The removal

of these cells must be highly selective and therefore regulated by

tight mechanisms, possibly integrating both extrinsically and

intrinsically driven processes. While a complete view of the fac-

tors directing this process is still missing, the literature suggests

that neuronal activity might be used as a measure of neuronal

integration in the circuitry and therefore is a determinant of the

refinement of the perinatal network.42,58 However, the potential

upstream signaling and the pattern of neuronal activity deter-

mining this phenomenon remain unclear. Identifying extrinsic

and intrinsic factors that can modulate neuronal properties at

this developmental stage is critical since disrupting the refine-

ment process can permanently affect brain circuits.

Here, we focused on the metabolic program of neural cells of

the cerebral cortex as a measure of the intrinsic fit of a neuron

and a determinant of its integration in the cortical circuit.

Althoughmetabolism is a crucial element of cellular fitness, there

is no detailed description of how the levels of variousmetabolites

change in the forebrain over time. By obtaining a metabolomic

profile of the cortex at various developmental stages, we provide

a comprehensive view of the metabolites detected in this brain

region and their changes over the course of development. As

several metabolites are linked to neurodevelopmental condi-

tions, our data can be important to evaluate potential critical

time windows in the context of brain disorders. For example,

our analysis underscored a downward trajectory for essential

LNAAs, with their levels decreasing significantly in the cerebral

cortex at the perinatal period. By deleting Slc7a5, a LNAA trans-

porter whose mutations cause autism and microcephaly, we

tested the importance of regulating those AAs for the metabolic

and physiological state of neural cells. We found that SLC7A5

expression is a decisive factor in specifying cortical neurons’

metabolic state at perinatal stages. In this context, it is intriguing

to observe that Slc7a5 transcription in neurons is induced by

hypoxia,61,62 a physiological state fetuses experience during

and shortly after birth.63 What happens if the typical levels of

SLC7A5 substrates are not met during this developmental win-

dow? We report that decreased levels of BCAAs are coupled
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Figure 7. Loss of Slc7a5 in cortical excitatory neurons causes persistent behavioral dysfunctions

(A–D) Slc7a5fl/fl;Emx1-Cre+ animals are hyperactive. (A) Representative traces of mutant and wild-type animals moving 20 min in an open field. (B) Quantification

of the total distance traveled, (B0 ) velocity, (C) number of rearings, and (D) time spent in center during one open field session (n = 14mice per genotype; two-tailed

unpaired t test).

(E–F0 0)Slc7a5fl/fl;Emx1-Cre+ animals display amild gait defect. (E) Representative control andmutant strides. Quantification of stride (F), stance (F0 ), and sway (F0 0)
length (n = 14 per genotype, *p < 0.05; two-tailed unpaired t test).

(G) Hind limb clasping observed in Slc7a5fl/fl;Emx1-Cre+mice. (G0) Scoring of hind limb clasping severity (from 0–1 [normal] to 3 [most severe] (n = 14 animals per

genotype; ****p < 0.00001; two-tailed unpaired t test).

(legend continued on next page)
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with a disturbance of lipid metabolism. Previous studies have

suggested a connection between BCAAs and lipids in some

cell types40,64–66 and pathological conditions.67–69 While the

exact trigger of the molecular reprogramming we observed in

the absence of Slc7a5 remains to be investigated, our analysis

demonstrates that in neural cells, the two pathways are tightly

connected. Furthermore, our results indicate that neurons at

perinatal stages use BCAAs as amain source of ATP production.

This would explain the surge in Slc7a5 expression at this stage

and the dispensability of the mitochondrial pyruvate transporter

in immature neurons.70 Further, Slc7a5 deletion leads to a cell-

autonomous change in neuronal excitability, providing an

elegant example of coupling the fitness of a cell with its integra-

tion in the neuronal network. Our mosaic analysis further

suggests that intrinsic excitability can directly affect neuronal

survival probability at this developmental stage. The exact

mechanisms underlying the reduced neuronal excitability remain

unclear. Our transcriptomic analysis did not uncover changes in

ion channel expression in Slc7a5-deficient neurons. However,

our proteomics data indicate changes in membrane-associated

palmitoylated proteins in perinatal mutant mice. Thus, the most

plausible explanation is that the shift in lipid profile observed in

Slc7a5 deficient cells leads to a different clustering and modula-

tion of ion channels involved in neuronal excitability. In addition,

a shift in the ratio of specific GPL subclasses can affect mem-

brane properties such as its fluidity and curvature,25 which can

further modulate neuronal excitability.45,47,71

Altogether, our analysis highlights the importance of dietary-

obtained factors, such as essential AAs, for neurodevelopment.

The similar trajectory of the microcephaly onset observed in

mice and humans with SLC7A5 mutations suggests that

although our metabolic profile describes changes in the murine

brain, humans and mice may employ a similar metabolic

program across time. Furthermore, the stage and cell-type spec-

ificity of the observed phenotypes point to the importance of per-

forming longitudinal studies evaluating environmental, metabol-

ically relevant factors that can influence specific stages of brain

development and that may interact with genetic factors underly-

ing human neurodevelopmental conditions.

Limitations of the study
There is a minimal number of tools available to assess metabolic

pathways with the needed time and spatial resolution. Conse-

quently, our study describes tissue-wide metabolic states but

does not uncover cell-type-specific or short-lasting changes.

Gene knockouts represent a powerful tool for studying facets

of metabolism in specific cell populations in vivo, as done here

for Slc7a5. Yet, given the interconnection between different

arms of metabolism, establishing causality remains challenging.

In the future, it would be interesting to dissect the exact contribu-

tion of different signaling pathways and subsets ofmetabolites to

the phenotype observed in Slc7a5mutant mice. Efforts to obtain
(H–K0) Slc7a5fl/fl;Emx1-Cre+mice present defects in sociability. (H) Representativ

of the three-chamber sociability test (TCST). (I) Quantification of time spent in the

**p < 0.01; *p < 0.05; nsp > 0.05; one-way ANOVA and Sidak’s multiple compar

behavior during the second round of the TCST. (K) Quantification of time spent in t

***p < 0.0001, **p < 0.01; *p < 0.05; nsp > 0.05; one-way ANOVA and Sidak’s mu
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metabolomic data under various conditions to implement

exhaustive models of metabolism may also represent one way

to address this challenge. Finally, although by comparing mice

and individuals with SLC7A5 mutations, we inferred similarities

between species, the described metabolic states presumably

also include mouse-specific changes. Studying mechanisms

regulating human-specific brain metabolism is still challenging

since most of the available tools involve in vitro systems. This

poses some problems since excessive amounts of micro- and

macronutrients in cell culture media can drive metabolism to

different programs than in vivo. Hence, to better understand hu-

man brain metabolism, a combination of diverse model systems

will be necessary.
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M., Capera, J., and Felipe, A. (2022). Palmitoylation of voltage-gated

ion channels. Int. J. Mol. Sci. 23, 9357. https://doi.org/10.3390/

ijms23169357.

55. Tomasoni, R., Repetto, D., Morini, R., Elia, C., Gardoni, F., Di Luca, M.,

Turco, E., Defilippi, P., and Matteoli, M. (2013). SNAP-25 regulates spine

formation through postsynaptic binding to p140Cap. Nat. Commun. 4,

2136. https://doi.org/10.1038/ncomms3136.

56. MacDonald, P.E., Wang, G., Tsuk, S., Dodo, C., Kang, Y., Tang, L.,

Wheeler, M.B., Cattral, M.S., Lakey, J.R.T., Salapatek, A.M.F., et al.

(2002). Synaptosome-associated protein of 25 kilodaltons modulates

Kv2.1 voltage-dependent K(+) channels in neuroendocrine islet beta-

cells through an interaction with the channel N terminus. Mol. Endocrinol.

16, 2452–2461. https://doi.org/10.1210/me.2002-0058.

https://doi.org/10.1016/j.tem.2017.07.003
https://doi.org/10.1016/j.aninu.2021.05.003
https://doi.org/10.1016/j.aninu.2021.05.003
https://doi.org/10.1038/nature13474
https://doi.org/10.1038/nature13474
https://doi.org/10.1016/0026-0495(95)90201-5
https://doi.org/10.1016/0026-0495(95)90201-5
https://doi.org/10.1007/978-2-8178-0343-2_8
https://doi.org/10.1002/cphy.c170012
http://refhub.elsevier.com/S0092-8674(23)00215-5/sref29
http://refhub.elsevier.com/S0092-8674(23)00215-5/sref29
https://doi.org/10.1371/journal.pone.0075917
https://doi.org/10.1021/jacsau.1c00393
https://doi.org/10.1016/S0009-3084(00)00128-6
https://doi.org/10.1073/pnas.0404852102
https://doi.org/10.1073/pnas.0404852102
https://doi.org/10.1038/s41586-019-1011-z
https://doi.org/10.1016/j.bbamcr.2014.04.006
https://doi.org/10.1016/j.bbamcr.2014.04.006
https://doi.org/10.1042/BST20211252
https://doi.org/10.1042/BST20211252
https://doi.org/10.1091/mbc.E14-10-1438
https://doi.org/10.1091/mbc.E14-10-1438
https://doi.org/10.1074/jbc.M113.498469
https://doi.org/10.1074/jbc.M113.498469
https://doi.org/10.1161/01.CIR.82.5.1574
https://doi.org/10.1016/j.cmet.2018.04.015
https://doi.org/10.7554/eLife.27696
https://doi.org/10.1038/s41586-018-0139-6
https://doi.org/10.1038/s41586-018-0139-6
https://doi.org/10.1016/j.celrep.2021.109274
https://doi.org/10.1016/j.celrep.2021.109274
https://doi.org/10.1016/j.cell.2005.02.012
https://doi.org/10.1016/j.cell.2005.02.012
https://doi.org/10.1038/ncomms1254
https://doi.org/10.1146/annurev-pharmtox-010919-023411
https://doi.org/10.1385/CBB:38:2:161
https://doi.org/10.1146/annurev-physiol-021014-071838
https://doi.org/10.1146/annurev-physiol-021014-071838
https://doi.org/10.1016/j.cub.2013.04.024
https://doi.org/10.1016/j.chembiol.2018.05.003
https://doi.org/10.1016/j.chembiol.2018.05.003
https://doi.org/10.1016/j.conb.2017.02.016
https://doi.org/10.1038/srep23981
https://doi.org/10.1113/jphysiol.2005.095042
https://doi.org/10.3390/ijms23169357
https://doi.org/10.3390/ijms23169357
https://doi.org/10.1038/ncomms3136
https://doi.org/10.1210/me.2002-0058


ll
OPEN ACCESS

Please cite this article in press as: Knaus et al., Large neutral amino acid levels tune perinatal neuronal excitability and survival, Cell (2023),
https://doi.org/10.1016/j.cell.2023.02.037

Article
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FD Rapid GolgiStain� Kit FDNeurotechnologies Inc. PK401

RNAscope� Intro Pack for Multiplex

Fluorescent Reagent Kit v2- Mm

ACD 323136

Deposited data

Metabolomics & Lipidomics data This paper MetaboLights: MTBLS6578

Proteomics data This paper iProX: PXD038454

Bulk RNA sequencing data This paper GEO: GSE218713

Single cell RNA sequencing data Di Bella et al.72; Yuan et al.73 GEO: GSM4635077,

GEO: GSM4635080,

GEO: GSM4635081,

GEO: GSM4635078,

GEO: GSM4635079,

GEO: GSM5277845,

GEO: GSE204759

Code This paper zenodo:

https://doi.org/10.5281/

zenodo.7358062

Experimental models: Organisms/strains

Mouse: B6.129P2-Slc7a5tm1.1Daca/J The Jackson Laboratory 027252; RRID:IMSR_JAX:027252

Mouse: B6.Cg-Tg(Tek-cre)1Ywa/J The Jackson Laboratory 008863; RRID:IMSR_JAX:008863

Mouse: B6.129S2-Emx1tm1(cre)Krj/J The Jackson Laboratory 005628; RRID:IMSR_JAX:005628

Mouse: Gt(ROSA)26Sortm4

(ACTB-tdTomato,-EGFP)Luo/J

The Jackson Laboratory 007576; RRID:IMSR_JAX:007576

Mouse: MADM-8-GT Contreras et al.43 N/A

Mouse: MADM-8-TG Contreras et al.43 N/A

Oligonucleotides

qPCR primer_human: Q_SLC7A5_In2-3F:

CGCTCATCAGATAGCCAGGAAA

This paper N/A

qPCR primer_human: Q_SLC7A5_In2-3R:

TTGAAGCCAAACAGGAGACAGG

This paper N/A

qPCR primer_human: Q_SLC7A5_In4-5F:

GTGTGTCCTTGAGCACGGTTTC

This paper N/A

qPCR primer_human: Q_SLC7A5_In4-5R:

CCTGAGAAATGGGGATTCTTCG

This paper N/A

qPCR primer_human: Q_SLC7A5_In5-6F:

CAGAGGAAGTGTCTGGGGATCA

This paper N/A

qPCR primer_human: Q_SLC7A5_In5-6R:

CCACTCTGTGGCAGACTCCAAT

This paper N/A

qPCR primer_human: Q_SLC7A5_In5-6F2:

AGTCCAGGGCAGAGGTCATTTTA

This paper N/A

qPCR primer_human: Q_SLC7A5_In5-6R2:

GAGTCAGAGCTTGTTCAGTAGGAAGC

This paper N/A
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qPCR primer_human: Q_SLC7A5_In7-8F

ACCACATTTGGGTTAAGGACAGG

This paper N/A

qPCR primer_human: Q_SLC7A5_In7-8F

AGGTCCTGGCCCTTGCTTACTA

This paper N/A

qPCR primer_human: Q_SLC7A5_3UTR_F:

CCAAGAAAGCAGGGCTTCCTAA

This paper N/A

qPCR primer_human: Q_SLC7A5_3UTR_R:

GGTTTAATGTGCGTCTCCATGC

This paper N/A

qPCR primer_human: Q_KLHDC4_In1-2F:

TGACCTTGGGGTTGAGTGTTCT

This paper N/A

qPCR primer_human: Q_KLHDC4_In1-2R:

AGGGACAAAGGACTGTGGTCAA

This paper N/A

qPCR primer_human: Q_KLHDC4_In4-5F:

AGTGAATGACCTGTGTGGTCAGTG

This paper N/A

qPCR primer_human: Q_KLHDC4_In4-5R:

CTATGGGAGAAAAAGCCCTGGA

This paper N/A

qPCR primer_human: Q_KLHDC4_In5-6F:

TGGAGTCTGTGGAACTGTGAAGTG

This paper N/A

qPCR primer_human: Q_KLHDC4_In5-6R:

CCATGGAATGTCAACCAGAAGC

This paper N/A

qPCR primer_human: Q_KLHDC4_In7-8F:

TGAGCAAGTAGAGGTGGCTTGG

This paper N/A

qPCR primer_human: Q_KLHDC4_In7-8R:

GGTGAGCAGAAGGACAAGGACA

This paper N/A

Genotyping primer – Slc7a5fl; forward

CCA TCT CGG CAG TTC CAG GC

Sinclair et al.74 N/A

Genotyping primer – Slc7a5fl; reverse

GGT GCT TTG CTG AAG GCA GGG

Sinclair et al.74 N/A

Genotyping primer – recombination of

floxed-exon1 (Slc7a5); forward CAG CTC

CTT TCT CCA GTT AAG C

This paper N/A

Genotyping primer – recombination of

floxed-exon1 (Slc7a5); reverse GAC AGC

CTG AAG TAA AAT TCC C

This paper N/A

Genotyping primer – Cre recombinase;

forward GTC CAA TTT ACT GAC CGT ACA CC

This paper N/A

Genotyping primer – Cre recombinase;

reverse GTT ATT CGG ATC ATC AGC TAC ACC

This paper N/A

RNAscope� Probe - Mm-Slc7a5-E1 -

musculus solute carrier family 7

member 5 (Slc7a5) mRNA

ACD 472571

RNAscope� Probe - Mm-Slc7a5 - Mus

musculus solute carrier family 7

member 5 (Slc7a5) mRNA

ACD 461031

TSA Vivid650 Tocris 7536

Software and algorithms

VarSeq Golden Helix Inc� https://www.goldenhelix.com/

products/VarSeq/

ZEN Digital Imaging for

Light Microscopy

Zeiss http://www.zeiss.com/microscopy/

en_us/products/microscope-software/

zen.html#introduction

ImageJ Schneider et al.75 https://imagej.nih.gov/ij/
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Graphpad Prism 9.0 Graphpad https://www.graphpad.com/

scientific-software/prism/

Imaris Microscopy Image

Analysis Software

Oxford Instruments https://imaris.oxinst.com/

MS-DIAL Tsugawa et al.76 N/A

TraceFinder Thermo Scientific� https://www.thermofisher.com/

at/en/home/industrial/mass-spectrometry/

liquid-chromatography-mass-spectrometry-

lc-ms/lc-ms-software/lc-ms-data-acquisition-

software/tracefinder-software.html

Compound Discoverer

Software 3.0

Thermo Fisher Scientific� https://www.thermofisher.com

MaxQuant (1.6.17.0) Tyanova et al.77 https://www.maxquant.org/

limma package v4.2 Ritchie et al.78 http://www.bioconductor.org

topGO v2.50.0 N/A http://www.bioconductor.org

R v4.1.2 N/A https://www.r-project.org/

Seurat v4.1.0 Hao et al.79 http://www.bioconductor.org

GenBinomApps v1.2 N/A https://cran.r-project.org/

package=GenBinomApps

Origin 2018 (64 bit) Origin Lab https://www.originlab.com/

Clampfit v10.7 Molecular Devices https://support.moleculardevices.com/

s/article/Axon-pCLAMP-10-Electrophysiology-

Data-Acquisition-Analysis-Software-Download-Page

Clampex v10.7 Molecular Devices https://support.moleculardevices.com/s/article/

Axon-pCLAMP-10-Electrophysiology-Data-

Acquisition-Analysis-Software-Download-Page

NeuronStudio Wearne et al.80 N/A

Galaxy web platform Afgan et al.81 https://usegalaxy.org/

STAR v2.5.4 Dobin et al.82 https://github.com/alexdobin/STAR

DESeq2 v1.34.0 Love et al.83 http://www.bioconductor.org

GOstats v2.36.0 Falcon et al.84 http://www.bioconductor.org

FASTX toolkit v0.0.14 Hannon Lab http://hannonlab.cshl.edu/fastx_toolkit/

Huygens Professional software v15.0 Scientific Volume Imaging https://svi.nl/HomePage

EthoVision XT 11.5 Noldus https://www.noldus.com/ethovision-xt

Python 3.9.4 conda https://www.python.org/

Scikit-learn 1.1.2 Pedregosa et al.85 https://scikit-learn.org/stable/index.html

Pandas 1.3.5 McKinney et al.86 https://pandas.pydata.org/

numpy 1.22.4 Harris et al.87 https://numpy.org/

statsmodels 0.13.1 Seabold et al.88 https://www.statsmodels.org/

stable/index.html

Scipy 1.7.3 Virtanen et al.89 https://scipy.org/

Seaborn 0.11.2 Waskom et al.90 https://seaborn.pydata.org/

Python-ternary 1.0.8 PyPI https://github.com/marcharper/

python-ternary

thefuzz 0.19.0 PyPI https://github.com/seatgeek/thefuzz

Python-levenshtein 0.12.2 PyPI https://github.com/ztane/python-Levenshtein/

Matplotlib 3.5.2 Hunter et al.91 https://matplotlib.org/

Jupyterlab 3.5.0 PyPI https://jupyter.org/

Other

CFX ConnectTM Real-Time

PCR Detection System

Bio-Rad 1855201
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Immobilon�-P PVDF Membrane Millipore IPVH00010

Tissue-Tek� O.C.T. Compound Sakura� Finetek 4583

DAKO fluorescent mounting medium Dako S3023

DPX Mountant for histology Sigma-Aldrich 06522

SuperFrost Plus� Adhesion slides Epredia� 10149870

ProLong� Gold Antifade Mountant Invitrogen� P36930

Disposable pestles Bel-Art� BAF199230001

iHILIC�-(P) Classic, PEEK column,

(100mm x 2.1mm, 5mm) with a precolumn

HILICON 160.102.0520

ACQUITY UPLC HSS T3 column

(150 mm x 2.1 mm; 1.8 mm)

Waters Corporation 186009492

50-ml TPP� TubeSpin Bioreactor tubes Merck Z761028

TC20 Automated Cell Counter (Bio-Rad) Bio-Rad N/A

Atlantis Premier BEH Z-HILIC column

(2.1 mm x 100 mm, 1.7 mm)

Waters Corporation 186009979

ACQUITY Premier CSH C18 column

(2.1 mm x 100 mm, 1.7 mm)

Waters Corporation 186009461

Protein A Magnetic Beads Abcam ab214286

DynaMag�-2 Magnet Invitrogen� 12321D

Protein Extraction beads Diagenode C20000021

13.2ml Thinwall Ultra-Clear� Tubes Beckmann Coulter 344059

GEN1 uPAC column Pharmafluidics N/A

BX-51WI microscope Olympus N/A

QIClickTM charge-coupled device camera Q Imaging Inc. N/A

Nikon Eclipse Ti2 Nikon N/A

LSM800 Confocal Zeiss N/A

SlideScanner VS120 Olympus N/A

Sliding Microtome SM2010R Leica N/A

Cryostat Cryostar NX70 Thermo Scientific� N/A

Vibratome Leica VT 1200S Leica N/A

BioWave Pro+ microwave Pelco 36700

Ultramicrotom UC7 Leica N/A

Amersham Imager 680 GE Healthcare N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Gaia No-

varino (gaia.novarino@ista.ac.at).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Metabolomics and lipidomics data have been deposited at MetaboLights, proteomics data at iProX and RNA-sequencing data

at GEO. All data are publicly available as of the date of publication. Accession numbers or unique identifiers are listed in the key

resources table. This paper analyses existing, publicly available data. These accession numbers for the datasets are listed in

the key resources table.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All animal protocols were approved by the Institutional Animal Care and Use Committee at ISTA and by the Bundesministerium für Bil-

dung,Wissenschaft und Forschung, Austria (approval number: BMBWF-66.018/0015-V/3b/2019). All experiments were performed on

mice ranging from embryonic day (E) 12.5 to postnatal day (P) 90. Embryonic time points were determined by plug checks after timed

matings, defining E0.5 as themorning after copulation. Animals were kept on a 12 h light/dark cycle (lights on at 7:00 am) and housed in

groups of 3-4 animals per cage, with food and water available ad libitum. Experiments were carried out under specific pathogen-free

conditions and the health status of the mouse lines was routinely checked by a veterinarian. All transgenic mouse lines were back-

crossed into C57BL/6J background >2 times. Experiments were carried out using littermate pairs of the same sex. Both, males and

femaleswere used for experiments. TheSlc7a5fl;Emx1-Cre conditional line was generated by crossingSlc7a5fl/flmicewith animals ex-

pressing theCre recombinaseunder theEmx1promoter (B6.129S2 (Emx1tm1cre)Krj/J). In theSlc7a5fl (B6.129P2-Slc7a5tm1.1Daca/J)

mouse line, exon 1, including the initiation codon, is flanked by two loxP sites. Slc7a5fl;Tie2-Cre conditional animals were generated by

crossing Slc7a5fl/fl with Tie2-Cre mice. The generation of the Tie2-Cre, Emx1-Cre and Slc7a5fl lines has been previously

described.13,74,92 In addition, for this study we generated mosaic Slc7a5-MADM (MADM-8GT/TG,Slc7a5;Emx1-Cre/+) mice with sparse

green (eGFP+) homozygous Slc7a5-/- mutant, yellow (GFP+/tdTomato+) heterozygous Slc7a5+/-, and red (tdTomato+) Slc7a5+/+ wild-

typecells in anotherwiseunlabeledheterozygousbackground. To this end,Slc7a5flwere genetically linked to theMADM-8TGcassette

via meiotic recombination as described previously.43 The primer sequences for MADM-GT andMADM-TG cassettes forMADM-8 can

be found in Contreras et al.43 The sequence of all the other genotyping primers is given in the key resources table.

Human subjects
For the human subjects (patients and their parents), written informedconsent and collection of data and sampleswere obtained accord-

ing toaprotocolapprovedby theEthicsCommitteeof theMedicalUniversityofVienna (protocol number1443/2020). Family130with two

affected daughters (patients 130-1 and 130-2) was referred to genetic counseling and testing in the Institute of Medical Genetics of

Medical University Vienna through a supporting Centre for Developmental Disabilities in Vienna. Trio-WES analysis of both siblings

and their parents identified compound heterozygous pathogenic variants in theSLC7A5 gene: the previously described and functionally

assessed missense variant c.1124C>T, p.(Pro375Leu)6 and a novel intragenic deletion of exons 5 to 10. Parents are heterozygous

carriers. Patient 130-1 was born at term and showed microcephaly at birth (head circumference (HC) of 31 cm, -3 SD). Birth weight

and height were normal. The microcephaly deteriorated progressively to -5 SD (HC of 36.6 cm) at the age of 7 months. A premature

closure of fontanelles was observed from the age of 8 months. A surgical treatment (frontobasal advancement) of presumed craniosy-

nostosiswas performed at the age of 12months. The patient displayedpronouncedmuscular hypotonia andmotor delay. At the age of 3

years, the patient developed seizures, which could be successfully treated with valproate. Brain MRI showed, in addition to micro-

cephaly, pontocerebellar and corpus callosum hypoplasia. At the time of the first genetic counseling, patient 130-1 was 9 years and

4 months old and presented with severe microcephaly and growth retardation (HC 43 cm, -7 SD; height 109 cm, -4.5 SD and weight

17.1 kg, -4 SD). The patient could sit independently and stand with help but could not walk and the speech was absent. The history

and presentation of the younger sibling, patient 130-2, are essentially similar. The microcephaly was diagnosed at birth, progressively

deteriorating to -4.5 SD by the age of 6–7 months, followed by premature closure of fontanelles. Pontocerebellar and corpus callosum

hypoplasia were detectable by brain imaging. At genetic counseling, patient 130-2 was 4 years and 4months old and displayed severe

microcephaly (-6 SD), growth retardation (-5 up to -6 SD), global developmental delay (independent sitting possible, no walking, absent

speech) and autistic features. The first seizures occurred at the age of 6 years and are controlled with anticonvulsive treatment. Before

WESanalysis anaCGH(Microarry-basedComparativeGenomicHybridization)wascarriedout, providing inconspicuous results for both

patients.

METHOD DETAILS

Whole-exome sequencing analysis of patient samples
Whole-exome sequencing: Whole-exome sequencing was performed for both affected siblings and their healthy unrelated parents

(extended Trio-WES). DNA samples were prepared following the workflow of the TruSeq Exome Library Kit (Illumina) for the enrich-

ment of exonic regions. The final library was paired-end sequenced on an Illumina NextSeq500 sequencer. Sequencing reads were

aligned to GRCh37/hg19 using the Burrows Wheeler Aligner (BWA-MEM) and further processed in house according to GATKs best

practice protocol for calling single nucleotide variants, insertions and deletions. The evaluation of the called variants was performed

using the program VarSeq from Golden Helix Inc�. Variants were classified according to the American College of Medical Genetics

and Genomics (ACMG) guidelines.93 In addition, a copy number variation (CNV) analysis was performed with the VarSeq software by

comparing the calculated coverage of each sequenced sample of Family 130 to the coverage data of previously analyzed in-house

samples. Quantitative PCR (qPCR): To verify the identifiedmultiexonic deletion of SLC7A5 a quantitative PCR (qPCR) was performed

using CFX ConnectTM Real-Time PCR Detection System (Bio-Rad) with primers spanning the deleted region. All primers were

purchased from Eurofins Genomics. The specificity of each primer set was monitored by a dissociation curve. PCR reactions

were performed in triplicate and normalized to PAPD5 and PRKD1.
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Immunofluorescence
Immunofluorescent staining of adult mouse brain: Adult littermate animals were anesthetized and transcardially perfused with 4%

paraformaldehyde (PFA). After dissection, brains were post-fixed in 4% PFA overnight and dehydrated using 30% sucrose (in 1X

phosphate buffered saline (PBS)). Dehydrated brains were sectioned at 30-40 mm on a Sliding Microtome SM2010R (Leica). Adult

brain sections were stained free-floating. No antigen retrieval was performed unless specifically recommended in the primary anti-

body datasheet. Sections were washed in 1X PBS and blocked with 4% normal donkey or goat serum in 0.3% Triton X-100. Primary

antibodies were diluted in blocking solution and incubated overnight on a horizontal shaker at 4�C. After 14-16h, the sections were

washed and a species-specific secondary antibody was added for 2 h at room temperature (RT). For nuclear counterstaining, 300 nM

DAPI (Life Technologies) in 1X PBS was applied. Sections were mounted on SuperFrost Plus� Adhesion slides (Epredia�) using

DAKO fluorescent mounting medium (Dako). Immunofluorescent staining of embryos and early postnatal brain: In brief, embryos

were decapitated and the head was immersion-fixed for 24h in 4% PFA at 4�C. Pups (P0-P10) were decapitated and the brain

was dissected. After dissection, the brain was immersion-fixed as described above. After fixation the samples were dehydrated

in 30% sucrose (in 1X PBS) and embedded in Tissue-Tek� O.C.T. Compound (Sakura� Finetek). Brains were sliced on a

CryoStar NX70 cryostat (Thermo Scientific�) and directly mounted on SuperFrost Plus� Adhesion slides (Epredia�). Immunofluo-

rescence stainings were performed directly on the slides using a humidity chamber. The detailed staining procedure is stated in the

section above. Quantification: To examine cortical layering, the thickness of Cux1+ cell layer and the Ctip2+ cell layer was measured

at three defined points of each cortical hemisphere (n= 3 littermate animals per genotype, at least 4 images permouse). The density of

upper or lower layer neurons was quantified by normalizing the number of Ctip2+ or Cux1+ cells to the total number of DAPI+ cells

within a defined square. To assess the number of apoptotic cells, Cl-Caspase-3+ cells were quantified in coronal brain sections. The

number of apoptotic cells located in the cortex was normalized to the total number of Cl-Caspase-3+ cells quantified in subcortical

regions (n= 3 littermate animals per genotype, at least 5 images per mouse). To assess the number of inhibitory neurons, the number

of Parvalbumin+ cells was quantified per cortical layer and normalized to the absolute number of Parvalbumin+ cells per cortical

column (n= 3 littermate animals per genotype, at least 5 images per mouse). Potential changes in astrocyte and microglia numbers

were monitored by quantifying the number of Gfap+ or Iba1+ cells per cortical column. The numbers were normalized to the size of

the selected area (n= 3 littermate animals per genotype, at least 5 images per animal). Image acquisition: Images were acquired using

a Zeiss LSM800 inverted confocal microscope and analyzed in ImageJ.75

Immunohistochemistry stainings
Nissl staining: Adult animals were transcardially perfused with 4% PFA. The brains were dissected and post-fixed overnight in 4%

PFA at 4�C. P0-1 brains were immersion fixed in 4% PFA for 24h at 4�C. The fixation was followed by a dehydration step in 30%

sucrose (in 1X PBS). P0-1 coronal sections were obtained at the CryoStar NX70 cryostat (Thermo Scientific�). Adult coronal sections

at 40 mm thickness were obtained using a Sliding Microtome SM2010R (Leica). Sections were mounted on SuperFrost Plus� Adhe-

sion slides (Epredia�) and air-dried for >2h at room temperature. Sections were cleared for 10 min using RotiHistol (Carl Roth) and

dehydrated using graded absolute ethanol (abs. EtOH) steps: 30%, 50%, 70%, 90%, 96%, 90% and abs. EtOH (3-5 min each). The

section were stained using 1%Cresyl Violet (Sigma Aldrich) in abs. EtOH. After staining, slices were de-stained using 2% acetic acid

in abs. EtOH. After several washes in EtOH, sections were immersed in RotiHistol (Carl Roth) and mounted using DPX mountant

(Sigma Aldrich). Image acquisition: Images were obtained at an Olympus slide scanner VS120 and quantified using ImageJ (n=3

per genotype, at least 4 images per mouse).

Golgi-Cox staining: Golgi-Cox staining was performed using the FD Rapid GolgiStain KitTM (FDNeurotechnologies). After three

weeks of impregnation in the staining solutions provided by the kit, brains were sliced coronally (120 mm) using a Vibratome VT

1200S (Leica). The sections were mounted onto 1% gelatinized slides. After drying the samples were dehydrated through graded

EtOH steps and cleared using RotiHistol (Carl Roth). Coverglasses were mounted with DPX mountant (Sigma Aldrich). Image acqui-

sition: A Nikon Eclipse Ti2 microscope (40x objective) was used to acquire images of LII/III pyramidal neurons of the somatosensory

cortex (12 neurons per brain, n=3 per genotype). For analysis, single pyramidal neurons were manually traced using Imaris software

x64 v9.3.1, followed by quantification of average filament area, filament length and Sholl intersections.

RNAscope Assay
Spatial gene expression analysis was performed using the RNAscope�94 Multiplex Fluorescent v2 Assay (ACD) kit including specific

probes targeting Slc7a5mRNA (ACD; Cat.# 472571 and Cat.# 461031). Sample preparation: P2mice were decapitated and the brain

was dissected rapidly on ice. The cerebellum was removed and the brain was embedded in pre-cooled Tissue-Tek� O.C.T.

Compound (Sakura� Finetek) and stored at -80�C until further used. Tissue was sliced at 10 mmat a CryoStar NX70 cryostat (Thermo

Scientific�) and directly mounted on SuperFrost Plus� Adhesion slides (Epredia�). Sections were stored at -80�C. RNAscope�
assay: The assay was performed according to the instructions provided by the RNAscope� Multiplex Fluorescent v2 Assay kit. In

brief, sections were fixed in 4�C cold 4% PFA and further pre-treated employing a H2O2- and protease-digestion. After the pre-treat-

ment, sections were incubated with the probe targeting the mRNA of interest. Probes were further hybridized to a cascade of signal

amplification molecules, followed by a hybridization with a dye-labelled probe (Akyoa Sciences). After the hybridization steps,

sectionswere stainedwith a nuclear counterstain andmounted using ProLong�Gold AntifadeMountant (Invitrogen�). Image acqui-

sition: Images were acquired at a LSM800 confocal microscope using 10x, 20x and 65x objectives.
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Isolation and quantification of MADM-labelled tissue
Tissue harvesting: P0 and P5 animals were decapitated and the brain was isolated and fixed in 4% PFA overnight at 4�C. From P6

onwards, mice were transcardially perfused using 4% PFA. Brains were post-fixed in 4% PFA overnight to ensure complete fixation.

Brains were cryopreserved with 30% sucrose in 1X PBS for approximately 48 h and were then embedded in Tissue-Tek� O.C.T.

Compound (Sakura� Finetek). 40 mm coronal frozen sections were cut on a Sliding Microtome SM2010R (Leica), and mounted

on SuperFrost Plus� Adhesion slides (Epredia�). Next, sections were stained with 300 nMDAPI (Life Technologies). The coverglass

was mounted using DAKO fluorescent mounting medium (Dako). Image acquisition: Images were acquired using a Zeiss LSM800

inverted confocal, an Olympus Slidescanner VS120 or a Nikon Eclipse Ti2. Images were post-processed and analyzed in Zen

Blue 2.6 software and ImageJ. Quantification: The number of MADM-labelled green, red and yellow neurons within the somatosen-

sory cortex was quantified according to their localization within the different cortical layers. The ratio between green and red neurons

was calculated per animal (>10 hemispheres per animal; n=6 mice per genotype).

Electron microscopy
Sample preparation: P2 mice were decapitated and the brain was dissected, washed in 0.1M PB, dropped into EM suitable fixative

(2.5% glutaraldehyde and 2% PFA in 0.1M PB) and fixed for 10 min using a BioWave Pro+ microwave (Pelco). Fixed brains were

sliced at a Leica Vibratome VT 1200S (100 mm). Sections were placed in 1% osmium tetroxide in 0.1M PB solution, followed by

1% uranyl acetate in 50% EtOH. This step was followed by a dehydration protocol with ascending EtOH concentration (50%,

70%, 90%, 96% and 2x 100%). Samples were then placed into propylene oxide, followed by consecutive incubations in 1:2, 1:1

and 2:1 Durcupan:propylene oxide solutions and an overnight incubation in Durucupan. After the treatment, samples were mounted

on siliconized coverslips, placed on a heating plate for 30 min at 37�C, followed by 48 h at 60�C to allow the polymerization of the

resin. The region of interest (layer II/III somatosensory cortex) was cut and re-embedded in a resin block for further slicing. Ultrathin

serial section (70 nm) ultrathin serial sections were cut using an UC7 ultramicrotom (LeicaMicrosytems), collected on formvar-coated

copper-slot grids and examined in FE-SEM. Image acquisition: Images were acquired on a Tecnai T10 transmission electron micro-

scope at 24000X magnification.

Western Blot
Sample preparation: Mice at different developmental time points were decapitated, the cortex was dissected on ice, snap frozen and

stored at -80�C until further used. For protein extraction cortices were homogenized in ice-cold lysis buffer (20mM Tris-HCl pH:8,

137mM NaCl, 10% Glycerol, 0.1% NP-40, 1mM EDTA, 9.5mM NaF, 10mM PPi (Sodium pyrophosphate dibasic), 1mM Na3Vo4)

plus cOmplete� Protease Inhibitor (Roche). Samples were kept on ice for 20 min followed by a centrifugation step at 500g for

10 min at 4�C. The supernatant was transferred into a fresh tube and centrifuged at max speed for 20 min at 4�C. The lysates

were again transferred into a fresh tube, aliquoted and stored at -80�C. Protein concentration was determined using the Pierce�
BCA Protein Assay Kit (Thermo Fisher). Western Blot assay: Samples were diluted with 2X Laemmli buffer (10% SDS, 20%Glycerol,

100mM Tris-Cl (pH 6.8), Bromophenol blue, 3% Pierce�DTT), denatured at 65�C for 10 min and separated using 8-12% SDS-PAGE

gels. 25-50 mg of protein per sample were loaded. Proteins were blotted to an Immobilon�-P PVDF Membrane (Merck) for 1-2 h at

4�C with 300 mA constant current using a Bio-Rad immunoblot apparatus. The membranes were blocked using 2.5% Bovine serum

albumin (BSA) in 1X Tris-buffered Saline + 0.1% Tween (TBST) for 1h at room temperature. Primary antibodies were diluted in

blocking solution and the membranes incubated overnight at 4�C on a horizontal shaker. After several washes with 1X TBST, the

membranes were incubated for 1h at RT with secondary anti-IgG antibodies coupled to horseradish peroxidase (HRP) diluted in

blocking solution. Signal detection: Detection was carried out using Pierce� ECL Western Blotting Substrate (ThermoFisher) or

SuperSignal� West Pico PLUS Chemiluminescent Substrate (ThermoFisher) in combination with the Amersham Imager 680 (GE

Healthcare).

Untargeted metabolomics of whole cortical tissue
Sample preparation: Mice were decapitated and the brains dissected on ice. Cortices were collected in 2ml Eppendorf

tubes, washed with 1ml ice-cold 1X PBS, weighed and stored at -80�C until further processed. Metabolite extraction: Ice-cold

solvent mixture (methanol:acetonitrile:H2O (2:2:1, v/v) MS-grade; cooled to -20�C) was added to the tissue and homogenized for

1 min using Bel-Art� disposable pestles. The homogenization was followed by a sonication step of 5 min in a water bath sonicator.

The samples were incubated for 1 h at -20 �C, followed by a centrifugation step at 14,000g for 3 min at 4�C. The supernatant

was transferred into a 1.5-ml microcentrifuge tube and stored at -20�C and the pellet was re-suspended in ice-cold solvent

(methanol:acetonitrile:H2O (2:2:1, v/v)). After vortexing, the pellet was incubated for another hour at -20�C and then centrifuged at

14,000g for 3 min at 4�C. The resulting supernatant was combined with the supernatant obtained in the previous centrifugation

step and incubated for 2 h at -20�C. This was followed by a last centrifugation step at 14,000g for 10 min at 4�C. The supernatant

was again transferred to a new 1.5-ml microcentrifuge tube, snap frozen and stored at -80�C. Sample analysis: Extracts were thawed

on ice and centrifuged for 5 min at 15,000g. 10 mL of each sample were pooled and used as a quality control (QC) sample. Samples

were randomly assigned into the autosampler and injected on the respective phase system. For HILIC (hydrophilic interaction chro-

matography), an iHILIC�-(P) Classic, PEEK column, (100mmx 2.1mm, 5mm)with a precolumn (HILICON)was used. A 26min gradient

from 90%A (acetonitrile) to 80%B (25mM ammonium bicarbonate in water) was used, employing a flow rate of 100 mL/min delivered
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through an Ultimate 3000 HPLC system (Thermo Fisher). After the analysis by HILIC-MS/MS, samples were analyzed with reversed

phase chromatography (RP). Here, an ACQUITY UPLCHSS T3 column (150mm x 2.1mm; 1.8 mm) with VanGuard precolumn (Waters

Corporation) was used. A 20 min gradient of 99% A (0.1% formic acid in water) to 60% B (acetonitrile with 0.1% formic acid) was

employed using the same HPLC system and flow rate. In both cases, metabolites were ionized via electrospray ionization in polarity

switching mode after HILIC separation and in positive polarity mode after RP separation. Sample spectra were acquired by data-

dependent high-resolution tandem mass spectrometry on a Q-Exactive Focus (Thermo Fisher Scientific�). The ionization potential

was set to +3.5/-3.0 kV, the sheet gas flow was set to 20, and an auxiliary gas flow of 5 was used. Samples were analyzed in a

randomized fashion and QC samples were additionally measured in confirmation mode to obtain additional MS/MS spectra for iden-

tification. Obtained data sets were processed byCompound Discoverer software v3.0 (Thermo Fisher Scientific�). Compound anno-

tation was performed with a mass accuracy of 3 ppm for precursor masses and 10 ppm for fragment ion masses searched in public

spectral databases as well as our in-house spectral library. Experimentally obtained retention times were used for the validation of

metabolite identifications.

Targeted intracellular metabolomics
Sample preparation: P2 mice were decapitated, the cortices dissected on ice and the meninges and hippocampus removed. The

tissue was dissociated according to the protocol provided by the Papain Dissociation System (Worthington Biochemical Corp.)

kit to obtain a single cell suspension. In brief, cortices were moved to 50 ml TPP� TubeSpin Bioreactor tubes (Merck) and incubated

in papain for 30 min at 37�C in a shaking water bath. After several dissociation steps, cells were pelletized at 200g for 8 min at room

temperature and re-suspended in EBSS + 1%BSA. The cell suspension was stored on ice while the live cell count was determined

using a TC20 Automated Cell Counter (Bio-Rad). Metabolite extraction: 1x106 cells per sample were transferred into a 1.5 ml Eppen-

dorf tube and centrifuged at 200g for 8 min at 4�C using a tabletop centrifuge. The supernatant was removed and 100ml ice-cold

solvent mixture (methanol:acetonitrile:H2O (2:2:1, v/v) MS-grade; cooled to� 20�C) was added to the pellet. The cells weremechan-

ically homogenized with a P1000 pipette for 1 min and then sonicated for 5 min in a water bath sonicator. Samples were further

processed as described for the untargeted metabolomics analysis and stored at -80�C until analyzed. Sample analysis: Polar

metabolites were analyzed using HILIC-LC-MS/MS. Each sample was injected onto an iHILIC�-(P) Classic, PEEK column,

(100mm x 2.1mm, 5mm) with a precolumn (HILICON). An Ultimate 3000 HPLC system (Dionex, Thermo Fisher Scientific�)

was used, employing a flow rate of 100 ml/min and directly coupled to a TSQ Quantiva mass spectrometer (Thermo Fisher). A

15-minute gradient from 14%B to 80%B (A: 95%acetonitrile 5%10mMaqueous ammonium acetate; B: 5mMaqueous ammonium

bicarbonate) was used for separation. The following transitions were used for quantitation in the negative ionmode (2.8 kV): pyruvate:

87 m/z / 43 m/z, lactate: 89 m/z / 43 m/z, taurine: 124 m/z / 80 m/z, ketoleucine: 129 m/z / 85 m/z, a-ketoglutaric acid: 145

m/z/ 101 m/z, AMP: 346 m/z/ 79 m/z, IMP: 347 m/z/ 79 m/z, ADP: 426 m/z/ 134 m/z, ATP: 506 m/z/ 159 m/z, NAD: 662

m/z / 540 m/z, NADH: 664 m/z / 408 m/z, NADP: 742 m/z / 620 m/z, NADPH: 744 m/z / 426 m/z, CoA: 766 m/z / 408 m/z,

Acetyl-CoA: 808m/z/ 408m/z and in the positive ionmode (3.5kV) GSH: 308m/z/ 408m/z, GSSG: 613m/z/ 355m/z and SAM:

399 m/z/ 250 m/z. The remaining metabolites were quantified by reverse phase LC-MS/MS, injecting 1 ml of the metabolite extract

onto a RSLC ultimate 3000 (Thermo Fisher) directly coupled to a TSQ Altis mass spectrometer (Thermo Fisher) via electrospray ioni-

zation. A Kinetex C18 columnwas used (100 Å, 150 x 2.1mm), employing a flow rate of 80 ml/min. A 7-minute-long linear gradient was

used from 99% A (1 % acetonitrile, 0.1 % formic acid in water) to 60% B (0.1 % formic acid in acetonitrile). Liquid chromatography-

tandem mass spectrometry (LC-MS/MS) was performed by employing the selected reaction monitoring (SRM) mode of the instru-

ment in the positive ion mode, using the transitions 156 m/z/ 110 m/z (histidine), 175 m/z/ 70 m/z (arginine), 241 m/z/ 74 m/z

(cystine), 76 m/z / 30 m/z (glycine), 133 m/z / 70 m/z (ornithine), 175 m/z / 74 m/z (asparagine), 106 m/z / 60 m/z (serine)

120 m/z / 74 m/z (threonine), 147 m/z / 84 m/z (lysine), 147 m/z / 130 m/z (glutamine), 148 m/z / 84 m/z (glutamic acid) 90

m/z / 4 m/z (alanine and sarcosine), 104 m/z / 84 m/z (GABA), 176 m/z / 159 m/z (citrulline), 116 m/z /70 m/z (proline), 118

m/z / 72 m/z (valine), 150 m/z / 133 m/z (methionine), 132 m/z / 86 m/z (isoleucine and leucine), 182 m/z / 136 m/z

(tyrosine), 166 m/z / 103 m/z (phenylalanine), 205 m/z / 188 m/z (tryptophane), 134 m/z / 74 m/z (aspartic acid) 177 m/z

/160 m/z (serotonin) and 154 m/z/ 137 m/z (dopamine). For all transitions, the optimal collision energy was defined by analyzing

pure metabolite standards. LC-MSMS chromatograms were interpreted using TraceFinder (Thermo Fisher). After LC-MS/MS anal-

ysis, retention times were verified by standard addition of pure compounds to arbitrarily selected samples, validating experimental

retention times with the respective pure substances. Statistical analysis: Raw peak areas were normalized using the probabilistic

quotient normalization method as described in Dieterle et al.95 implemented using pandas 1.3.586 and numpy 1.22.4.87 P-values

were computed using an unpaired two-tailed t-test and corrected using the Benjamini-Hochberg procedure implemented in stats-

models 0.13.1.88

Parallel untargeted lipidomics and metabolomics
Sample preparation: P2 mice were decapitated, cortices dissected on ice and the meninges and hippocampus removed. The left

hemisphere was immediately transferred into a 1.5ml Eppendorf-tube and snap frozen for whole tissue lipidomics/metabolomics.

The right hemisphere was dissociated with the Papain Dissociation System (Worthington Biochemical Corp.) kit and used to obtain

the cellular lipidome/metabolome. The dissociation protocol is described in the previous section. Lipid andmetabolite extraction: For

lipid and metabolite extraction, samples were treated as described in the section above. Ice-cold isopropanol:H2O (90% - 10%, v/v)
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was used as a solvent. EquiSPLASH� LIPIDOMIX� Quantitative Mass Spec Internal Standards (Avanti Polar Lipids) and Metabo-

lomics Amino Acid Mix Standards (Cambridge Isotope Laboratories) were added as internal standards to the solvent. Sample anal-

ysis: LC-MS/MS analysis was performed on a Vanquish UHPLC system coupled to an Orbitrap Exploris 240 high-resolution mass

spectrometer (Thermo Fisher Scientific�) in positive and negative ESI (electrospray ionization) mode. All experimental samples

were measured in a randomized manner. Pooled quality control (QC) samples were prepared by mixing equal aliquots from each

processed sample.Multiple QCswere injected at the beginning of the analysis in order to equilibrate the LC-MS system. AQC sample

was analysed after every 5th experimental sample tomonitor instrument performance throughout the analytical sequence. For deter-

mination of background signals and subsequent background subtraction, an additional processed blank sample was recorded. Data

was processed using MS-DIAL76 and raw peak intensity data was normalized via internal standards or total ion count of all detected

analytes.96 Feature identification was based on accurate mass, isotope pattern, MS/MS fragment scoring and retention time match-

ing to an in-house library (metabolomics) and the MS-DIAL LipidBlast library (lipidomics). Analysis of untargeted metabolomics data:

Chromatographic separation was carried out on an Atlantis Premier BEH Z-HILIC column (Waters; 2.1 mm x 100 mm, 1.7 mm) at a

flow rate of 0.25 mL/min. The mobile phase consisted of water:acetonitrile (9:1, v/v; mobile phase phase A) and acetonitrile:water

(9:1, v/v; mobile phase B), which were modified with a total buffer concentration of 10 mM ammonium acetate (negative mode)

and 10 mM ammonium formate (positive mode), respectively. The aqueous portion of each mobile phase was pH-adjusted (negative

mode: pH 9.0 via addition of ammonium hydroxide; positive mode: pH 3.0 via addition of formic acid). The following gradient (20 min

total run time including re-equilibration) was applied (min/%B): 0/95, 2/95, 15/50, 14/60, 14.5/50, 16.5/50, 16.8/95, 20/95. Column

temperature wasmaintained at 40�C, the autosampler was set to 4�C and sample injection volumewas 5 mL. Analytes were recorded

via a full scan with a mass resolving power of 120,000 over a mass range from 60 – 900 m/z (scan time: 100 ms, RF lens: 70%). To

obtain MS/MS fragment spectra, data-dependant acquisition was carried out (resolving power: 15,000; scan time: 22 ms; stepped

collision energies [%]: 30/50/150; cycle time: 600ms). Ion source parameters were set to the following values: spray voltage: 4100 V /

3500 V, sheath gas: 30 psi, auxiliary gas: 5 psi, sweep gas: 0 psi, ion transfer tube temperature: 350�C, vaporizer temperature: 300�C.
Analysis of untargeted lipidomics data: Chromatographic separation was carried out on an ACQUITY Premier CSH C18 column

(Waters; 2.1 mm x 100 mm, 1.7 mm) at a flow rate of 0.3 mL/min. The mobile phase consisted of water:acetonitrile (40:60, v/v; mobile

phase phase A) and isopropanol:acetonitrile (9:1, v/v; mobile phase B), which were modified with a total buffer concentration of

10 mM ammonium acetate + 0.1 % acetic acid (negative mode) and 10 mM ammonium formate + 0.1% formic acid (positive

mode), respectively. The following gradient (23 min total run time including re-equilibration) was applied (min/%B): 0/15, 2.5/30,

3.2/48, 15/82, 17.5/99, 19.5/99, 20/15, 23/15. Column temperature was maintained at 65�C, the autosampler was set to 4�C and

sample injection volume was 5 mL (dissociated cells) and 1 mL (tissue samples). Analytes were recorded via a full scan with a

mass resolving power of 120,000 over a mass range from 200 – 1500 m/z (scan time: 100 ms, RF lens: 70%). To obtain MS/MS frag-

ment spectra, data-dependant acquisition was carried out (resolving power: 15,000; scan time: 54 ms; stepped collision energies

[%]: 25/35/50; cycle time: 600 ms). Ion source parameters were set to the following values: spray voltage: 3250 V / 3000 V, sheath

gas: 45 psi, auxiliary gas: 15 psi, sweep gas: 0 psi, ion transfer tube temperature: 300�C, vaporizer temperature: 275�C.

Proteomic analysis
Sample preparation for the proteomics analysis of whole cortical tissue: P5 mice were decapitated, the cortices dissected on ice,

the hippocampus was removed and the samples stored at -80�C until used for further steps. Sample preparation for the prote-

omics analysis of Slc7a5 co-immunoprecipitation from neural cell membranes: Lysates enriched for cell membranes were

obtained based on the protocol modified from Lee et al.97 Brief, P5 Slc7a5fl/fl;Tie2-Cre+ animals were used to ensure that the

precipitated Slc7a5 is derived from neural cells-only. Animals were decapitated and the brain was dissected on ice. Hippocampus

and meninges were removed. The cortex was homogenized in ice-cold solution A (pH 7.4; 5mM HEPES; 0.32M sucrose; 1mM

NaHCO; 1mM MgCl; 0.5 mM CaCl; ddH2O) using a teflon-homogenizer on ice. 150 ml of the fresh lysate was transferred into a

separate tube and 1% NP-40 was added (=L1- whole lysate). The remaining sample was centrifuged in a table-top centrifuge

at 1400 g for 10 min at 4�C. The supernatant was transferred to a fresh 1.5 ml tube. Solution A was added to the pellet and ho-

mogenized with a pipette. The homogenate was centrifuged at 700 g for 10 min at 4�C. The two supernatants were combined,

transferred into 13.2ml Thinwall Ultra-Clear� Tubes (Beckman Coulter) and centrifuged at 13.800x g (RCF) for 10 min using an

OPTIMA-XPN 100 ultracentrifuge. 150ml of the supernatant + 1%NP-40 were transferred into a fresh tube (=S2- cytosolic fraction).

To obtain the membrane fraction of the sample (=M1), the pellet was re-suspended in solution B (pH8.0; 6mM Tris-HCl, 0.32M

sucrose; 1mM NaHCO; ddH2O), mechanically homogenized with a pipette and 1% NP-40 was added. The protein concentration

of L1, S2 and M1 fractions was determined using the Pierce� BCA Protein Assay Kit (Thermo Fisher Scientific). The samples were

snap-frozen and stored at -80�C. Only fraction M1 was further used for the co-immunoprecipitation experiment. Co-immunopre-

cipitation was performed using Protein A Magnetic beads (Abcam) and a DynaMag�-2 Magnet (Invitrogen�) rack. The beads

were washed and equilibrated using IP-lysis buffer (50 mM Tris-HCl (pH 8.0); 120 mM NaCl; 0.5% NP-40; 1 mM EDTA). 800mg

of total protein per sample were used as input. Crude lysates were pre-cleared to eliminate proteins, which unspecifically bind

to the beads. In detail, the samples were incubated with pre-washed beads for 2 hrs on a rotating rack at 4�C. After incubation,
a magnetic field was applied using the DynaMag�-2 Magnet rack to collect the pre-cleared lysate. During the 2hrs pre-clearing

step, pre-washed beads were incubated in lysis buffer with either normal rabbit igG control (Cell Signaling Technologies) or the

anti-LAT1 (Slc7a5) antibody (25mg of antibody per sample) rotating at 4�C. After 2 hrs the conjugated beads were washed twice
Cell 186, 1–18.e1–e14, April 27, 2023 e11



ll
OPEN ACCESS

Please cite this article in press as: Knaus et al., Large neutral amino acid levels tune perinatal neuronal excitability and survival, Cell (2023),
https://doi.org/10.1016/j.cell.2023.02.037

Article
and re-suspended in IP-lysis buffer w/o NP-40 (50 mM Tris-HCl (pH 8.0); 120 mM NaCl; 1 mM EDTA). After this step, the actual

pull-down was performed by incubating the pre-cleared lysate over night with i) beads conjugated to the primary anti-LAT1

(Slc7a5) antibody (IP+) and ii) beads conjugated to the IgG control (IP-) at 4�C on a rotating rack. On the next day, IP+ flow through

was collected using the magnetic rack. The beads were washed using IP-lysis buffer and gently vortexed. The samples were

moved on the magnetic rack again and the supernatant was removed. The beads were washed and re-suspended in IP-lysis

buffer w/o NP-40. The IP+ and IP- samples were further used for mass spectrometry analysis. Mass spectrometry analysis: All

samples were processed with the iST-NHS kit from PreOmics GmbH. Modified protocols for on-beads digest (lysis for 10 min

at 60�C) or whole tissue (sonication for 10*30s in a Bioruptor sonicator in presence of 50 mg Protein Extraction beads (Diagenode))

were used for co-IP samples and tissue samples, respectively. Digestion time was 2h for samples from co-IP experiments, 3.5 h

for tissue samples. Two TMT-10plex kits were used (lot VK306785 for the whole lysate dataset, lot WC306775 for the co-IP data-

set). Samples were cleaned up and combined. The whole lysate TMT sample was fractionated by offline High pH Reversed Phase

fractionation into 48 fractions (A: de-ionized water + 10 mM NH4OH; B: 90% LC-grade Acetonitrile + 10 mM NH4OH; flow:

0.15 mL/min; 0-4 min: 1% B, 115 min: 25%, 140 min: 40%, 148 min: 75%, maintained for 12 min, followed by 45 min equilibration

at 1% B). Unfractionated co-IP samples and whole lysate fractions were vacuum-dried overnight then re-dissolved in LC-LOAD

(co-IP samples) and sent for MS analysis. LC-MS/MS analysis: All samples were analyzed by LC-MS/MS on an Ultimate 3000

nano-HPLC (Dionex) coupled with a Q-Exactive HF (Thermo Fisher Scientific�). Chromatographic method: peptide samples

were loaded onto a GEN1 uPAC column (Pharmafluidics; Thermo Fisher Scientific�); solvent A: H2O, 0.1% formic acid; solvent

B: 80% acetonitrile in H2O, 0.08% formic acid; gradients: tissue fractions, 2% to 44% B in 60 min; co-IP dataset, 2% to 31%

(155 min) then 44% B (180 min); Mass Spectrometry method: Data-Dependent acquisition (Full MS / dd-MS2); MS1: 1 microscan,

120,000 resolving power, 3e6 AGC target, 50 ms maximum IT, 380 to 1,500 m/z, profile mode; up to 20 data-dependent MS2

scans per duty cycle, excluding charges 1 or 8 and higher, dynamic exclusion window 10s (60 min gradient) or 60s (180 min gra-

dients); isolation window 0.7 m/z, fixed first mass 100 m/z, resolving power 60,000, AGC target 1e5, maximum IT 100 ms, (N)CE

32. Data analysis: Each dataset was independently searched in MaxQuant77 (1.6.17.0 for whole tissues, 2.0.1.0 for co-IPs) against

a Mus musculus fasta database downloaded from UniProtKB. Fixed modification was set to C6H11NO. Variable modifications were

set to include Acetyl (protein N-term), Oxidation (M), Gln->pyroGlu and Deamidation (NQ) and, for whole tissue, Phospho (STY).

Match-between-runs and second peptides were set to active. All FDRs were set to 5% (whole tissue) and 1% (co-IPs). Each

MaxQuant output evidence.txt file was then re-processed separately in R using in-house scripts. Evidence reporter intensities

were corrected using the relevant TMT lot’s purity table, scaled to parent peptide MS1 intensity and then normalized using the

Levenberg-Marquardt procedure. The long format evidence table was consolidated into a wide format peptidoforms table, adding

up individual values where necessary. Peptidoform intensity values were log10 transformed. Values were re-normalized

(Levenberg-Marquardt procedure). Protein groups were inferred from observed peptidoforms, and, for each group, the estimated

expression values across samples were calculated by averaging individual peptidoform log10 intensity vectors, scaling the vector

to reflect the intensity level of the most intense peptidoform according to the best flyer hypothesis (phospho-peptides and their

unmodified counterpart peptide were excluded). Peptidoform and protein group log2 ratios were calculated: to the corresponding

control sample (IP- performed on the same individual) for co-IPs, or to the average reference (WT) sample (whole lysate dataset).

Statistical significance was tested with the limma package78 Seurat v4.2, performing both a moderated t-test and an F-test. The

Benjamini-Hochberg procedure was applied to compute significance thresholds at various pre-agreed FDR levels. Regardless of

the test, protein groups with a significant p-value were deemed to be regulated if their absolute log2 fold change (= logFC) was

greater than 95% of control to average control logFC. During the analysis phase, two out of five mutant samples from the cortical

lysates dataset behaved as outliers and were excluded from further analysis. Protein groups were annotated with GO terms,

applying a term if it, or one of its offspring terms, was found among the annotations of any protein accession which could explain

all peptides in the group. GO enrichment analysis was performed using an in-house script built around the topGO package

v2.50.0, comparing separately for each contrast all up- or down-regulated proteins, or both, against the background of all iden-

tified protein groups.

Bulk RNA-sequencing of cortical tissue
Sample preparation: P1-P2 pups were decapitated and the brains were dissected on ice under RNAse free conditions. Total RNA of

one cortical hemisphere was extracted using TRIzol� Reagent (Invitrogen�) and chloroform (Sigma Aldrich), followed by centrifu-

gation at 12000 g for 15 min at 4�C. The upper phase was transferred to a fresh tube and 1.5 volumes of 100% EtOH were added.

Total RNA was purified by using the RNA Clean&Concentrator-5 prep Kit (Zymo Research). The samples were further treated with

RQ1 RNase-Free DNase (Promega) as described in the kit instructions manual. RNA concentration and quality was assessed by us-

ing theNanoDrop spectrophotometer (Thermo Fisher Scientific) and the Bioanalyzer 2100with the RNA6000Nano kit (Agilent). cDNA

libraries were generated with the SENSE mRNA-Seq Library Prep Kit V2 (Lexogen) using 1.5 mg total RNA. The quality of the gener-

ated libraries was monitored by using the High Sensitivity DNA Analysis Kit (Agilent) and the Bioanalyzer 2100. Libraries were

sequenced on an Illumina HiSeq 2500 instrument. Analysis: De-multiplexed raw reads were trimmed before alignment using the

FASTX toolkit v0.0.14. Trimmed reads were aligned to the mouse genome using STAR82 v2.5.4 (genome: GrCm38, gene annotation:

Gencode release M8). Read counts per gene were quantified using STAR. The aligned sequencing data were uploaded to the public

server at usegalaxy.org.81 Differential expression analysis was performed in usegalaxy.org using the Bioconductor package
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DESeq283 v1.34.0 using an FDR threshold of 0.05. Gene Ontology enrichment analysis was performed using the Bioconductor pack-

age GOstats84 v2.36.0 with a p-value cutoff of 0.001 and conditional testing enabled.

Analysis of the untargeted metabolomics dataset
Combining hydrophilic interaction and reversed phase chromatography results and filtering: Measurement of metabolites was done

by LC-MS using hydrophilic interaction liquid chromatography (HILIC) or reversed phase chromatography (RP). The two analyses

returned overlapping metabolites. Assuming quantifications in RP would align with quantifications in HILIC, we combined HILIC

and RP by adding to the HILIC data those metabolites that were detected by RP but not by HILIC. Subsequently, the combined

data were filtered to retain only those metabolites that were mapped to a KEGG ID. Data visualization was performed using Seaborn

v0.11.290 and Matplotlibs v3.5.2.91 Principal component analysis: Principal component analysis was conducted in Python using sci-

kit-learn v1.1.2.85 Metabolite time course analysis: Time course analysis was conducted on the combined and filtered metabolomics

data. In brief, the mean abundance of the metabolites in WT and KO at each time point was computed and resulting averages were

normalized to values between 0 and 1 such that the maximum abundance over time is 1 and the minimum abundance over time is 0.

This was done for each metabolite in each genotype separately. Differential dynamics of metabolites between the genotypes were

assessed by computing the Pearson correlation coefficient r between normalized trajectories in WT and KO where metabolites with

r < 0.975were considered to show differing dynamics.89 For visualization purposesmetabolites weremanually annotated to fivemain

metabolic pathways. Grouping of metabolites based on trajectories: Normalized trajectories of WT and mutants were grouped using

a gaussian mixture model (GMM) with six components (implemented in scikit-learn v1.1.285). The optimal number of components

was assessed with the Bayesian information criterion. Ternary plot generation: Raw time point values for each metabolite in the

combined and filtered data were averaged over replicates and normalized to sum to 1. These values were then plotted using the py-

thon-ternary library v1.0.8. Metabolic pathway enrichment: For classical pathway enrichment analysis, list of pathway annotations of

classes ‘metabolism’ and ‘information processing’ were retrieved from the Kyoto Encyclopedia of Genes and Genomes (KEGG).

Enrichment analysis was conducted by assessing the significance of overlap between a given set of metabolites and a pathway

with Fisher’s exact test and subsequent multiple testing adjustment using the Benjamini-Hochberg procedure using an FDR of 0.05.

Analysis of single-cell RNA sequencing data
Raw data: DiBella et al.72: Raw data was obtained from GEO (developmental age given in brackets): GSM4635077 (E16),

GSM4635080 (P1), GSM4635081 (P1), GSM4635078 (E18), GSM4635079 (E18), GSM5277845 (P4). Metadata was obtained from

Broad Institute Single Cell Portal (https://singlecell.broadinstitute.org/single_cell on 03/2022). Cell types CThPN, SCPN were group-

ed with DL CPN. Yuan et al.73: Raw counts and meta data was obtained from GEO, accession number GSE204759. Analysis: All

analyses were performed using R (v4.1.2) and Seurat79 Neuron (v4.1.0). One Seurat object was created for each sample using func-

tion CreateSeuratObject with parameters: min.cells = 3, min.features = 200. Expression data was normalized using function

NormalizeData with standard parameters. Where applicable (E18, P1 DiBella et al.72), replicates were combined prior to normaliza-

tion. Expression of Slc7a5 was identified as fraction of cells showing a normalized expression of Slc7a5 > 0, relative to the total

number of cells in that cell type. Clopper-Pearson confidence intervals were calculated using function clopper.pearson.ci (package

GenBinomApps v1.2) with parameters: alpha = 0.05, CI = "two.sided".

Electrophysiology
Sample preparation: Acute brain slices were obtained from P6-7 and P25-P26 mice. Coronal sections (300 mm) were prepared from

primary somatosensory cortex. Animals were decapitated under isoflurane anesthesia and whole brains were rapidly removed from

the skull and sectioned using a VT 1200S vibratome (Leica) in ice-cold cutting solution, containing (mM): 87 NaCl, 25 NaHCO3, 2.5

KCl, 1.25 NaH2PO4, 10 glucose, 75 sucrose, 7 MgCl2, 0.5 CaCl2 (320 mOsm, 7.2-7.4 pH). Slices were allowed to recover at room

temperature for at least 1 h in regular artificial cerebrospinal fluid (ACSF), containing (mM): 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25

NaHCO3, 25 glucose, 1 MgCl2 and 2 CaCl2 (320 mOsm, 7.2–7.4 pH). The ACSF was continuously oxygenated with 95% O2 and

5% CO2 to maintain the physiological pH. When older mice were tested (P25-26), slices were sectioned in ice-cold cutting solution

containing (mM): 93 NMDG, 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 20 HEPES, 25 glucose, 5 sodium ascorbate, 2 thiourea, 3 sodium

pyruvate, 10 MgCl2, 0.5 CaCl2 (320 mOsm, 7.2-7.4 pH). Slices from P25-26 mice were recovered at 32�C for 10-12 minutes in the

same solution and then allowed to recover at room temperature for at least 1 h in regular ACSF. Slices were visualized under

infrared-differential interference contrast (IR-DIC) using a BX-51WI microscope (Olympus) with a QIClickTM charge-coupled device

camera (Q Imaging Inc.). Recordings: Patch pipettes (4-6 MU; World Precision Instruments) were pulled on a P-1000 puller (Sutter

Instruments) and filled with the intracellular recording solution, containing (mM): 128 K-gluconate, 10 HEPES, 10 Na2-phosphocre-

atine, 1.1 EGTA, 5 MgATP, 0.4 NaGTP (osmolarity adjusted to 295 mOsm with sucrose, 7.3-7.4 pH). Current clamp recordings were

performed at room temperature (24 ± 1 �C) from layer II/III pyramidal neurons. When experiments were performed in mosaic-MADM

animals, patch clamp from layer II/III was visually guided by fluorescent labeling of neurons to recognize wild type (tdTomato+) and

knock-out (GFP+) pyramidal neurons in the same brain slice. Analysis: Membrane capacitance and resting membrane potential were

determined immediately after the establishment of whole-cell configuration. Neuronal membrane potential was held at approximately

-60 mV (P6-7 mice) or -70 mV (P25-26 mice) by constant current injection. Current steps ranging in amplitude from -40 to +50 pA

(10 pA increments; 600 ms duration) were applied to estimate the f – I relationship. In current clamp experiments from P25-26
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mice, current steps ranging in amplitude from -300 to +400 pA (50 pA increments; 600 ms duration) were applied to estimate the f – I

relationship. Properties of individual action potentials (APs) were determined from the first current step necessary to elicit at least one

AP. Phase-plane plot analysis was performed to evaluate the dynamic changes of the membrane potential over time (dV/dt). The

threshold was set as the voltage at which the first derivative of the voltage trace reached 20 V/s. Amplitude was calculated as the

difference between the threshold and the peak. AP half-width was measured at half the difference between the firing threshold

and the AP peak. The inter-spike interval (ISI) ratio was calculated as the ratio of the last ISI relative to the first. Current clamp record-

ings were filtered at 2 kHz, sampled at 20 kHz and acquired using a MultiClamp 700B amplifier and a Digidata 1550A. Recorded

signals were analyzed off-line using the Clampfit 10 software (Molecular Devices).

Biocytin filling of neurons
Sample preparation: Acute brain slices were obtained from P6-7 mice, as described in the previous section. To specifically label py-

ramidal neurons from layer II/III of the somatosensory cortex, patch pipettes (4-6 MU; World Precision Instruments) were pulled on a

P-1000 puller (Sutter Instruments) and filled with the intracellular recording solution, containing (mM): 128 K-gluconate, 10 HEPES, 10

Na2-phosphocreatine, 1.1 EGTA, 5 MgATP, 0.4 NaGTP and 0.5% biocytin (osmolarity adjusted to 295 mOsm with sucrose, 7.3-7.4

pH). We dialyzed neurons for 10-15 minutes by whole-cell patch clamp. After pipette removal, slices were immediately fixed in 4%

PFA overnight at 4�C. For visualization of the biocytin filling, sections were blocked in 5% normal goat serum in 1X PBS for 45 min at

RT, followed by incubation with Streptavidin Alexa Fluor� 488 Conjugate overnight at 4�C. After the incubation step a nuclear coun-

terstain was applied and the sections were mounted on SuperFrost Plus� Adhesion slides (Epredia�) using Dako fluorescent

mounting medium (Dako). Image acquisition: Fluorescently labeled neurons were imaged with a 40x objective at a Zeiss LSM800

inverted confocal microscope. Image analysis: Images were de-convoluted using Huygens Professional software in v15.0 (Scientific

Volume Imaging). Quantification of spine density and morphology was performed in NeuronStudio.80 Sholl analysis was performed

after tracing the complete dendritic tree in Imaris software x64 v9.3.1.

Behavioral analysis
All behavioral tests were performed during the light period. Mice were habituated to the test room 24 h before each test. For all

studies, sex-matched littermate pairs were employed. Equipment was cleaned between each trial with 70% EtOH. Mice were given

24 h to recover between different tests. All behavioral studies were performed starting with the least aversive task first and ending

with themost aversive one. Behavioral tests were carried out with P55 to P65 animals. Open field test: Exploratory behavior in a novel

environment was assessed in an open field arena (45cm (L) x 45cm (W) x 30cm (H)) made out of dark plexiglas. The animal was placed

in the center of the arena and videotaped for 20 min. Locomotor activity (distance traveled and velocity) in the center or periphery of

the arena, as well as rearing, were tracked and analyzed using the EthoVision XT 11.5 software (Noldus). Three chamber sociability

test: Mice were tested for social deficits as described previously.98 Briefly, the behavior of the animals wasmonitored in a rectangular

three chambers arena (60cm (L) x 40cm (W) x 20 cm (H)) made of clear plexiglas. Age- and sex-matched littermate pairs were used for

all tests. Sex- and age-matched C57BL/6J mice were used as ‘‘stranger’’ mice. Mice were habituated to the wire cage for 2x 10 min

24h before the test. During the first session (habituation), each subject was placed into the center chamber with open access to both

left and right chambers, each chamber containing an empty wire cage. After ten minutes of habituation, mice were tested in the

‘‘social phase.’’ An age-matched stranger was placed in the wire cage of the left chamber, while a novel object was placed into

the right chamber’s cage. The wire cage (12cm (H), 11cm diameter) allows nose contact between the test subject and the

C57BL/6J strangers. The test animal was allowed to explore the arena for 10 min freely. Locomotor activity (distance traveled

and velocity) and the number of nose contacts (< 5cm proximity) with the caged mouse/object were recorded and analyzed by

EthoVision XT 11.5 software (Noldus). Vertical explorative behavior was assessed by manually quantifying the number of rearings

during the habituation phase. Gait measurement test: Potential gait impairments were monitored using ‘‘the footprint test.’’99 In brief,

the fore and hind paws were painted with dyes of contrasting colors. The mouse was placed in a narrow corridor on white paper. A

darkened house was used as bait to encourage the mouse to walk in a straight line. The footprint patterns were then analyzed for

stride length, sway length and stance length. Hind limb clasping test: To assess potential hind limb clasping behavior, mice were

suspended by their tails for 10s. During this period, the hind limb position was monitored and scored according to the severity of

the phenotype.100 The test was repeated three times for each animal.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using Microsoft� Excel� 2013, GraphPad Prism 9.0 and Origin 2018 and Python. Shapiro–Wilk

test was employed to evaluate normal distribution, means and standard deviations of the given data. Parametric data were analyzed

for significance using unpaired two-tailed t-tests, 1-way or 2-way ANOVAs with Sidak’s post-hoc test, using *p<0.05, **p<0.01, and

***p<0.001 for significance. Data were presented as a bar, box andwhiskers, scatter dot plots andmean ± standard deviation, unless

otherwise specified. Data sets with non-normal distributions were analyzed using the two-tailed Mann–Whitney U test. Enrichment

analysis for metabolomics data was performed using Fisher’s exact test. Where applicable, multiple testing corrections have been

performed using the Benjamini-Hochberg procedure. Illustrations were prepared using Adobe Illustrator and BioRender

(BioRender.com).
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Figure S1. Untargeted metabolomic profiling of wild-type and Slc7a5 deficient cortex, related to Figures 1 and 2

(A) Heatmap visualizing changes in metabolite levels in the wild-type cortex obtained frommultiple mice at three developmental time points (E14.5, P2, and P40).

(B) Slc7a5 expression in the murine cortex during perinatal development (E16, E18, P1, and P4); based on single-cell RNA sequencing data (DiBella et al.72; AP,

apical progenitor; IP, intermediate progenitor; MN, migrating neuron; UL, upper layer excitatory neurons; L4, layer IV excitatory neurons; DL, deeper layer

excitatory neurons; A, astrocytes; O, oligodendrocytes).

(C) Slc7a5 expression in excitatory neurons of different cortical layers during post-natal neurodevelopment (P1, P7, and P21); based on single-cell RNA

sequencing data (Yuan et al.73; L2/L3, layer II/III excitatory neurons; L4, layer IV excitatory neurons; L5, LV excitatory neurons; L6, layer VI excitatory neurons).

(D) Emx1-driven Cre recombinase expression in neural cells of the neocortex was verified by utilizing the Gt26SormtmG reporter mouse line. Gt26SormtmG;Emx1-

Cre+ mice express tdTomato in all cells prior to Cre recombinase exposure. After recombination, Cre recombinase expressing cells are labeled with cell

membrane-localized green fluorescent protein (GFP) (scale bar, 1,500 mm).

(E) PCA plot based on all detected metabolites of Slc7a5 mutant and wild-type cortex at E14.5, P2, and P40.
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Figure S2. Developmental trajectories of metabolites detected in wild-type cortex and Slc7a5 deficient cortex, related to Figures 1 and 2

(A) Normalized and scaled trajectories of all metabolites detected in Slc7a5fl/fl;Emx1-Cre+ (cyan) and wild-type (gray) cortical tissue (x axis: age; y axis: scaled

abundance; metabolites and Pearson’s coefficient: Data S1).
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Figure S3. Cellular energy homeostasis is unaffected by the loss of Slc7a5, related to Figure 3

(A) Volcano plot of intracellular levels of metabolic co-factors and keymetabolites of ATP producing pathways (n = 7mice per genotype; nsp > 0.05; unpaired two-

tailed t test).

(B–D) Quantification of intracellular (B) ATP (means ± SEM; n = 7 mice per genotype; unpaired two-tailed t test), (C) ATP/ADP ratio (means ± SEM; n = 7 mice per

genotype; nsp > 0.05; unpaired two-tailed t test), and (D) ATP levels over the course of development in cortical tissue of Slc7a5fl/fl;Emx1-Cre+ and wild-type mice

(n = 5 mice per genotype and time point; Pearson’s coefficient: r > 0.9).

(E and F) Intracellular (E) NAD+/NADH and (F) NADP+/NADPH ratios are not changed in cortical cells of mutant mice (means ± SEM; n = 7 mice per genotype;
nsp > 0.05; unpaired two-tailed t test).

(G) The ratio of oxidized and reduced glutathione is unaffected in cortical cells of mutant mice (means ± SEM; n = 7 mice per genotype; nsp > 0.05; unpaired two-

tailed t test).

(H) PCA plot of lipid-related metabolites detected in wild-type and mutant mice over time using an untargeted metabolomics approach (n = 4 animals per ge-

notype and time point).

(I) Protein expression (mean log10 expression) levels in Emx1-Cre+ vs. wild-type cortex (n = 4 animals per genotype).

(J) GO-term enrichment analysis of upregulated genes of bulk RNA sequencing of Slc7a5fl/fl;Emx1-Cre+ cortex at P2 (selected GO terms: Data S5; n = 3 mice per

genotype).

(K) Comparison of the perinatal metabolic states of Slc7a5mutant and wild-type neurons (FA, fatty acid; KB, ketone body; OXPHOS, oxidative phosphorylation).
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Figure S4. The mTOR, UPR, and AMPK pathways are not affected in Slc7a5 deficient mice, related to Figure 3

(A) Scheme of the signaling pathways and cellular processes which are linked to LNAA levels.

(B–G) Western blot analysis of markers used to quantify the state of the mTOR pathway and autophagy in P5 Slc7a5fl/fl;Emx1-Cre� and Slc7a5fl/fl;Emx1-Cre+

cortex. Ratio of normalized (B) phosphoS6240–244/S6, (C) phosphoS6235–236/S6, (D) LC3I/II protein levels, and (E) normalized Lamp1. Normalized (F) 4ebp1

expression and (G) phospho4ebp1/4ebp1 ratio (n = 3 mice per genotype; nsp > 0.05; **p < 0.01; unpaired two-tailed t test). The state of the mTOR pathway is

monitored by looking at the ratio between phosphorylated and non-phosphorylated 4ebp1, which is not changed in this case.

(H–J)Western blot analysis ofmarkers used tomonitor the unfolded protein response (UPR) pathway. Quantification of (H) Atf4, (I) Ire-alpha expression levels, and

(J) phosphoEif2a/Eif2a ratio normalized to Gapdh (n = 4 mice per genotype; nsp > 0.05).

(K) Normalized phosphoAMPK/AMPK ratio (n = 3 mice per genotype; nsp > 0.05; unpaired two-tailed t test).

(L) Electron microscopy images of the endoplasmic reticulum (ER) showing unchanged ER morphology in mutant LII/LIII pyramidal neurons of P2 mutant mice

(scale bars, 24,000x).
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Figure S5. Characterization of the morphology and the cell-type composition of Slc7a5-deficient cortex, related to Figure 4

(A) Brain and body weight of newborn Slc7a5fl/fl;Emx1-Cre+ and wild-type littermates (means ± SD; n = 8 animals per genotype; nsp > 0.05, unpaired two-tailed

t test).

(B andB0 ) Images (B) and quantification (B0) of brain-to-bodyweight ratio of newborn (P0–P1)Slc7a5fl/fl;Emx1-Cre+ andwild-typemice (means±SD; n = 9 animals

per genotype; nsp > 0.05; unpaired two-tailed t test; scale bars, 1 mm).

(C) Quantification of cortical thickness in newborn mutant and wild-type mice (means ± SD; n = 3 animals per genotype; nsp > 0.05; unpaired two-tailed t test).

(D) Brain weight of adult (P40) Slc7a5fl/fl;Emx1-Cre+, Slc7a5fl/+;Emx1-Cre+ and wild-type littermates (means ± SD; n > 7 animals per genotype; nsp > 0.05;

****p < 0.0001; unpaired two-tailed t test).

(E) Immunostaining for upper (Cux1) and lower (Ctip2) cortical layers in adult Slc7a5fl/fl;Emx1-Cre mice (scale bars, 100 mm).

(legend continued on next page)
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(F–G0) Quantification of (F) layer thickness and cell density in (G) Cux1+ or (G) Ctip2+ cell layers (means ± SD; n = 3 animals per genotype; n = 19 quantification

squares for the cell density; **p < 0.01; nsp > 0.05; unpaired two-tailed t test).

(H and I) Immunostaining (H) and quantification (I) of the ratio of apoptotic cells in the cortex vs. subcortical regions of P5mutant and wild-typemice (n = 3 animals

per genotype; ****p < 0.0001; unpaired two-tailed t test; scale bars, 100 mm).

(J and K) Immunostaining (J) and quantification (K) of the number of inhibitory (parvalbumin+) neurons in the different layers of cortical columns of adult mutant and

wild-type mice (n = 3 animals per genotype; ****p < 0.0001; nsp > 0.05; unpaired two-tailed t test; scale bars, 100 mm).

(L and M) Immunostaining (L) and quantification (M) of astrocytes (Gfap+) in cortical columns of adult mutant and wild-type mice (means ± SD; n = 4 animals per

genotype; nsp > 0.05; unpaired two-tailed t test; scale bars, 100 mm).

(N and O) Immunostaining (N) and quantification (O) of microglia (Iba1+) in cortical columns of adult mutant and wild-type mice (means ± SD; n = 3 animals per

genotype; nsp > 0.05; unpaired two-tailed t test; scale bars, 100 mm).

(P) Pedigree displays a non-consanguineous background; two affected patients (solid symbols), and unaffected members (open symbols).
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Figure S6. The mosaic analysis with double markers (MADM) principle, related to Figure 5

(A) Schematic of the MADM technique. Two reciprocally chimeric marker genes (MADM-8-cassettes) are inserted at two identical loci close to the centromeres

distal to the Slc7a5 gene on chromosome 8. Each cassette consists of two split coding sequences of green fluorescent protein (eGFP) and red fluorescent protein

(tdTomato; cassettes are referred to as GT and TG). The N- and C-terminals of each reporter gene are separated by an intron containing a loxP site. This ensures

that the chimeric genes do not produce functional proteins in the absence of Cre recombinase. In the presence of Cre recombinase, cis-recombination induces

the deletion of the floxed exon in the Slc7a5 gene, thereby generating aSlc7a5 knockout. These recombination events can take place throughout all phases of the

cell cycle. In G2, recombination in trans can mediate stochastic interchromosomal recombination events at the loxP sites of the MADM cassettes. This restores

functional eGFP and tdTomato expression in sparse single cells. During mitosis, two potential types of chromosomal segregation can take place. X segregation

generates green daughter cells homozygous for the mutation (Slc7a5�/�) and red cells homozygous for the wild-type allele (Slc7a5+/+), thereby creating fluo-

rescently labeled genetic mosaic mice. Z segregation produces one daughter cell that resembles the parental cell (colorless) and a second daughter cell ex-

pressing both fluorescent proteins (double colored). Both cells are heterozygous for Slc7a5 mutation.
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Figure S7. Electrophysiological properties of Slc7a5fl/fl;Emx1-Cre mice, related to Figure 6

(A) Fold change differences of proteins associated with the neuronal palmitoylation process of P5 Slc7a5fl/fl;Emx1-Cre+ compared with Slc7a5fl/fl;Emx1-Cre�
cortex (means ± SD; *significant; FDR threshold 1%, F test).

(B) Current-clamp recordings from LII/LIII pyramidal neurons in Slc7a5fl/+;Emx1-Cre+ and Slc7a5fl/fl;Emx1-Cre� SSCtx at P6-P7 (Slc7a5fl/fl;Emx1Cre�: n = 12

cells/2 mice; Slc7a5fl/+;Emx1-Cre+: n = 16 cells/2 mice; two-way ANOVA: genotype F(1,167) = 0.004; nsp > 0.5, current step F(5,167) = 162.11; ***p < 0.001,

interaction F(5,167) = 0.6 nsp > 0.5.

(C and D) Inter-spike interval measured in current-clamp experiments from P6 to P7 (C) and P25 to P26 (D) LII/LIII pyramidal neurons of Slc7a5fl/fl;Emx1-Cre+ and

Emx1-Cre� animals (Slc7a5fl/fl;Emx1-Cre�: n = 22 cells/3 mice; Slc7a5fl/fl;Emx1-Cre+: n = 30 cells/3 mice (P6–P7); Slc7a5fl/fl;Emx1-Cre+: n = 5 cells/3 mice;

Slc7a5fl/fl;Emx1-Cre�: n = 15 cells/3 mice (P25–P26); ***p < 0.001, unpaired two-tailed t test).

(E) Different dendritic spine classes represented on pyramidal neurons (thin, stubby, mushroom).

(F–I) Analysis of the overall dendritic spine density (F) and the ratio of the different spine classes (G–I) of mutant and wild-type LII/LIII pyramidal neurons in the

SSCtx at P6–P7 (n = 3 mice per genotype, n > 28 dendrites per mouse; **p < 0.01, *p < 0.05, nsp > 0.05; unpaired two-tailed t test).

(J–M) Decay time (J), resting membrane potential (K), ISI ratio (L), and half width (M) are not affected perinatally (Slc7a5fl/fl;Emx1-Cre�: n = 22 cells/3 mice;

Slc7a5fl/fl;Emx1-Cre+: n = 30 cells/3 mice (P6–P7); Slc7a5fl/fl;Emx1-Cre�: n = 5 cells/3 mice; Slc7a5fl/fl;Emx1-Cre+: n = 15 cells/3 mice (P25–P26). Two-way

ANOVA for AP decay time: genotype F(1,71) = 1.28 nsp > 0.5, time point F(1,71) = 107.51 ***p < 0.001, interaction F(1,71) = 0.5 nsp > 0.5, Holm-Sidak post hoc

***p < 0.001. Two-way ANOVA for resting membrane potential: genotype F(1,70) = 4.89 *p < 0.5, time point F(1,70) = 20.35 ***p < 0.001, interaction F(1,70) = 2.14
nsp > 0.5, Holm-Sidak post hoc *p < 0.05, ***p < 0.001. Two-way ANOVA for ISI ratio: genotype F(1,70) = 0.42 nsp > 0.5, time point F(1,70) = 181.02 ***p < 0.001,

interaction F(1,70) = 0.002 nsp > 0.5, Holm-Sidak post hoc ***p < 0.001. Two-way ANOVA for half width: genotype F(1,71) = 0.08 nsp > 0.5, time point F(1,71) =

132.15 ***p < 0.001, interaction F(1,71) = 0.002 nsp > 0.5, Holm-Sidak post hoc ***p < 0.001).

(N and O) Soma size measurements of LII/LIII pyramidal neurons of mosaic-MADM and control-MADMmice at P5. (N) LII/LIII MADM-labeled pyramidal neurons

(1, left) were 3D-reconstructed using Imaris software (2,middle), and the soma size was determined (3, right). (O) Quantification of the soma size ofMADM-labeled

pyramidal neurons in mosaic-MADM and control-MADM mice at P5 (mosaic-MADM: Slc7a5�/� (green), Slc7a5+/+ (red); control-MADM: Slc7a5+/+ (green and

red); n = 4 animals per genotype; n = 6 neurons per color and genotype; nsp > 0.05; one-way ANOVA and Sidak’s multiple comparison test).

(P–S) Analysis of the morphology of mutant and wild-type LII/LIII pyramidal neurons at P6–P7 (P and Q) and P40 (R and S). Quantification of (P and R) the number

of dendrites, (P0 and R0) total dendritic length, and (Q and S) the number of dendritic intersections (sholl analysis; top: scheme; bottom: quantification) (n = 3 mice

per genotype, at least 6 cells per animal; *p < 0.05, nsp > 0.05; one-way ANOVA and Sidak’s multiple comparison test).
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